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Covariate conscious approach for Gait recognition
based upon Zernike moment invariants

Himanshu Aggarwal, Dinesh K. Vishwakarma, Member, IEEE

Abstract—Gait recognition i.e. identification of an individual
from his/her walking pattern is an emerging field. While existing
gait recognition techniques perform satisfactorily in normal
walking conditions, their performance tend to suffer drastically
with variations in clothing and carrying conditions. In this work,
we propose a novel covariate cognizant framework to deal with
the presence of such covariates. We describe gait motion by form-
ing a single 2D spatio-temporal template from video sequence,
called Average Energy Silhouette image (AESI). Zernike moment
invariants (ZMIs) are then computed to screen the parts of AESI
infected with covariates. Following this, features are extracted
from Spatial Distribution of Oriented Gradients (SDOGs) and
novel Mean of Directional Pixels (MDPs) methods. The obtained
features are fused together to form the final well-endowed feature
set. Experimental evaluation of the proposed framework on
three publicly available datasets i.e. CASIA dataset B, OU-ISIR
Treadmill dataset B and USF Human-ID challenge dataset with
recently published gait recognition approaches, prove its superior
performance.

Index Terms—Human gait recognition, Gait biometrics, Aver-
age energy silhouette image, Zernike moment invariants, Spatial
distribution of oriented gradients, Mean of directional pixels.

I. INTRODUCTION

B IOMETRICS have become a common sight these days.
While fingerprint scanner, iris scanner, palm scanner etc.

are being extensively used in offices, banks, legal organiza-
tions; there are still some biometric methods whose usage in
daily lives has been much constricted.

Individual recognition on the basis of gait is one such
domain. The domain exploits the notion that every individual
has its own idiosyncratic way of walking. Also, gait data
collection being non-intrusive, contact-free and taking into
account its easy availability, owing to the widespread usage of
surveillance cameras, make gait biometrics a very promising
field. However the efficiency of gait recognition algorithms
do suffer from presence of some external factors such as
covariates like clothing, footwear, bags, etc. This makes gait
biometrics a challenging task but nevertheless useful. Gait
recognition approaches can be classified into broadly two cat-
egories: Model based approach and Model-free (Appearance
based) approach. Model based approach [1] [2] [3] [4] [5]
employ modelling of human body structure and local move-
ment patterns of different body parts. The parameters of the
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models, like knee position, pelvis to knee distance, hip position
etc. are mostly learnt by processing the gait sequence. Model
based approach is generally view and scale invariant. However,
the performance of this approach is highly dependent on the
quality of extracted human silhouettes, low quality of which
can lead to inaccurate and incorrect parameter estimation re-
sulting in plummeting of the performance. On the other hand,
Model free approach [6] [7] [8] [9] [10] is not explicitly based
on structural information. This approach works on temporal
and shape information. Compared to model-based approach,
model-free approach is computationally less expensive and
use of temporal information results in much better recognition
performance. Furthermore, model-free approach is more robust
to noise and has thus become the preferred approach in
research.

One of the primary challenge for vision based gait recogni-
tion techniques is to disentangle the identity-unrelated factors
which yet alter gait appearances drastically. Though existing
works [6] [7] [10] [11] [12] [13], give satisfactory performance
in normal walking conditions taken under controlled envi-
ronment, these methods are sensitive to silhouette distortion
which occur due to the presence of covariates. A representative
gallery set is required for such metrics to perform effectively.
In real-world scenarios such an assumption does not hold
true. Since the conditions in which a query gait sequence is
collected is mostly unknown, a gallery set encapsulating entire
population cannot be obtained.

To address these problems, a unified covariate cognizant
approach to gait recognition has been proposed in this paper.
The method works on spatio-temporal image representation
of gait named AESI [14]. AESI is a compact representation
of gait which preserves the necessary shape and temporal
information of the gait sequence. Furthermore, the presented
framework employ two stages. The first stage involves de-
tection of anomalies due to presence of covariates. Zernike
invariant moments [15] are used for this purpose. The moments
are computed for the AESI and then the distance between the
moments is used as a comparison metric. Thereafter, second
stage involve feature extraction from parts of AESI devoid
of any anomalies as decided by the comparison in the first
stage. For this, Spatial distribution of gradients (SDOG) [14]
is employed. SDOG calculates local orientation of gradients
over the silhouette image (AESI) and its sub-pyramids creating
feature set that encapsulates both local and global information
about the image. In addition to SDOG, MDPs are computed
and integrated in the feature set. MDPs show distribution
of the MDPs in direction, the direction in which walking
motion is most prominent [16]. MDPs are computed only
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in regions of high temporality, typically the limb and neck
area, and preserve structural information in these regions. As a
result the final formed feature set has extensive distinguishing
capability, in addition to being low dimensional, resulting
in optimal recognition performance. Moreover, the classical
approach employed in existing works [6] [7] [17] is to use
Principal component analysis(PCA) and Multiple Discriminant
Analysis(MDA) approach for feature set dimension reduction
obtained from direct matching on various kinds of spatio
temporal representations of gait. Our method intrinsically
generate a reliable and compact feature set, thus making the
use of these approaches superfluous.

Experimental results on three popular gait datasets demon-
strate the efficacy of our approach. Our method achieved an
overall recognition accuracy of 72.7% on OU-ISIR Treadmill
B dataset [18], this is better than recent GII-SF approach [19]
by 11.5%. For CASIA B dataset [20], the improvement is even
more, where our method achieved overall accuracy of 91.47%
which is nearly 19% better than the GII-SF. We also achieved
accuracy of 72.53% on the USF Human-ID challenge dataset
[21] which slightly outperforms the very recent clothing and
carrying condition invariant rotation forest approach [22]. The
key contributions of this work are as follows:

1) A new consolidated approach is developed for the recog-
nition of human gait that is capable of detecting co-
variates and minimize their repercussions by employing
AESI, ZMIs, SDOGs and MDPs.

2) Enlistment of AESIs that effectively represents temporal
and shape evidence by fusing gait silhouette images
using reference point alignment and forming a single
2D templates.

3) Introduction of a novel method for determination of
presence of covariates by segmenting AESI into multiple
parts and using ZMIs as a comparison metric.

4) Adoption of SDOGs method for defining gait charac-
teristics, that is based on local gradient orientation for
feature extraction from gait template and provides low
dimensional feature set that encompass both local and
global viable information.

5) A novel MDPs method that extracts structural informa-
tion from high temporal regions by studying variation
of MDPs in horizontal direction, the direction in which
gait motion is most prominent.

The remainder of the paper is organized as follows: A
brief survey of the existing popular gait recognition techniques
is done in Section 2. Section 3 discusses the pipeline of
the proposed approach and details the various modules of
the pipeline. A detailed analysis of the performance of the
proposed technique is performed in Section 4, alongside com-
parisons with existing similar state-of-the-art methods. Section
6 concludes the paper.

II. RELATED WORKS

In recent years, several techniques have been devised for
the recognition of individuals through their gait. As already
discussed two approaches to gait recognition exist -Model
based approach and Appearance based approach. In model

based approach human body structure is modelled through
various geometrical shapes. Johansson [1] introduced Moving
light display i.e., MLD, a unique technique for gait recog-
nition. MLD involved fastening of bright markers to human
clothing in order to capture gait motion of subject. Ben
Abdelkader et al. [2] argued that gait stride and cadence
can be used for identification of individuals. The method
estimated stride length using a calibrated camera and then
used Bayesian classifier for identification. Johnson and Bobick
[3] inspected a method to recognize people using static body
parameters like height of individual, distance between head
and pelvis, distance between pelvis and left foot, and distance
between right and left foot. Liu and Sarkar [23] proposed
averaging of silhouette frames for determination of gait char-
acteristics of an individual. The method then used Euclidean
distance between averaged silhouettes for classification. Lee
et al [24] proposed Shape Variated-based frieze pattern (SVB-
frieze pattern) representation for gait. SVB-frieze pattern was
formed by projecting difference frames onto 1 dimension, the
projected values of difference frames were then summed over
a gait cycle to obtain the frieze pattern. Nixon et al [4] [25]
presented automatic gait recognition involving estimation of
rotation pattern of hips and modelling of leg movement using
a pendulum model. K-nearest neighbor classifier was then used
for classification.

Model free approaches involve period based methods. These
methods provide compact representation of gait by extracting
features from a single image obtained from one gait cycle.
Chai et al. [26] introduced Perceptual Shape Descriptor (PSD)
that encompassed shape information of walking silhouettes.
The formed PSDs were then accumulated over time to form
Perceptual curve, which was used for gait recognition. Tan
et al. [27] formed frieze pattern by projecting normalized
silhouettes along four directions- vertical, horizontal and two
diagonals. The resultant feature set was dimensionally reduced
using PCA. A Mahalanobis distance based nearest neighbour
method was then used for classification. Han and Bhanu
introduced concept of Gait energy image (GEI) [6], which
involved averaging of binary silhouette images over a gait
cycle to form single image. GEI still remains one of the most
popular technique for gait recognition and numerous works
use GEI as underpinning. Tao et al. [11] used Gabor functions
over GEI for image understanding and employed a General
Tensor Discriminant Analysis for recognition. A matrix based
Marginal Fisher analysis (MFA) was presented by Xu et al.
[10] ,that produced a compact feature set, to address problem
of gait recognition. Liu et al. [28] modelled human gaits using
population Hidden Markov Model (pHMM) and calculated
distance between sums of normalized gait stances to identify
individual identity. Wang et al. [7] introduced a novel template
named Chrono-Gait Image (CGI). CGI encodes variation in
averaged images into multiple channels thereby effectively
preserving the temporal information of gait motion. One of
the principal challenge in gait recognition is dealing with
intra-class variations spawning from clothing variations and
carrying conditions. Several techniques have been studied
to reduce adverse effects of these variations. Bashir et al.
[9] proposed Gait Entropy image (GEnI). GEnI calculates
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Fig. 1: Work flow diagram of the proposed framework

entropy for each pixel in GEI and then segments high temporal
regions from regions of low temporality. The regions of high
temporality are argued to be devoid of covariate conditions
and thus are more relevant to gait recognition. Bashir et al. [8]
used optical flow fields to capture motion intensity and motion
direction. Dupuis et al. [29] selected relevant features from
GEI by using Random Forest feature rank algorithm. Jeevan et
al. [30] presented novel temporal template named Gait Pal and
Pal Entropy (GPPE) Image. Kusakunniran [31], [32] proposed
Space Time interest points (STIPs) descriptor to extract gait
features directly from raw video. Rokanujjaman et al. [33]
introduced a novel discrete fourier transform based entropy
representation of gait named EnDFT. Lam et al. [17] proposed
Gait flow image(GFI) which represented motion information
in a gait cycle by optical flow. Recently, Parul et al. proposed
Gait Information image (GII) [19], a technique based on
information set theory which involve features derived from
Hanman-Anirban entropy function. GII have two features-
energy feature (GII-EF) and sigmoid feature (GII-SF). Guan
et al. [34] proposed a classifier ensemble method based on
the random subspace method (RSM) and majority voting
(MV). Very recently, Choudhury and Tjahjadi [35] introduced
averaged gait key-phase image (AGKI) which use rotation
forest ensemble learning technique to distinguish individuals
and and recognize intra-class diversity, leading to good results
even in presence of covariates.

III. PROPOSED COVARIATE CONSCIOUS FRAMEWORK

The covariate conscious gait recognition approach can be
understood in two phases: Enrollment phase and Identification
phase as outlined in Fig. 1.

In Enrollment phase, AESI is formed for each of the gallery
gait sequence. The formed AESI is segmented into 4 parts
according to human body geometry namely neck region, chest
region, pelvic region and limb region. Each region is termed
as part-AESI. Zernike moments are then calculated for each
of the part-AESI and added in ‘Zernike moments for gallery
sequences’ database. In parallel, sub-AESIs are formed by
arranging part-AESIs of an incoming gait sequence into all
possible combinations resulting in a total of 24 − 1 = 15
sub-AESIs. Features are then extracted from each of the sub-
AESI using SDOGs and MDPs methods. Finally, a linear SVM
classifier is trained on the obtained feature set.

In Identification phase, AESI is formed from the probe
gait sequence. Similar to enrollment phase, part-AESIs are
constructed and Zernike moments are computed for each of
the part-AESI. The presence of covariates is then decided
by comparison of the computed moments of a part-AESI
with the moments stored in ‘Zernike moments for gallery
sequences’ database for the corresponding part. As decided by
the comparison, parts devoid of any covariates are used to form
a sub-AESI which is later classified using the corresponding
SVM classifier trained during the enrollment phase.
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Fig. 2: Determination of gait period from variation of foreground pixels

A. Construction of AESI

AESI [14] preserves shape and temporal information that
is representative of gait motion in a convenient 2D template.
AESI use binary silhouettes as basis and its formation is a
two-step process. The first step involves extraction of human
silhouettes from image frames and calculation of gait period.
The second step involves summation and normalization of the
obtained silhouettes.

The extraction of binary silhouettes is performed using
background subtraction technique. Background subtraction is
a challenging task owing to the highly dynamic nature of
the background, at the same time, quality of the extracted
silhouettes is critical for the performance of the whole gait
recognition algorithm. This makes effective modelling of back-
ground imperative. This work employs textual feature based
background subtraction approach proposed by Chua et al. [36]
for foreground segmentation. The approach reckons entropy as
an important texture information parameter, which is defined
as:

ε =
∑
i

∑
j

F (i, j) logF (i, j) (1)

where F (i, j) = M(i, j)/
∑
i,jM(i, j) is the probability

density function and, i and j are indices to co-occurrence
matrix M . Once the binary images are formed, the silhouettes
are obtained by scanning the image row-wise and column-
wise. The extreme white pixels are then determined to get the
desired bounding box.

One key step in formation of AESI for gait sequence is
determination of gait period. Gait period is defined as the
number of frames over which two consecutive walking cycles
span. One walking cycle is completed when a person moves
from mid-stance position (position where legs are closest)
to double-support position (legs are farthest apart) and then
back to mid-stance position. The gait period can be computed
simply by counting the number of foreground pixels in the
lower half [21]. At the mid-stance position the number of
foreground pixels attains a local minima, while at double-
support position the number attains a local maxima. Therefore,
the analysis as shown in Fig. 2 of these local minima and
maxima can give the estimate of the gait period.

Once the gait period is determined, the binary silhouettes
over that period are aligned using reference point and then
fused into a single template on incremental basis [37]. One
of the key strengths of AESI is the degree of compression it
offers, an entire gait sequence, typically 40-70 silhouettes, is
compressed into a single template. AESI fails to maintain the
chronology thus loosing on some of the temporal information,
however, it has adequate shape information thus making it
apposite for the task of gait recognition. AESI is defined as:

AESI (x, y) = 1/n

n∑
τ=1

|S(x, y)τ |
2 (2)

where ‘n′ is the number of silhouettes in a gait period and
‘S(x, y)τ

′ is the binary silhouette at time instant ‘τ ′. The
salient characteristic of AESI is that the degree of temporality
in a region is manifested as intensity variation in AESI. Ex-
amples of generated AESIs for normal walking and covariate
conditions is shown in Fig. 3.

Fig. 3: Formed AESIs (a) Normal Walking (b) Clothing and carrying
conditions

B. Covariate detection using ZMIs

The presence of covariates can significantly alter the shape
of human silhouettes. While even though this is one of
the prime reason for drop in performance of gait recogni-
tion systems, this information could actually be leveraged
in order to filter out the regions of the silhouettes affected
by such distortion. In this paper, we use Zernike moment
based shape descriptors for the purpose. Zernike Polynomials
were proposed in [15] to describe optical aberrations. Zernike
polynomials are a set of complex polynomials forming an
orthogonal basis, which are defined in the interior of unit circle
x2 +y2 ≤ 1. Zernike basis function Vnm (ρ, θ) of order n and
repetition m is defined in polar coordinates as:

Vnm (x, y) = Vnm (ρ, θ) = Rnm (ρ) ejmθ for ρ ≤ 1 (3)

where ‘Rnm (ρ)
′ is a radial polynomial defined as:

Rnm (ρ) =

n−|m|
2∑
s=0

(−1)
s (n− s)!

s!
(
n+|m|

2 − s
)

!
(
n−|m|

2 − s
)

!
ρn−2s

(4)
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Fig. 4: Plot of Zernike Basis function Vnm(p, θ) for order n = 5 (a) Re(V5,1) (b) Im(V5,1) (c) Re(V5,3) (d) Im(V5,3) (e) Re(V5,5) (f) Im(V5,5)

Here, n is a non-negative number and m is integer satisfying
conditions: n − |m| is even and |m| ≤ n. The set of basis
functions Vnm (ρ, θ) is orthogonal, i.e.

2π∫
0

1∫
0

V∗nm (ρ, θ) Vpq (ρ, θ) ρdρdθ =
π

n+ 1
δnpδmq (5)

where δxy =

{
1, x = y
0, otherwise

The 2-dimensional Zernike moments for continuous image
function ψ (ρ, θ) are defined as:

Znm =
n+ 1

π

2π∫
0

1∫
0

ψ (ρ, θ)V∗nm (ρ, θ) ρdρdθ

=
n+ 1

π

2π∫
0

e−jmθ
1∫
0

ψ (ρ, θ)Rnm (ρ) ρdρdθ

(6)

The 2-dimensional Zernike moments for discrete digital image
function ψ (x, y) are defined as:

Znm =
n+ 1

π

∑
x

∑
y

ψ (x, y)V∗nm (x, y) , x2 +y2 ≤ 1 (7)

The incentive to using Zernike moments is that they are
invariant to position, size and orientation. Teh et al. [38]
demonstrated the efficacy of Zernike moments as shape de-
scriptors among other many moment-based descriptors. As
stated before, the AESIs of both the gallery and probe gait
sequences are partitioned into 4 segments called part-AESIs.
This is done in order to restrict the extent of discarded
region of AESI to a minimum, and thereby preserving viable
information as much as possible. Since the AESIs are size
normalized, the same segmentation scheme is followed for
all the images. An AESI of height H is segmented based on
human body anatomy [39] and scheme is given in Table I.

TABLE I:
AESI SEGMENTATION

Body Part Height

Neck region 1H - 0.80H
Chest region 0.80H - 0.55H
Pelvic region 0.55H - 0.30H
Limb region 0.30H - 0H

Once the partition is done, Zernike moment invariants
are calculated for each part-AESI formed for the gallery

sequences, and are stored in ‘Zernike moments for gallery
sequences’ database. To detect the presence of covariate in
incoming part-AESI Pi(i = 1, 2 . . . 4) of probe gait sequence,
we compute mean Euclidean distance DPi between its Zernike
moments and the moments stored in ‘Zernike moments for
gallery sequences’ database for the corresponding part. In
our empirical testing we found Zernike moments of order
n = 5 and repetition m = 1, 3 and 5 to be efficient for the
comparison. Fig. 4 shows plots of real and imaginary part of
these moments. DPi is defined as:

DPi =
1

N

N∑
k=1

√√√√√√
∑

m = 1, 3, 5
n = 5

|ZGkinm − ZPinm|
2 (8)

where N is the total number of gallery sequences and GKi is
ith part AESI of Kth gallery sequence.

Fig. 5: Variation of Euclidean distance between Zernike moments in
presence and absence of covariates for two instances (a) and (b). From

figure it can be seen that the mean of Euclidean distance does serve as a
reliable metric to detect the presence of covariates

A part-AESI is declared to infected with covariate if:

DPi ≥ µi + 3σi (9)

where:

µi =
1

N2

N∑
j=1

N∑
k = 1
k 6= j

√√√√√√
∑

m = 1, 3, 5
n = 5

∣∣∣ZGjinm − ZGkinm

∣∣∣2 (10)
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Fig. 6: Representation of decomposition levels and their spatial distribution, involved in calculation of final SDOG feature vector

σi =
1

N

N∑
j=1


N∑

k = 1
k 6= j

√√√√√√
∑

m = 1, 3, 5
n = 5

∣∣∣ZGjinm − ZGkinm

∣∣∣2 − µi

(11)

It should be noted that computation of µi and σi is an
offline process, and needs to be executed only once, when
the database is constructed. This work considers the prevalent
scenario where gallery is formed of normal walking sequences
and probe sequences involve presence of covariates. However,
the same proposed algorithm can be used in the hypothetical
opposite scenario as well, since covariate detection works only
on relative distance between probe and gallery sequences.

Fig. 5 demonstrates variation of Euclidean distance for
infected and non-infected part-AESIs for two instances. It can
be discerned from the figure that the mean Euclidean distance
does serve as a suitable metric for the detection of covariates.

The added advantage of using ZNIs on AESI rather than
on binary silhouettes themselves is AESIs immunity to noise.
Since, AESI is formed by fusing multiple silhouettes; the effect
of noise in any one silhouette becomes negligible and hence
does not perniciously influence the performance of Zernike
shape descriptors.

C. Computation of SDOGs shape feature

Spatial Distribution of Oriented Gradients (SDOG) [14]
extracts textural information from images by binning the
intensity of image gradients according to their orientation
in the image. These characteristics are computed at various
decomposition levels (sub-regions) of the AESI, and hence

encapsulate both coarse and fine details. The SDOGs compu-
tation for K orientation bins at decomposition level v results in

a feature vector of length K
v∑
v=0

4v . In this work, we apportion

gradient orientations into 9 bins each spanning 20 degrees and
a total of 3 decomposition levels are employed. The process
to compute SDOG is delineated in Algorithm1 and Fig. 6.

Algorithm 1: Computation of SDOGs
Input : AESI (x, y) of gait sequence computed using

Eq.2.
1 Decompose AESI (x, y) into sub-regions.
2 Determine the magnitude and orientation at each pixel of

gradient image Grad (x, y) at multiple decomposition
levels (v) using

H (x, y) =
√
Gradx(x, y)

2
+Grady(x, y)

2 and

(x, y) = tan−1
[
Grady(x,y)
Gradx(x,y)

]
.

3 Apportion the computed magnitude of gradients at
different levels (v) into K- orientation bins.

4 Aggregate all the sub-regions at level (v)

fSDOGs = K
v∑
v=0

4v

5 Concatenate all the levels (0, 1, 2) of SDOGs to form a
final SDOGs feature vector defined

as: fSDOGs = K

 0∑
v=0

4v

level v=0

;
1∑
v=0

4v

level v=1

;
2∑
v=0

4v

level v=2


Output: The histogram of SDOGs feature vector of

dimension 1× 189.
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D. MDPs calculation

Human gait motion is attributed more to horizontal motion
than vertical motion [16]. To exploit this, we introduce Mean
of Directional Pixels (MDPs) features, and append these with
SDOGs to form the final feature set. MDPs treat each row of
AESI as an individual feature element, and compute the mean
of pixel intensity in individual rows. To keep the dimension
of the resulting feature set low, only the rows of AESI
which belong to high temporal regions, are included in the
computation. High temporal rows in AESI can be identified
from the variance of intensity values in that particular row.

For AESI of dimension m× n, MDP (i) for row vector i
is defined as:

MDP (i) =
1

n

n∑
k=1

AESI (i, k) (12)

In this work, only m/2 MDPs corresponding to most intensity
variable rows, are calculated for a m× n AESI .

It should be noted that since the number of rows vary for
different part-AESIs, the length of resulting feature set varies
as well. Fig. 7 demonstrates the variation of MDPs for two
subjects with two sequences each. It can be studied from the
figure that MDPs possess remarkable inter-class distinguishing
ability while at the same time have the needed intra-class
similarity.

Fig. 7: Variation of MDPs for two subjects. The figure illustrates the
intra-class similarity and inter-class distinguishing ability possessed by

MDPs.

IV. EXPERIMENTAL RESULTS

In order to test the performance of proposed framework,
an experiment is conducted on three publicly available human
gait dataset sets. These datasets are CASIA Dataset B [20],
OU-ISIR Treadmill Dataset B [18] and the USF Human-ID
gait challenge Dataset [21]. For classification, Linear kernel
SVMs are used with penalty parameter c = 1 and tolerance for

stopping criteria ε = 1×e−4. The computational complexity of
the proposed algorithm in Identification phase is Ω(mn+N),
while for Enrollment phase( i.e construction of Database), the
computational complexity is Ω(mnN + N2) where m × n
is the size of AESI in pixels and N is the number of
members enrolled\to be enrolled in the dataset. Performance
of the algorithm is measured by calculating the correct class
recognition rate (CCR) in percentage using support vector
machine (SVM) in leave-one-out cross validation scheme. The
CCR is determined using Eq. 14 and defined as:

CCR =
TP + TN

TP + TN + FP + FN
× 100 (In Percentage)

(13)
where TP, TN,FP and FN are true positive, true negative,
false positive, and false negative respectively. To evaluate
the effectiveness of the proposed algorithm, the highest CCR
achieved through the proposed algorithm is compared with the
others similar state-of-the-art.

A. CASIA Dataset B

Fig. 8: Probe sequences of CASIA B dataset

CASIA dataset B [20] is a multi-view dataset comprising
of 124 subjects.The gait motion is captured from 11 cameras
placed 18 degrees apart. There are 10 sequences of each
subject which include 6 normal walking sequences (CAS-A),
and 2 each with carrying conditions (CAS-B) and clothing
variation (CAS-C). For evaluation, only sequences under 90
degrees view angle have been considered. The first 4 sequences
of CAS-A are used as gallery sequences, while the remaining
2 along with sequences of CAS-B and CAS-C form the probe
set. The AESIs of all the gait sequences are size normalized
to pixels.

The highest CCR achieved in each probe of the dataset
is compared with the others similar state-of-the-art and as
presented in Table II and Fig. 9.

TABLE II:
COMPARISON OF CCR WITH THE SIMILAR STATE-OF-THE-ART ON

CASIA DATASET B

Method CAS-A CAS-B CAS-C Average

GEI [6] 93.1 48.8 18.8 53.56
GEnI [9] 92.6 57.3 22 57.3
DFT [40] 95.1 58.8 21.5 58.46
EnDFT [33] 96 60.4 39.2 65.2
CGI [7] 100 64.2 43.6 69.26
Flow Field [29] 97.5 83.6 48.8 76.63
Random Forest [29] 98.8 73.8 63.7 78.76
GPPE [30] 93.6 56.1 22.4 57.36
STIP [32] 95.4 60.9 52 69.43
GII-SF [19] 98 74.5 45 72.5
AESI+ZNK 100 93.1 81.3 91.47
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TABLE III:
PERFORMANCE ON CASIA B DATASET USING DIFFERENT

NUMBER OF TRAINING DATA

K=1 K=2 K=3 K=4 K=5

CAS-A 89.04 96.22 99.17 100 100
CAS-B 87.52 91.14 92.36 93.1 93.85
CAS-C 75.81 79.67 81.3 81.3 81.3

Table II, compares the performance of the proposed method
with various existing algorithms in terms of average CCR for
three different probe of CASIA dataset. From Table II, it can
be observed that the proposed algorithm performs admirably
well in presence of covariates (i.e. CAS-B and CAS-C), where
it achieves 93.1% accuracy for sequences having carrying
conditions (CAS-B). This is 9.5% better than the existing state-
of-the-art, Flow Field which achieved recognition accuracy
of 83.6%. For sequences having clothing variations (CAS-C),
difference is even more drastic. Our method achieved accuracy
of 81.3%. This is 17.6% better than the existing Random forest
approach, which achieved recognition accuracy of 63.7%. Fig.
9 show Cumulative Match Characteristic (CMC) curve for all
three probe sequences, and it can be considered an exhaustive
comparison of accuracy because it is achieved through the
variation of Rank. In all these cases the CMC curves shows
better accuracy. Hence, it can be said the proposed algo-
rithms perform well in comparison with many such existing
approaches. Table III studies the variation of recognition rate
with different number of training data. K is the number of
gait normal walking sequences involved to form the training
data. The remaining sequences form the testing set.

B. OU-ISIR Treadmill Dataset B

OU-ISIR Treadmill B [18] dataset comprises of large cloth-
ing variations. The dataset consists of 68 subjects with up to
32 possible variations in clothing from 15 different kinds of
clothes such as half shirt, full shirt, baggy pants, hat, cap etc.
Fig. 10 shows different gait sequences in the dataset. Table III
show clothing combinations for each of the gait sequence.

The dataset is partitioned into 3 segments- Gallery set,
Training set and Probe set. The gallery set comprises of 48
subjects with one standard combination of clothing (Sequence
type 9). The training set consists of 446 sequences of 20
subjects with all possible clothing combinations. The set is
provided for tuning of model parameters. Since, its unlikely in
real world to know the type of covariate variations beforehand,
the training set is not used in this evaluation in any manner.
The probe set comprises of 856 sequences of the same 48 sub-
jects as in gallery set with all possible clothing combinations,
except type 9. The OU-ISIR dataset itself provide extracted
silhouettes size normalized to 128 × 88 pixels, therefore the
formed AESIs are of the same size (128× 88).

The Table IV compares the rank 1 and rank 5 performance
of the proposed method with the similar state of the art.
Fig.11 shows the comparison of CMC on similar state-of-the-
art methods and higher accuracy can be comprehend by the
proposed approach AESI+ZNK. The results are depicted using
CMC curve in Fig. 12. shows the CMC curve for all the probe

(a)

(b)

(c)

Fig. 9: Depiction of accuracy vs Rank curve for different approaches on
three probe sequences of dataset (a) CAS-A, (b) CAS-B (c) CAS- C

sequences in the OU-ISIR Treadmill B dataset achieved by our
algorithm.

It is clear from Table IV that the proposed approach
outperforms existing methods in robustness to distortion by
presence of covariates. The recognition accuracy achieved
by the proposed algorithm is 72.7%, which is 11.5% better
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Fig. 10: Gait sequences in OU-ISIR Treadmill Dataset B

TABLE IV:
CLOTHING COMBINATIONS INCLUDED IN THE OU-ISIR B

DATASET. KEYS FOR CLOTHES: RP-REGULAR PANTS; BP-BAGGY
PANTS; SP-SHORT PANTS; SK-SKIRT; CP: CASUAL PANTS; HS-HALF

SHIRT; FS- FULL SHIRT; LC-LONG COAT; PK-PARKER; DJ-DOWN
JACKET; CW-C

Type S1 S2 S3 Type S1 S2 Type S1 S2

3 RP HS Ht 0 CP CW F CP FS
4 RP HS Cs 2 RP HS G CP Pk
6 RP LC Mf 5 RP LC H CP DJ
7 RP LC Ht 9 RP FS I BP HS
8 RP LC Cs A RP Pk J BP LC
C RP DJ Mf B RP DJ K BP FS
X RP FS Ht D CP HS L BP Pk
Y RP FS Cs E CP LC M BP DJ
N SP HS - P SP Pk R RC -
S Sk HS - T Sk FS U Sk PK
V Sk DJ - Z SP FS - - -

TABLE V: COMPARISON OF CCR WITH THE SIMILAR STATE-OF
THE-ART ON OU-ISIR TREADMILL DATASET B

Method Rank 1 CCR Rank 5 CCR

GEI [6] 44.2 71.2
GEnI [9] 47.3 75.6
DFT [37] 46.6 73.2

EnDFT [32] 52 77.4
GII-SF [18] 61.2 85.1
AESI+ZNK 72.7 89.7

than the existing state-of-the-art, GII-SF that achieved 61.2%
recognition accuracy.

From Fig. 12 it can be seen that the recognition accuracy
achieved is highest for probe sequences A, X and Y. This
is understandable since these sequences have less drastic
variations in clothing compared to gallery set. On the contrary,
the proposed algorithm fared worst for sequences V and H.
This can be attributed to minimal commonality between these
sequences and the gallery set.

C. USF Human-ID Gait Challenge Dataset

Finally, the performance of the proposed work is evaluated
on USF Human-ID dataset [20]. The dataset is shot in outdoor
environment (Fig. 13) and comprises of five variations- con-
crete or grass surface, presence or absence of briefcase, shoe
variation (Type A or Type B), right or left view and variation
in elapse time.

Fig. 11: Comparison using CMC on OU-ISIR Treadmill Dataset B

The USF Human-ID gait challenge dataset contains a total
of 1870 gait sequences of 122 human subjects. The dataset
provides a predetermined experimental setup and is segmented
into 13 subsets out of which 1 forms the gallery set and the
remaining 12 form the probe sets (A-L). As in the case of
OU-ISIR dataset, the USF Human-ID dataset also provides
size-normalized silhouettes of 128× 88 pixels. Therefore, the
formed AESIs are of the same size i.e. 128× 88 pixels.

Table V informs about the covariate variations in all the
probe sets (A-L) along with the number of sequences in
each set. The table also demonstrates the achieved overall
accuracy of the proposed algorithm and similar state-of-the-art
for individual probe sets.

It can be studied that the proposed algorithm achieved an
overall CCR of 72.53% for Rank 1 evaluation. This is highest
among all the compared methods. For Rank 5 evaluation,
the proposed method achieved CCR of 84.67%, which again
is highest among all the existing methods. This proves the
efficacy of our approach. The achieved CCR is particularly
high for probe sets A, C, D, H and J. However, the approach
doesnt offer improved performance for probe sets K and L
over the existing state-of-the-art. This shows that while the
use of Zernike moments can effectively handle and iron out
covariates affecting the shape information, it understandably
doesnt offer much immunity from temporal covariates.

V. CONCLUSION AND FUTURE WORK

In this paper, a covariate cognizant approach to gait recog-
nition has been presented. A single spatio-temporal template
called AESI is formed to represent the gait motion. After
which, Zernike moment based shape descriptors are used to
detect the presence of covariates. An effective segmentation
technique is used which discards the parts of AESI deemed
infected by covariates. For feature extraction, SDOGs and
MDPs methods are employed. SDOGs method provides a
reliable and compact feature set by exploiting gradient infor-
mation in the AESI. MDPs is a new feature extraction method,
adapted specifically for gait motion and extracts information
about the horizontal movement, which characterize the gait
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Fig. 12: Comparison of performance of proposed algorithm for individual sequences of OU-ISIR Treadmill B Dataset using CMC

TABLE VI:
COMPARISON OF CCR WITH THE SIMILAR STATE-OF THE-ART ON USF HUMAN-ID GAIT DATASET AT RANK 1 AND RANK 5. KEY FOR

COVARIATES -V - VIEW; H - SHOE; S - SURFACE; B - BRIEFCASE; T - TIME; AND C - CLOTHES

Probe Set A B C D E F G H I J K L Avg.

Probe Size 122 54 54 121 60 121 60 120 60 120 33 33 -

Covariates V H VH S SH SV SHV B BH BV THC STHC -

Rank 1 CCR

GEI [6] 90 91 81 56 64 25 36 64 60 60 6 15 57.66

CGI [7] 91 93 78 51 53 35 38 84 78 64 3 9 61.69

GTDA [10] 91 93 86 32 47 21 32 95 90 68 16 19 60.58

GPDF [38] 95 93 89 62 62 39 38 94 91 78 21 21 70.07

VI-MGR [34] 95 96 86 54 57 34 36 91 90 78 31 28 68.13

AGKI [21] 96 96 90 62 63 37 39 94 93 80 41 32 71.74

AESI+ZNK 97 96 93 68 64 34 37 96 92 86 27 24 72.53

Rank 5 CCR

GEI 94 94 93 78 81 56 53 90 83 82 27 21 76.23

CGI 97 96 94 77 77 56 58 98 97 86 27 24 79.12

GTDA 98 99 97 68 68 50 56 95 99 84 40 40 77.58

GPDF 99 94 96 89 91 64 64 99 98 92 39 45 85.31

VI-MGR 100 98 96 80 79 66 65 97 95 89 50 48 83.75

AGKI 100 98 97 88 85 68 68 98 95 91 57 54 84.46

AESI+ZNK 100 100 98 81 83 68 60 99 98 94 42 36 84.67
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(a) (b)

(c) (d)

Fig. 13: Sample images of USF Human-ID gait challenge dataset: (a, b) left
and right of camera view on concrete surface (c, d) left and right camera

view on grass

sequence. The efficacy of the presented approach is evaluated
on three publicly available datasets. On all the three datasets
our approach showed promising results and outperformed the
existing state-of-the-art.

For future studies, an extension of the proposed approach,
which is multi-view invariant, can be developed. We will
also explore how to improve the representation of temporal
information for gait sequences. In addition, we will consider
employing the presented approach to the domain of medical
prognosis. Since many ailments causes substantial change
in walking pattern of an individual, it would be interesting
to explore if the technique could help in diagnosis of such
ailments.
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