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Explicit Equations of Motion for Mechanical Systems With Nonideal Constraints

Since its inception about 200 years ago, Lagrangian mechanics has been based upon the Principle of D'Alembert. There are, however, many physical situations where this confining principle is not suitable, and the constraint forces do work.

To date, such situations are excluded from general Lagrangian formulations. This paper releases Lagrangian mechanics from this confinement, by generalizing D'Alembert's principle, and presents the explicit equations of motion for constrained mechanical systems in which the con-straints are nonideal. These equations lead to a simple and new fundamental view of Lagrangian mechanics. They provide a geometrical understanding of constrained motion, and they highlight the simplicity with which Nature seems to operate.

Introduction

One of the central problems in classical mechanics is the determination of the equations of motion for constrained systems. The importance of the problem stems from the fact that what makes a set of point masses and rigid bodies, a ''system,'' is the presence of constraints. When physical constraints are imposed on an unconstrained set of particles, forces of constraint are engendered which ensure the satisfaction of the constraints. The equations of motion developed to date for such constrained systems are based on a principle first enunciated by D'Alembert, and later elaborated by Lagrange ͓1͔ in his Mechanique Analytique which dates back to 1787. Today the principle is referred to as D'Alembert's principle, and it is the centerpiece of classical analytical dynamics. It states, simply, that the total work done by the forces of constraint under virtual displacements is always zero. Constraints for which D'Alembert's principle is applicable are referred to as ideal constraints.

Since its initial formulation by Lagrange more than 200 years ago, the problem of constrained motion has been vigorously and continuously worked on by numerous scientists including Volterra, Boltzmann, Hamel, Whittaker, and Synge, to name a few. In 1829, Gauss ͓2͔ provided a new general principle for the motion of constrained mechanical systems in what is today referred to as Gauss's Principle. About 100 years after Lagrange, Gibbs ͓3͔ and Appell ͓4͔ independently discovered what are known today as the Gibbs-Appell equations of motion ͓͑3,4͔͒. Pars ͓͑5͔, p. 202͒ refers to the Gibbs-Appell equations as ͓͑5͔͒ '' . . . probably the most comprehensive equations of motion so far discovered.'' Dirac, because of his interest in constrained systems that arise in quantum mechanics, in a series of papers from 1951 to 1969 developed an approach for determining the Lagrange multipliers for constrained Hamiltonian systems ͓͑6͔͒. More recently, Udwadia and Kalaba ͓7͔ presented a simple, explicit, set of equations, applicable to general mechanical systems, with holonomic and nonholonomic constraints ͓͑7,8͔͒.

However, all these alternative descriptions of the motion of constrained systems discovered so far, as well as the numerous articles that have subsequently dealt with them, rely on D'Alembert's principle, and each of these mathematical formalisms is equivalent to the other. Despite the continuous and vigorous attention that this problem has received, the inclusion of situations where the physically generated forces of constraint in a mechanical system do not satisfy D'Alembert's principle has so far evaded Lagrangian dynamics. Yet, such forces of constraint are among those quite commonly found in nature. As stated by Goldstein ͓͑9͔, p. 17͒, ''This ͓total work done by forces of constraint equal to zero͔ is no longer true if sliding friction is present, and we must exclude such systems from our ͓Lagrangian͔ formulation'' ͓͑9͔͒. And Pars in his treatise ͓͑5͔͒ on analytical dynamics ͑1979, p. 14͒ writes, ''There are in fact systems for which the principle enunciated ͓D'Alembert's principle͔ . . . does not hold. But such systems will not be considered in this book. '' In this paper we obtain the equations of motion for constrained systems where the forces of constraint indeed do not satisfy D'Alembert's principle, and the sum total of the work done by them under virtual displacements no longer need be zero.

The outline of the paper is as follows. In Section 2.1 we generalize D'Alembert's Principle to include constraint forces that do work. This leads us to a deeper understanding of the specification of constraints in mechanical systems. This we discuss in Section 2.2. Section 3 deals with the mathematical statement of the problem of constrained motion. Section 4 states and verifies the explicit equation of motion for constrained systems with nonideal equality constraints. This equation leads to a new and fundamental principle of Lagrangian mechanics. The proof we give here is simpler than the one given in ͓͑10͔͒, and it yields an important geometrical interpretation that we discuss later. Section 5 gives an example of a nonholonomically constrained system for which the constraints are nonideal. We show here the ease of applicability of the explicit equation of motion obtained in the previous section and point out the insights it provides into understanding constrained motion where the constraint forces do work. Lastly, Section 6 deals with the geometry of constrained motion and exhibits the simplicity and aesthetics with which Nature seems to operate.

2 Generalization of D'Alembert's Principle, Constraint Forces That Do Work, and Their Specification 2.1 Generalized D'Alembert's Principle. Consider an unconstrained system of particles, each particle having a constant mass. By ''unconstrained'' we mean that the number of generalized coordinates, n, used to describe the configuration of the sys-tem at any time, t, equals the number of degrees-of-freedom of the system. The Lagrangian equation of motion for such a system can be written in the form M ͑ q,t ͒q ¨ϭQ͑q,q ˙,t ͒, q͑0 ͒ϭq 0 , q ˙͑0 ͒ϭq ˙0

(1)

where q(t) is the n-vector ͑i.e., n by 1 vector͒ of generalized coordinates, M is an n by n symmetric, positive-definite matrix, Q is the ''known'' n-vector of impressed forces, and the dots refer to differentiation with respect to time. By ''known,'' we shall mean that Q is a known function of its arguments. The acceleration, a, of the unconstrained system at any time t is then given by the relation a(q,q ˙,t)ϭM Ϫ1 (q,t)Q(q,q ˙,t).

We shall assume that this system is subjected to a set of m ϭhϩs consistent equality constraints of the form ͑q,t ͒ϭ0

(2) and ͑q,q ˙,t ͒ϭ0,

where is an h-vector and an s-vector. Furthermore, we shall assume that the initial conditions q 0 and q ˙0 satisfy these constraint equations at time tϭ0. Assuming that Eqs. ͑2͒ and ͑3͒ are sufficiently smooth, we differentiate Eq. ͑2͒ twice with respect to time, and Eq. ͑3͒ once with respect to time, to obtain the equation A͑q,q ˙,t ͒q ¨ϭb͑q,q ˙,t ͒,

where the matrix A is m by n, and b is a suitably defined m-vector that results from carrying out the differentiations. This set of constraint equations includes among others, the usual holonomic, nonholonomic, scleronomic, rheonomic, catastatic, and acatastatic varieties of constraints; combinations of such constraints may also be permitted in Eq. ͑4͒. It is important to note that Eq. ͑4͒, together with the initial conditions, is equivalent to Eqs. ͑2͒ and ͑3͒.

Consider now any instant of time t. When the equality constraints ͑Eqs. ͑2͒ and ͑3͒͒ are imposed at that instant of time on the unconstrained system, the motion of the unconstrained system is, in general, altered from what it would have been ͑at that instant of time͒ in the absence of these constraints. We view this alteration in the motion of the unconstrained system as being caused by an additional set of forces, called the ''forces of constraint,'' acting on the system at that instant of time. The equation of motion of the constrained system can then be expressed as M ͑ q,t ͒q ¨ϭQ͑q,q ˙,t ͒ϩQ c ͑ q,q ˙,t ͒, q͑0 ͒ϭq 0 ,q ˙͑0 ͒ϭq ˙0 (5) where the additional ''constraint force'' n-vector, Q c (q,q ˙,t), arises by virtue of the constraints ͑2͒ and ͑3͒ imposed on the unconstrained system, which is described by Eq. ͑1͒. Our aim is to determine Q c explicitly at time t in terms of the known quantities M, Q, A, b, and information about the nonideal nature of the constraint force, at time t. The latter comes from looking at the physics of the system.

A virtual displacement ͓͑8͔͒ at time t is any nonzero n-vector v such that A(q,q ˙,t)vϭ0. When the constraint force n-vector does no work under virtual displacements v, we have v T Q c ϭ0. This is also referred to as D'Alembert's principle, and it is the basis that underlies all the different formalisms ͓͑1-8͔͒ hereto developed of the equations of motion for mechanical systems subjected to the constraints described by Eqs. ͑2͒ and ͑3͒.

As demonstrated elsewhere ͓͑7,8͔͒, one formalism that yields an explicit equation describing the motion of such a constrained system that abides by D'Alembert's principle is given by M q ϭQϩM 1/2 B ϩ (bϪAa)ϭQϩQ c , where the m by n matrix B ϭAM Ϫ1/2 , and B ϩ stands for the Moore-Penrose generalized inverse ͓͑11͔͒ of the matrix B.

The central question that arises now is how to incorporate into the equation of motion, constraints that do do work under virtual displacements, thereby bringing such constraints within the Lagrangian framework. Such nonideal constraint forces ͑for ex-ample, sliding frictional forces͒ are in fact commonplace, and have to date defied ͓͑5,9͔͒ inclusion in a simple way within the general framework of analytical mechanics. The main reason for this difficulty is that three obstacles need to be simultaneously surmounted. Firstly, we require the specification of such constraint forces to be general enough so that they encompass problems of practical utility. Secondly, this specification must, in order to comply with physical observations, yield the accelerations of the constrained system uniquely when using the accepted mathware of analytical dynamics that has been developed over the last 250 years. And lastly, when the constraint forces do no work, we must obtain the usual formalisms/equations that have thus far been obtained ͑e.g., by Lagrange, Gibbs, Appell, and Gauss͒, and are known to be of practical value.

Clearly, the work done by such a constraint force under virtual displacements v at each instant of time needs to be known, and must therefore be specified using some known n-vector C(q,q ˙,t), as v T C. Such an additional specification calls for a generalization of D'Alembert's principle. We make this generalization in the following manner:

For any virtual displacement v at time t, the constraint force n-vector Q c at time t does a prescribed amount of work given by

v T Q c ͑ t ͒ϭv T C͑q,q ˙,t ͒. ( 6 
)
Here C(q,q ˙,t) is a known n-vector ͑i.e., a known function of q, q ˙, and t͒ that needs to be specified and depends on the physics of the situation, as discussed in the example below. The work done by the constraint force in a virtual displacement may thus be positive, negative, or zero.

Relation ͑6͒ constitutes a new principle. This principle requires a description of the nature of the nonideal constraint force at time t through a specification of the work it does during a virtual displacement at that time. It generalizes D'Alembert's principle, and when Cϵ0, it reduces to it. In what follows we shall often refer to the constraint force n-vector, Q c , as the constraint force.

Specification of Constraints.

The equations of motion provide a mathematical model for describing the motion of any given physical mechanical system. The constraints specify the conditions that the generalized displacements and/or velocities must satisfy at each instant of time as the motion of the system ensues under the action of the impressed forces. However, the equations that state these conditions ͑Eqs. ͑2͒ and ͑3͒͒ do not completely specify the influence of these constraints on the motion of the mechanical system. For short, we shall say that Eqs. ͑2͒ and ͑3͒ do not completely specify the constraints on the mechanical system. This is what the generalized D'Alembert's principle tells us.

There is a second part to the specification of the constraints, and this deals with the nature of the forces that are created by virtue of the presence of the constraints. For this, the mechanician who is modeling a specific mechanical system needs to study the system, possibly through experimentation, or otherwise. It is this information regarding the nonideal nature of the force of constraint that is encapsulated in the vector C(q,q ˙,t).

For example, consider a rigid block that is confined to move on a horizontal surface zϭ0. The specification of this relation ͑i.e., zϭ0) does not constitute a complete specification of the constraint. For, the presence of this constraint creates a constraint force, and this force influences the motion of the block. So to adequately model the motion of the block on the surface, one needs to prescribe the nature of this constraint force. Such a prescription is situation-specific and must be specified by the mechanician either by experimentation with the system, by observation, by analogy with other systems ͑s͒he has experience with, or by some other means. For example, if the mechanician finds that the surfaces in contact are rough ͑s͒he may want to perform some experiments to understand the nature of the forces created by the presence of this constraint. For a specific setup, ͑s͒he may find that the work done by the constraint force under virtual displacements is proportional to the speed of the block, or perhaps to the square of its speed. Thus, depending on the situation at hand, C would then be specified as Ϫa 0 ͓ q ˙y q ˙x ͔ or Ϫa 0 ͉q ˙͉͓ q ˙y q ˙x ͔ respectively, where a 0 may be a suitable constant whose value would also need to be prescribed ͑perhaps by performing more experiments͒. If, further, the roughness of the surface changes from location to location, additional experimentation may be warranted, and a further refinement may be required in specifying the vector C. Or, in some other situation, C may perhaps be modeled as Ϫa 0 Q i c (q,q ˙,t) ͑see Eq. ͑11͒ below͒. The invocation of D'Alembert's principle when modeling a mechanical system is then clear. D'Alembert's principle specifies the nature of the constraint forces by simply setting Cϵ0. It points to the genius of Lagrange, for this specification accomplishes the following three things simultaneously.

1 It provides a condition that enables the accelerations of the constrained system to be uniquely determined, something desirable when dealing with mechanical systems.

2 It specifies the nature of the constraint force through the ad hoc specification of Cϵ0. This allows the mechanician to model a given mechanical system without having to explicitly provide further information ͑beyond that contained in the constraint Eqs. ͑2͒ and/or ͑3͒͒ on the nature of the constraint forces that are created by the presence of the constraints. Most importantly, it therefore obviates the need for situation-specific experimentation, observation, etc., that would have been otherwise necessary to specify C when modeling a specific mechanical system.

3 This specification of Cϵ0 works well ͑or at least sufficiently well͒ in many practical situations. This is perhaps the most remarkable attribute of D'Alembert's principle, and it points to the genius of Lagrange.

All this becomes quite obvious, especially when modeling the problem of sliding friction where we immediately recognize that the equation that describes the motion of the block on a horizontal surface must depend not only of the constraint equation, zϭ0, but indeed also on the nature of the constraint force engendered by this constraint. And the latter depends on the physics of the specific situation-the materials in contact, the surface roughnesses, etc., and, of course, the intended use that the mechanician wants to put the model to.

But in analytical dynamics, we may have got so used to invoking D'Alembert's principle, which obviates the explicit need to specify the nature of the constraint force for any given mechanical system by implicitly taking Cϵ0, that it is tempting to think that such a specification may be wholly unnecessary, even in general. One perhaps may then get the impression that the equations that specify the constraints ͑Eqs. ͑2͒ and/or ͑3͒͒ are all that is necessary for properly posing the problem of constrained motion. This indeed is not so. Specification of the nature of the constraint forces is always necessary. The generalized D'Alembert's principle stated in Section 2.1 reminds us that, D'Alembert's principle provides, in fact, one particular specification for the nature of the constraint force. As in the case of sliding friction, C may not be zero, and its explicit specification is necessary, in general. Such a specification, as mentioned before, is situation-specific and relies on the discernment and discretion of the mechanician who is modeling the system.

Having explained what we mean by ''specification of constraints'' for a given, constrained mechanical system at hand, we now need to explicitly determine its equation of motion. We start by providing a statement of the problem of constrained motion.

General Statement of the Problem of Constrained Motion With Constraints That Do Work

In the notation that we have thus far developed, the problem of constrained motion can now be mathematically stated as follows.

We require to find the n-vector Q c (q,q ˙,t) such that 1 M (q,t)q ¨ϭQ(q,q ˙,t)ϩQ c (q,q ˙,t), with q(0)ϭq 0 , q ˙(0) ϭq ˙0 , and Q a known function of q, q ˙, and t; ͑S1͒ 2 (q,t)ϭ0, (q,q ˙,t)ϭ0, with (q 0 ,0)ϭ0; ˙(q 0 ,t)ϭ0, and

(q 0 ,q ˙0,0)ϭ0; and, ͑S2͒ 3 for all vectors v such that A(q,q ˙,t)vϭ0, we require v T Q c (t)ϭv T C(q,q ˙,t), where the n-vector C(q,q ˙,t) is a known function of its arguments. It specifies the nature of the constraint forces. ͑S3͒

We remind the reader that item ͑S2͒ above is equivalent to Eq. ͑4͒, and item ͑S3͒ is our generalized D'Alembert's principle as stated in Section 2.

Next we shall provide the explicit equation of motion that emerges from the above mathematical statement, and furthermore show that the accelerations provided by it are unique. From here on, for clarity, we shall suppress the arguments of the various quantities.

Equation of Motion for Constrained System With Nonideal Constraints

Result 1. An equation of motion of the constrained mechanical system that satisfies conditions ͑S1͒-͑S3͒ given in the previous section is explicitly given by

M q ¨ϭQϩQ c ϭQϩM 1/2 B ϩ ͑ bϪAa͒ϩM 1/2 ͕IϪB ϩ B͖M Ϫ1/2 C. (7)
Proof. We shall prove that the constraint force n-vector, Q c , given by Eq. ͑7͒ satisfies ͑S1͒-͑S3͒.

͑S1͒ The form of Eq. ͑7͒ shows that ͑S1͒ is satisfied. ͑S2͒ Using q ¨from Eq. ͑7͒ in Eq. ͑4͒ gives

Aq ¨ϭAaϩBB ϩ ͑ bϪAa͒ϩB͑IϪB ϩ B ͒M Ϫ1/2 C ϭAaϩBB ϩ bϪBB ϩ BM 1/2 a ϭAaϩBB ϩ bϪBM 1/2 aϭBB ϩ b, ( 8 
)
where we have used the relations aϭM Ϫ1 Q, BB ϩ BϭB, and B ϭAM Ϫ1/2 . Equation ͑4͒ can be expressed as B(M 1/2 q ¨)ϭb, and being consistent, implies ͓͑8͔͒ that BB ϩ bϭb. Using this in the right-hand side in ͑11͒ proves that the acceleration q ¨satisfies Eq. ͑4͒. Hence ͑S2͒ is satisfied. ͑S3͒ As seen from ͑7͒, the constraint force, Q c , is given by

Q c ϭQ i c ϩQ ni c ϭM 1/2 B ϩ ͑ bϪAa͒ϩM 1/2 ͕IϪB ϩ B͖M Ϫ1/2 C. (9)
Since BϭAM Ϫ1/2 , after setting vϭM Ϫ1/2 , ͑S3͒ is equivalent to proving that ͕͉Bϭ0,

0͖͖⇒ T M Ϫ1/2 Q c ϭ T M Ϫ1/2 C. ( 10 
)
But Bϭ0 implies ϩ B ϩ ϭ0, and this ͓͑8͔͒ implies T B ϩ ϭ0. By Eq. ͑9͒ we then have

T M Ϫ1/2 Q c ϭ T B ϩ (bϪAa)ϩ T ͕I ϪB ϩ B͖M Ϫ1/2 Cϭ T M Ϫ1/2 C, which is the required result ͑S3͒.ᮀ
Result 2. The equation of motion for the constrained system given by ͑7͒ is unique.

Proof. Assume there exists another set of solution vectors q ϩe ¨and Q c ϩR such that ͑S1͒-͑S3͒ are also satisfied. We must then have M (q ¨ϩe ¨)ϭQϩQ c ϩR, and by ͑5͒, M e ¨ϭR. Similarly, A(q ¨ϩe ¨)ϭb, and by Eq. ͑4͒, Ae ¨ϭ0. So the n-vector e ¨qualifies as a virtual displacement. Also, for all virtual displacements v, we must have v T (Q c ϩR)ϭv T C, so that v T Rϭ0. Thus e ¨TRϭe ¨TM e ϭ0, and hence e ¨ϭ0 because M is positive definite. Since R ϭM e ¨ϭ0, uniqueness follows. ᮀ Thus Eq. ͑7͒ gives the unique equation of motion describing the acceleration of a constrained mechanical system where the constraints are nonideal and the constraint forces do an amount of work ͑under the virtual displacement, v) given by v T C(q,q ˙,t), with the n-vector C being known. We explain the salient features of Eqs. ͑7͒ and ͑9͒ in the following series of remarks.

Remark 1. The equation of motion, ͑7͒, for the constrained system does not contain any ''multipliers'' that need to be solved for, as found in Lagrange's equations that describe constrained motion with ideal constraints. ᮀ Remark 2. No elimination of coordinates ͑or velocities͒ is done; therefore, no set of coordinates ͑or velocities͒ is singled out for special treatment, as in the Gibbs-Appell approach that is applicable for ideal constraints. The equation of motion is stated in the same coordinates as those describing the unconstrained system. This makes it simple to directly assess the influence that the presence of the constraints have on the accelerations of the unconstrained system. The next remarks deal with this. ᮀ Remark 3. The total constraint force n-vector, Q c , is given by Q c ϭQ i c ϩQ ni c , and it is seen to be made up of two additive contributions. The first member on the right-hand side of Eq. ͑9͒ given by

Q i c ϭM 1/2 B ϩ ͑ bϪAa͒ (11)
is the constraint force that would have been engendered were all the constraints ideal, and Cϵ0. This contribution is ever present, no matter whether the constraints are ideal or not.

The second member on the right-hand side of Eq. ͑9͒ given by

Q ni c ϭM 1/2 ͕IϪB ϩ B͖M Ϫ1/2 C (12)
gives the additional contribution to the constraint force due to the presence of nonideal constraints where the constraint forces do work under virtual displacements. This breakdown of the total constraint force n-vector explicitly shows the way in which knowledge of the virtual work done by nonideal constraints enters the equation of motion of the constrained system. ᮀ Remark 4. The contribution, Q i c , to total force of constraint, Q c , does no work under virtual displacements. For, as in the proof

of Result 1, v T Q i c ϭv T M 1/2 B ϩ (bϪAa)ϭ T B ϩ (bϪAa)ϭ0
, for all such that Bϭ0. Hence, at each instant of time v T Q c ϭv T Q ni c ϭv T C. ᮀ Remark 5. The force C(q,q ˙,t) provides a mathematical specification of the nonideal nature of the constraints by informing us of the work done by the constraint force n-vector, Q c , under virtual displacements, v. Its specification depends on the physics of any given particular situation. It engenders a contribution, Q ni c , to the total constraint force, Q c , but in general, this contribution is such that, Q ni c C. As seen from Eq. ͑12͒, only at those instants of time when M Ϫ1/2 C lies in the null space of the matrix B, does Q ni c ϭC. Furthermore, at those instants of time when M Ϫ1/2 C is such that it lies in the range space of B T , then Q ni c ϭ0. For then, M Ϫ1/2 C can be expressed as B T w for some suitable vector w, and by Eq. ͑12͒ we have,

M Ϫ1/2 Q ni c ϭ(IϪB ϩ B)B T wϭ͓B T Ϫ(B ϩ B) T B T ͔w ϭ͓B T ϪB T (B T ) ϩ B T ͔wϭ0.
Here, in the second and third equalities we use the properties of the Moore-Penrose inverse ͓͑8͔͒. ᮀ Remark 6. When the constraints are ideal, Cϵ0, and the equation of motion given by Eq. ͑7͒ reverts to one that is well known ͓͑8͔͒, and has been shown to be equivalent to the usual Lagrange equations with multipliers, and to the Gibbs-Appell equations, each of which is valid only for ideal constraints. ᮀ

Example

We illustrate the power of our result by considering a particle of unit mass moving in an inertial Cartesian frame subjected to a set of impressed forces f x (x,y,z,t), f y (x,y,z,t), f z (x,y,z,t) acting in the x, y, and z-directions, respectively. The particle is subjected to the nonholonomic, constraint y ˙ϭz 2 x ˙. The presence of this nonideal constraint creates a force of constraint. For the specific system at hand, we assume that this force of constraint does work under virtual displacements given by v T Q c ϭϪv T (a 0 u T u)(u/͉u͉), where u is the velocity of the particle and ͉u͉ϭϩ ͱ u T u. Such a specification of the nature of the constraint force is left to the discretion of the mechanician who is modeling the system, and it would depend on the physics of any particular situation ͑see Section 2.2͒. What is the equation of motion of this nonholonomically constrained system in which the constraints create nonideal forces of constraint?

Using Eq. ͑7͒ we can write down an explicit equation for the motion of the particle as follows.

Differentiating the constraint equation y ˙ϭz 2 x ˙, we get

Aϭ͓Ϫz 2 1 0͔, (13) 
with bϭ2x ˙z ˙z. (

We note that it is the existence of the constraint y ˙ϭz 2 x ˙that creates the force of constraint. This force of constraint is nonideal. It does work under virtual displacements; its magnitude is proportional to the square of the speed of the particle, and it opposes the particle's motion. It is not an ''impressed force'' on the particle. It would disappear in the absence of the constraint.

Since M ϭI 3 , BϭA. By Eq. ͑11͒ we then obtain

Q i c ϭ͓Ϫz 2 1 0͔ T ͑ 2zx ˙z ˙ϩz 2 f x Ϫ f y ͒ ͑ 1ϩz 4 ͒ , (15) 
and, by Eq. ͑12͒,

Q ni c ϭϪa 0ͫ x ˙ϩz 2 y ż2 x ˙ϩz 4 y ż ˙͑1ϩz 4 ͒ ͬ ͑ x ˙2ϩy ˙2ϩz ˙2͒ 1/2 ͑ 1ϩz 4 ͒ . ( 16 
)
The equation of motion of the nonholonomically constrained system with nonideal constraints then becomes

ͫ x ÿ z ¨ͬ ϭQϩQ i c ϩQ ni c ϭ ͫ f x f y f z ͬ ϩ ͑ 2zx ˙z ˙ϩz 2 f x Ϫ f y ͒ ͑ 1ϩz 4 ͒ ͫ Ϫz 2 1 0 ͬ Ϫa 0ͫ x ˙ϩz 2 y ż2 x ˙ϩz 4 y ż ˙͑1ϩz 4 ͒ ͬ ͑ x ˙2ϩy ˙2ϩz ˙2͒ 1/2 ͑ 1ϩz 4 ͒ . ( 17 
)
The last member on the right-hand side of Eq. ͑17͒ exposes explicitly the contribution that the nonideal character of this nonholonomic constraint provides to the total constraint force, Q c . The second member on the right informs us of the constraint force the particle would be subjected to, were the nonholonomic constraint y ˙ϭz 2 x ˙ideal. As stated in Remark 5, in this example

Q ni c
C. Note that when a 0 ϭ0, the third member on the right of Eq. ͑17͒ disappears, and we get the correct equation of motion that is valid for ideal constraints. Then, our equation becomes equivalent to Lagrange's equation with multipliers and the Gibbs-Appell equation, both of which are valid only for ideal constraints.

In Ref. ͓͑10͔͒ we handle the sliding friction problem of a bead running down a wire. As expected, Eq. ͑7͒ indeed yields the proper equations of motion, which in this case are easy to verify using Newtonian mechanics.

Holonomically constrained systems where the constraint forces are nonideal, as in sliding friction, may at times be handled by the Newtonian approach. However, to the best of our knowledge there is no way to date to obtain the equations of motion for nonholonomically constrained systems where the constraint forces are nonideal. Thus, seemingly simple problems like the one considered in this section have so far been beyond the compass of the Lagrangian formulation ͑see Refs. ͓5͔ and ͓9͔ for a more extensive discussion͒.

The Geometry of Constrained Motion

The geometrical simplicity of the equation of motion ͑7͒ developed herein can perhaps be best captured by using the ''scaled'' accelerations q ¨sϭM 1/2 q ¨, a s ϭM 1/2 aϭM Ϫ1/2 Q, q ¨s c ϭM Ϫ1/2 Q c and c s ϭM 1/2 (M Ϫ1 C)ϭM Ϫ1/2 C. The equation of motion ͑5͒ of the constrained system can then be written in terms of these scaled accelerations as q ¨s͑t ͒ϭa s ͑ t ͒ϩq ¨s c ͑ t ͒, (18)

and the problem of finding the equation of motion of the constrained system then reduces, as pointed out by Gauss ͓2͔, to finding the deviation ⌬q ¨sϵq ¨s c (t)ϭq ¨s(t)Ϫa s (t) of the scaled acceleration of the constrained system, q ¨s(t), from its known, unconstrained, scaled acceleration, a s (t). Equation ͑7͒, then takes on the simple form

q ¨sϭ͑IϪB ϩ B ͒͑a s ϩc s ͒ϩB ϩ b, ( 19 
)
from which we can explicitly obtain the deviation, ⌬q ¨s , as

⌬q ¨sϭB ϩ ͑ bϪBa s ͒ϩ͑ IϪB ϩ B ͒c s . ( 20 
)
Let us denote Nϭ(IϪB ϩ B), and TϭB ϩ B. To understand the first member on the right-hand side of Eq. ͑20͒, we note that the extent to which the acceleration a of the unconstrained system does not satisfy the constraint Eq. ͑4͒ is given by

eϭbϪAaϭbϪBa s . ( 21 
)
Equations ͑19͒ and ͑20͒ can now be rewritten as

q ¨sϭN͑a s ϩc s ͒ϩB ϩ b (22)
and ⌬q ¨sϭB ϩ bϪTa s ϩNc s ϭB ϩ eϩNc s .

Noting the definition of ⌬q ¨s , Eq. ͑23͒ can be expressed alternatively as q ¨Ϫaϭ͑ M Ϫ1/2 B ϩ ͒eϩ͑ M Ϫ1/2 NM Ϫ1/2 ͒C.

(24)

This form of our result leads to the following new fundamental principle of Lagrangian mechanics:

The motion of a discrete mechanical system subjected to constraints that are nonideal evolves, at each instant of time, in such a way that the deviation of its accelerations from those it would have at that instant if there were no constraints on it, is made up of two components. The first component is proportional to the extent to which the accelerations corresponding to the unconstrained motion, at that instant, do not satisfy the constraints; the matrix of proportionality is M Ϫ1/2 B ϩ , and the measure of the dissatisfaction of the constraints is provided by the vector e. The second component is proportional to the vector C that specifies the work done by the constraint forces under virtual displacements, at that instant, and the matrix of proportionality is (M Ϫ1/2 NM Ϫ1/2 ). Now the operator N, being symmetric and idempotent, is an orthogonal projection operator on the null space of B, and the vector B ϩ b belongs to the range space of B T . Furthermore, the two right-hand members of Eq. ͑22͒ constitute two n-vectors that are orthogonal to each other, because

N T B ϩ ϭ͑IϪB ϩ B ͒ T B ϩ ϭ͑IϪB ϩ B ͒B ϩ ϭB ϩ ϪB ϩ BB ϩ ϭ0, (23) 
since B ϩ BB ϩ ϭB ϩ . Equation ͑22͒ thus informs us that the scaled acceleration of the constrained system is simply the sum of two orthogonal vectors, one belonging to the null space of B-denoted N(B), and the other belonging to the range space of B T -denoted R(B T ). Figure 1 It should come as no surprise that the vectors a s and c s enter Eq. ͑19͒ in the same way. Though their genesis is vastly different, they come, after all, from forces that act on the system. Notice, however, that the sum (a s ϩc s ) does not enter directly. The matrix Nϭ(IϪB ϩ B) is a projection on the null space of B, and hence it is the sum's projection on this space that enters the equation of motion.

Conclusions

We summarize the contribution in this paper as follows.

1 To date, Largangian mechanics has been built upon the Principle of D'Alembert. This principle restricts Lagrangian mechanics to situations where the work done by the forces of constraint under virtual displacements is zero. In this paper we relax this restriction and thereby release Lagrangian mechanics from this confinement.

2 We have generalized D'Alembert's principle to include situations in which the constraints are not ideal, and the forces of constraint may do positive, negative, or zero work under virtual displacements. The generalized principle reduces to the usual D'Alembert's principle when the constraints are ideal.

3 The generalized D'Alembert's principle highlights the fact that the description of the motion of a constrained mechanical system requires more than just a statement of the equations of constraint, i.e., Eqs. ͑2͒ and/or ͑3͒. It always also requires a specification of the nature of the forces of constraint that the constraints engender. This is done in terms of the work done by the forces of constraint under virtual displacements, through a prescription of the n-vector C(q,q ˙,t). D'Alembert's principle is thus seen as one particular way of specifying the nature of the forces of constraint, for it prescribes the vector C(q,q ˙,t) to be identically zero. In general, one has to rely on the discretion of the mechanician to specify the vector C(q,q ˙,t) upon examination of the specific system whose motion needs to be modeled. When D'Alembert's principle is invoked while dealing with a given constrained mechanical system-and this is most often the case in analytical dynamics, to date-the burden of this specification ''seems'' lifted from the shoulders of the mechanician, for the principle simply sets C(q,q ˙,t) to the zero vector. However, the conscientious mechanism needs to examine if, and how well, the forces of constraint ͑in the given physical system being modeled͒ exhibit the behavior subsumed by this principle.

4 The framework of Lagragian mechanics is used to show that this generalized D'Alembert's principle provides just the right extent of information to yield the accelerations of the constrained system uniquely, as demanded by practical observation. In the situation that the constraints are ideal, these accelerations agree with those determined using formalisms developed by Lagrange, Gibbs, and Appell, each of these being applicable only to the case of ideal constraints.

5 We have presented here the general, explicit, equations of motion for mechanical systems with nonideal, equality, constraints. They lead to a new and fundamental understanding of constrained motion. To the best of our knowledge, these equations are arguably the simplest and most comprehensive so far discovered. They will aid in understanding the dynamics of mechanical systems in various fields such as biomechanics, robotics, and multibody dynamics, where such nonideal constraints abound.

6 Our equations show that the constraint force n-vector is made up of two additive contributions: Q c ϭQ i c ϩQ ni c . Explicit expressions for each of these contributions are given in this paper. The contribution Q i c always exists whether or not the constraints are ideal, and it is dictated by the kinematic nature of the constraints.

The contribution Q ni c arises from a specification by the mechanician of the nonideal nature of the constraints that may be involved in any particular situation; it prevails when the constraint forces do work under virtual displacements.
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  depicts relations ͑22͒ and ͑23͒ pictorially, and reveals the geometrical elegance with which Nature appears to operate. It generalizes the results obtained in Ref. ͓͑12͔͒ to include systems in which nonideal forces of constraint exist.

7 We have provided an insight into the geometry of constrained motion revealing the simplicity and elegance with which Nature seems to operate.