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. This seeminglysweeping assumption is indeedréute to the
Introduction genius of Lagrange, becaugé) it gives exactly the right amount
Since its inception more than 200 years ago, analytical mechai-additional information regarding the nature of the constraint
ics has been continually drawn to the determination of the equ@rces in a general constrained mechanical system so that the
tions of motion for constrained mechanical systems. Followirgauations of motion areniquelydetermined, and are thus in con-
the fundamental work of Lagrangé] who bequeathed to us the ormity with practical observation(2) in the mathematical mod-
so-called Lagrange multipliers in the process of determining thegl{'ng of a mechanical system, it obviates the need for the mecha-

equations, numerous scientists and mathematicians have ngian to investigate each specific meghanlcal system at hand and
to determine the nature of the constraint forces prevalent;(@nd,

temp.ted this centrgl problem of gnalytlcal dynamics. A COMPIryialds equations of motion for constrained systems that seem to
hensive reference list would run into several hundreds; hence W&k well (or at least sufficiently wellin numerous practical

shall provide here, by way of a thumbnail historical review of thgjtations.

subject, only some of the significant milestones and diSCOVeries.However' there are many mechanical systems that are common-
In 1829, Gausg?] introduced a general principle for handlingplace in Nature where D’Alembert’s principle is not valid, such as
constrained motion, which is commonly referred to today ashen sliding friction becomes important. Such situations have so
Gauss's Principle; Gibb$3] and Appell[4] independently ob- far been considered to lie beyond the compass of the Lagrangian
tained the so-called Gibbs-Appell equations of motion using tiiermulation of mechanics. As stated by Goldstgig], “This [to-
concept of(felicitously choseh quasi-coordinates; Poincafg], tal work done by forces of constraint under virtual displacements
using group theoretic methods, generalized Lagrange’s equati&%‘m to zero]s no longer true if sliding friction is present, and

to include general quasi-coordinates: and Dfi@l; in a series of W€ must exclude such systems from ¢uegrangianjformula-

ided lgorithm to aive the L ltioli f(rjipn.”And Pars[ll].(p. 14)in his treatise on analyti.cal.dynamics.
Papers provided an aigorrnm o give the =agrange muiplers ites, “There are in fact systems for which the principle enunci-

constrained, singular Hamiltonian systems. Udwadia and Kalab: A
’ .- . : . ated[D’Alembert’s Principlg ... does not hold. But such sys-
[7]1gave the explicit equations of motion for constrained mecha Ems will not be considered in this book.”

cal systems using ggnerahzed inverses of matrices, a concept ﬁEﬁonstraint forces thado work under virtual displacements are
was independently discovered by Mo¢g] and Penrosg9]. The  5j1eq nonideal constraint forces, and such constraints themselves
use of this powerful concept, which was further developed frogye often referred to as being nonideal. While it is possible, at
the late 1950s to the 1980s, allows the generalized-inverse edgigres, to handle problems with holonomic, nonideal constraints
tions (Udwadia and Kalab7]) to go beyond, in a sense, thosg(like sliding friction) by using a Newtonian approach, to date we
provided earlier; for, they are valid for sets of constraints thalo not have a general formulation for obtaining the equations of
could be nonlinear in the generalized velocities, and that could betion for systems where we have nonholonomic, nonideal con-
functionally dependent. Thus the problem of obtaining the equatraints, i.e., nonholonomic constraints where the constraint forces
tions of motion for constrained mechanical systems has a histéty work under virtual displacements. The aim of this paper is to
that is indeed as long as that of analytical dynamics itself. ~ include such systems within the Lagrangian formulation of me-
Yet, all these efforts have been solely targeted towards obtafffl@nics, and further to develop the general form of the explicit
ing the equations of motion for holonomically and nonholonomgduations of motion for constrained systems that may or may not

cally constrained systems thait obey D'Alembert's principle of obey D’Alembert’s principle at each instant of time. The approach

. 8 . i . we follow here is based on linear algebra, and it is different from
virtual work at each instant of time. This principle, though |ntrothat of Refs[12], [13], and[14]. It leads us to the general struc-

duced by D'Alembert, was precisely stated for the first ime by o ¢ the equation of motion for constrained systems, and cul-

Lagrange. The principle in effect makaa assumptio@bout the inates in the statement of two fundamental principles of analyti-
nature of the forces of constraint that act on a mechanical systefg gynamics.

It assumes that at each instant of timhejuring the motion of the ) . .
mechanical system, the constraint forcesndavork under virtual Formulation of the Problem of Constrained Motion

displacements. Consider an “unconstrained” mechanical system described by
the Lagrange equations



M(q,)§=0Q(q,q,t), q(0)=do, §(0)=go (1) The General Form of the Explicit Equation of Motion
for any Constrained Mechanical Systems

where q(t) is the n-vector (i.e., n by 1 vector)of generalized  We begin by stating our general result in the following three-
coordinatesM is ann by n symmetric, positive-definite matriQ  part statement.

is the “known” n-vector of impressedalso, called “given”) (1) The general “explicit” equation of motion at timefor any
forces, and the dots refer to differentiation with respect to timeonstrained mechanical systemvhether or not the constraint
By unconstrained, we mean that the components ofntvector forces satisfy D’Alembert’s Principle at that timei$ given by

(o can be arbitrarily specified. By “known,” we mean that the

n-vectorQ is a known function of its arguments. The acceleration, Md=Q+Q°=Q+Q/+Qy;

a, of the unconstrained system at any titris then given by the —Q+MY¥2B* (b—AM Q)+ M1 —B*B)z

relationa(q,q,t)=M1(q,t)Q(q,q,t).

We next subject the system to a setrof=h+s consistent, 6
equality constraints of the form where the matri8=AM Y2 B is the generalized inveréef
_ the matrixB, andz(q(t),q(t),t) is some suitabl@-vector.(When

¢(q,)=0 @ zis C!, Eq.(6) yields a unique solutiohThe matrixA is defined

and in relation (4), as is the m-vectab. The n-vectorQ is the im-

pressed force. By “explicit” we mean here that the acceleration
Wq.a,0=0 3) n-vector,d, on the _Ieft-hand side of E(q_6) is exp_licitly expressed
4.9, ' in terms of quantities that are functions qf ¢, andt on the
where ¢ is anh-vector andys an s-vector. Furthermore, we shallnght-h‘"’lnd side. . c
assume that the initial conditions, and ¢, satisfy these con- Alternatc_ely st_ated, the total constraint foncevector,Q¢, at any
straint equations at time=0, i.e., ¢(qo,0)=0, &(Qo,d,,0)=0, Instant of timet is made up of the sum of two compone@S and

and #(qq,0,0)=0. Qg that can be explicitly written as
Assuming that Eqs(2) and (3) are sufficiently smooth,we . - .
differentiate Eq.(2) twice with respect to time, and E¢3) once Qr=M"B"(b—AM™"Q), (7)
with respect to time, to obtain an equation of the form and
A(9,9,1)§=b(q,q,t), (4) Q%=MY%(1-B*B)z. 8)

where the matriXA is m by n, andb is them-vector that results  (2) To mathematically model given constrained mechanical

from carrying out the differentiations. We place no restrictions ogystem adequately, the mechanician mspecify the vector

the rank of the matriA. S (q,4,t) in the third member on the right-hand side of E6) at
This set of constraint equations includes, among others, tBgch instant of time. This may be done by inspection of the spe-

usual holonomic, nonholonomic, scleronomic, rheonomic, catgfic system at hand, by analogy with other systems that the

static, and acatastatic varieties of constraints; combinations gkchanician may have dealt with in the past, by experimentation

such constraints may also be permitted in E4). Furthermore, ith the specific system or similar systems, or otherwise.

the functions in(3) could be nonlinear i, and them constraint  (3) However, no matter how the mechanician comes up with the

equations need not be independent of one another. ~~ prescription of then-vector z for adequately modeling aiven
It is important to note that Ec(4), together with the initial constrained mechanical system under consideration, specification
conditions, is equivalent to Eq&2) and (3). of this n-vector at each timeuniquely determine®g;, and hence

The equation of motion of the constrained mechanical systeg, acceleratiom-vector,(t), of the constrained system. Such a

can then be expressed as prescription ofz(t) is equivalentto prescribing the work done by

. . o/ . . all the constraint forces under virtual displacements at that tjime
M(qg,t)§=Q(q,q,t) +Q%(q,q,t), q(0)=do, a(0)=qo in the following sense.

®) (a) When the vectoe(t) is prescribed, it can always be expressed
where the additional “constraint forceth-vector, Q%(q,q,t), as
arises by virtue of the constraints that are imposed on the uncon- z(t)=M"Y4q,t)C(q,q.t) )

strained system, which we have described by @g. Since the
n-vectorQ is known, our aim is to determine generalexplicit since,M is a positive definite matrix. The total work doné/
form for Q¢ at any timet. :=01Q¢, by all the forces of constraint undénonzero)virtual

We shall see below that in any constrained mechanical systedigplacements at timet, is then given by
the total constraint forca-vector,Q¢, at each instant of timg e T )
can be thought of as made up of two compone@S=Q° W(t)=v(t) Q" =v(t) C(q,q,1). (10)
+Qp; - The first component corresponds to the force of constraing) when, for a given specific constrained mechanical system, the
Qf, that would act were all the constraints ideal at that instant ofvork done,W, at timet by the forces of constraint under virtual
time; the second componei®;, arises because of the nonideaHisplacements is prescribed through specification of thesector
nature of the constraints. This latter componensitsation spe- C(q.q,t) such that
cific and needs to be specified by the mechanician entrusted with T )
modeling the mechanical system. However, we shall show that W(t)=v(t) C(q,q,1), (11)
this component too must always occur in the explicit equation
motionin a specific form.

In what follows, for brevity, we shall suppress the arguments
the various quantities, unless necessary for purposes of clarifi
tion.

%is determines the equation of motion of the constrained system
uniquelyat timet. This equation of motion is obtained by setting
%gt)le’z(q,t)C(q,q,t), in Eq. (6). The work doneW(t),

ay be positive, zero, or negative, at the instant of time [

I\we assume throughout this paper that the presence of constraints does not chang&ome of the basic properties of the Moore-Penrose generalized inverse that are
the rank of the matriM This is almost always true in mechanical systems used throughout this paper may be found in Chapter 2 of Réb]



We note from Eq(9) above, that prescribing to be the zero
n-vector at any timd, is equivalent to specifyin€=0 at that
specific timet, and then by(10), the constraint forces dw work
under virtual displacements and therefore they satisfy
D’Alembert’s principle at that instant of time In what follows
we shall also show that when the constraints do no work under
virtual displacements at timgbecause of Eq10), then-vectorC
must belong to the range spaceA¥; the third member on the
right in Eq.(6) then becomes zero at that time. Further, if through-
out the motion of the constrained system the work done by the
constraint forces under virtual displacements is zero, then the third
member on the right-hand side in E&) disappears for all time.
The equation of motiori6) then becomes

Mg=Q+Q°=Q+Qf=Q+M¥B"(b-AM'Q), (12)

of proportionality isM¥?B™; the second is proportional to

an n-vector z that, in general, needs specification at each
instant of time, the matrix of proportionality beirlg ¥4(
—B'B), whereB=AM %2 This vectorz is specific to a
given mechanical system and needs to be prescribed by the
mechanician who is modeling the system. Whether or not
the constraints are ideal, the first component is always
present and constitutes the constraint force at the instant of
time t that would have been generated were all the con-
straints ideal at that time. The second component depends
on the nature of the constraint forces generated in the spe-
cific mechanical system that is being modeled; it prevails
only when the total work done by the constraint forces un-
der virtual displacements differs from zero.

Proof of the General Form of the Equations of Motion

which is identical to that obtained by Udwadia and Kal@bgfor
systems that obey D’Alembert’'s principle. Equatidt?) is
equivalent to the Gibbs-Appell equatiofsee Ref[15]). We then

for Constrained Systems
We begin by considering the “scaled accelerations” defined by

see that the compone@ in Eq. (7) therefore gives the constraintthe relations

force at timet that would be generated were all the constraints =M Y24 (16)
ideal at that time. AndQg; explicitly gives the contribution to the y i
total constraint forceQ®, made by the nonideal nature of the a=M"1Q=M"%; 17)
constraints. and,
Were the acceleratiom=M ~1Q, of the unconstrained system . vy o
at time't to be inserted into the equation of constraiay, this de=M"1Q° =MV, (18)
equation would not, in general, be satisfied at that time. The extgs}} Eq. (5), we then have
to which the constraintEq. (4)) would not be satisfied by this ) e
accelerationga, of the unconstrained system at timmeould then Js=as+(s. (19)
be given by Furthermore, Eq(4) can be expressed as
e=b—Aa=b—AM!Q. (13) Bg=b, (20)
The force of constraint can now be rewritten as where
Q°=Q°+Q%=MYB*e+MY(1-B*B)z.  (14) B=AM"'Z (21)

Also, the effect of this constraint force in altering the acceleration Consider the matrices=B"B andN=(1—-B"B), where the
of the unconstrained system can be explicitly determined. For, thtrix B” is the Moore-PenroséVIP) inverse of the matrix8.
deviation, A, at time't of the acceleration of the constrainedThe matrixT is an orthogonal projection operator sind@&*@)"
system from that of the unconstrained system becomes, by E¢B*B, and T?=(B*B)(B*B)=B*B=T. Also, N is an or-
(6), thogonal projection operator sincé {B*B)"=I1—(B"B)T=I

Ag=g-a=M B*e+M VH1-B'B)z.  (15)

—B'B, andN?=N. SinceR"=R(BT)®AN(B), any n-vectorw
has

a unique orthogonal decompositiomw=B"*Bw-+(l

Equations(14) and(15) lead us to a new fundamental principle—B*B)w; and so also oun-vectord. This yields the identity

of Lagrangian mechanics which we now state in two equivalent
forms.

s=B"BYs+(1-B"B)ds. (22)

1 A constrained mechanical system evolves in such a wayUsing relation(20) in the first member on the right, and relation

that, at each instant of time, the deviatidj, of its accel-
eration from what it would have been at that instant had
there been no constraints on it, is given by a sum of two

(19) in the second member, we obtain

components: the first component is proportional to the ex¢omparison of Eq(19) with Eq. (23) then yields

tent, e, to which the unconstrained acceleration does not
satisfy the constraints at that instant of time, the matrix of

proportionality being the matriM ~*B*; the second is hich can be solved foiC to yield

proportional to am-vectorz that needs, in general, to be
specified at each instant of time, the matrix of proportion-
ality being M~Y(1-B*B), where B=AM~*2 The
specification oz at any time, is dependent on the nature

of the forces of constraint that are generated. Its specific@r somen-vectorz.
tion for a given system at hand is tantamount to the speci- Equation(18), then gives

fication of the total work done under virtual displacements
by all the forces of constraint at that time. Such a specifi-

Gs=as+B"(b—Bag)+(1-B"B)§:. (23)
B*Bg=B"(b—Bay) (24)
4S=B"BB"(b—Bay)+{I—(B'B)"(B'B)}z
=B*(b—Bay)+(I-B*B)z (25)
Q°=MYB"(b—Aa)+MY(1-B"B)z (26)

cation of the work done at each instant of time uniquelgnd the general equation of motion of the constrained system, by
determines the equation of motion of the constrained sy&q. (5), becomes

tem.
2 At each instant of timé, the force of constraint acting on a

constrained mechanical system is made up of two compeherez is somen-vector.
To obtain the unique equation of motion fospecificmechani-

nents: the first component is proportional to the extentp

Md=Q+Q"=Q+M¥ B (b—Aa)+M A1 -B"B)z (27)
g.e.d.

which the unconstrained acceleration of the system does mai system, the mechanician needs to prescribe the vector
satisfy the constraints at that instant of time, and the matr{q(t),q(t),t) at each instant of time. Specification of the vector



z(t) yields explicitly and uniquely the compone®f; of the con- work. So far, no general equations of motion have been discov-
straint force,Q°, at each instant of timé. In fact, given an ered within the Lagrangian formalism in situations where this cen-
n-vector z at a specific timet, we can form then-vector C  tral principle of analytical dynamics is not applicable. _

—MY2z at timet. The vectorC cannow be interpreteds provid- This paper provides the general explicit form of the equation of

ing the work doneW=0TC, by the constraint force-vectorQ® motion for any holonomically and/or nonholonomically con-
under virtual displacement's at timet. strained mechanical system. The equation is

We now show thaQg; can also be uniquely determined at each Mg=Q+M¥B*(b—AM™1Q)+MY(1-B™B)z. (33)
instant of timet by specifying the work done by the constrain ) . .
force n-vector, Q% under virtual displacements at that '[ime.tl—he n-vectorQ is the given force, th_en byfr}/zmatrlx A+ar.1d the
Proof: A virtual displacement is any nonzersvectory such M-vectorb are defined in Eq(4), B=AM 7% andB" is the
that Av =0 (see Ref[15]). Using Eq.(21) this relation can also generall_zed inverse @. The equation applle_s to all constralned_
be written asAv=(AM *)MY% =B(M¥%)=Bux=0, where mechanical systems whether or not they satisfy D’Alembert’s prin-
we have denoted thevectorM Y% by . Thus a virtual aisplace- ciple. The second member on the right in £8@) explicitly gives

e .
ment can also be considered as amynzero)n-vectoru such that the force of constrainQ; thatwould have beegenerated at time

Bu=0. Using Eq.(27), the work done by the force of constraint_ Were all the constraint forces ideal, and thus satisfy
u#der all virtgal((qjisplacements is then g)i/ven by D’Alembert’s principle. The third member on the right in E§3)

explicitly gives the contributionQ¢;, to the total force of con-
W:=0"Q°=0"(Qf+ Q) straint because of the presence of nonideal constraints.
a0+ Tanl/2 i To obtain the equation of motion for a given, specific, mechani-
=v M¥B7(b—Aa)+v ' M™(I -B"B)z cal system, the mechanician needs to provide theector
=u"B*(b—Aa)+uT(I-B*B)z. (28) z(q,q,t) suitably at each instant of time, thereby uniquely speci-
) ) . ) _fying the third member on the right in E¢B3). The provision of
The first member in the last expression on the right of equatighis vectorz(t) depends on the judgement and discernment of the
(28)is zero sincéBp =0 impliesy "B = 0. Hence the component mechanician and may be determined by experiment, experience,
Qy of the total force of constrainf)®, does no work under virtual intuition, inspection, or otherwise. However, no matter how this
displacements. Equatioi28) then becomes vector is arrived at, the total work don@/(t):=v'(t)Q(t), by
o TAC_ TAC —  To T/apl/2 the force of constraint under virtual displacement$) at any
Wi=v Q™= Qn=p z=v (M772). (29 instant of timet is always given by T(t)C(t), where then-vector
Let W(t) to be prescribed at timeby the mechanician through C(t)=MY%(q,t)z(q,§,t). This work, W(t), may, in general, be
a specification of then-vector C(q,q,t) so that W:=0"Q°® positive, zero, or negative.
=pTC. Then by Eq.(29), we have We show that to model givenconstrained mechanical system
adequately one needs, in general, to provigere thanjust the

T 12,y — . T
v (M¥Z)=v'C. (30) equations of constrainEgs. (2) and (3)), be they holonomic or
Sincev is such thatAv =0, this requires that nonholonomic. While at each instant of time the comporighof
7=M~YC+ATw)=M"Y2C+Bw 31) the total constraint force-vector,Q°¢, is determined solely from

) ) ) ] ) . the kinematical description of the constrai(iEgs.(2) and(3)), to
wherew is any arbitrarym-vector. Using this expression faiin  determine the componei®’; one always needs to rely on the
Eqg. (27) we obtain theunique equation of motion of the con- mechanician’s discernment and judgement. However, as shown in

strained system to be the equation above, this componésee also Eq8)) mustappear
MéE=0+0°=0+0°+0%=0+MYB*(b—A in a_specmc formin the explicit equation of motion of the con--
A=QF Q=R+ Qi+ Qn=0Q ( 3 strained system. When the mechanical system satisfies
+MY1-B*B)M~YC, (32) D'Alemberts principle at every instant of timeQ¢,(t)=0, and

the third member on the right i(33) becomes zero. Then our
e . . general equation yields the known equation of motid5]) for
_W(EI,QCOYV see that Eq(6) is .ldentlcal to Eq.(32) VTV'th £ constrained systems that satisfy D’Alembert’s principle.
=M ! The compongnt Qt in the range space ch —the It is perhaps noteworthy that though the equations of motion of
second member on the right in E§1)—does not affed@y,;, and  gyen very simple mechanical systems are often highly nonlinear,
therefore the equation of motion of the constrained system.  the general form of the equation of motion obtained here relies on
Though then-vectorC(t) specifies the work donaV:=v"Q°®  techniques from linear algebra. The fundamental principles of
=p"Q%=0v"C, by the constraint force under all virtual displace-analytical dynamics obtained in this paper may have been impos-
mentsv at timet, Eq. (32) states that, in generaQ;;#C. At sible to state in such a simple form without the concept of the
instants of timet when W=(v"TMY3 (M Y2C(q,q,t))=0, generalized inverse of a matrix, a concept first invented by Pen-
M ~2C belongs to the range space®¥, and hence by Eq32), rose[9]. _ ) S
QF,=0 since (—B*B)BT=0. If further, W=0 for all time, then The equation of motion obtained in this paper appears to be the

the force of constraint satisfies D'Alemberts principle, an implest and most general so far discovered for mechanical sys-

Qg(t)=0; the equation of motion for the constrained system theﬁms within the framework of classical mechanics.

reduces to that given iflL.2). At instants of time& whenM ~*2C
belongs to the null space &, Q;;=C. In general, then-vector
M ~Y2C can have components in both the null spac®@ind the .

T H : A 1] Lagrange, J L, 178Mecanique AnalytiqueMme Ve Courcier, Paris
range space . V,Vle/ no'te that at each instant of tlme.’ it is only [2] Gauss, C F, 1829, “Uber Ein Neues Allgemeines Grundgesetz der
the component ol ~Y2C in the null space oB that contributes to Mechanik,” J Reine Agnew Math4, pp 232-235

Qf;, and hence to the equation of motion of the constrained syst3] ﬁibtlr)]&; W,4387692 “On the Fundamental Formulas of Dynamics,” Am J
ath, 2, pp 49—
tem. [4] Appell, P, 1899, “Sur une forme generale des equations de la dynamique,” C
i R Acad Sci, Paris]129, pp 459-460
Conclusions [5] Poincare, H, 1901, “Sur une forme nouvelle des equations de la mecanique,”
. . . . C R Acad Sci, Paris132, pp 369-371
The equations of motion for constrained systems obtained tQg) pirac, P A M, 1964, Lectures in Quantum Mechanic¥eshiva University,

date have all been based upon D’Alembert’s principle of virtual ~ New York

since (—B*B)B"={B(I-B*B)}"=0.
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