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A new perspective on the tracking control of nonlinear structural 

and mechanical systems

F.  E.  Udwadia
Departments of Aerospace and Mechanical Engineering, Civil Engineering, Mathematics, and 

Operations and Information Management, University of Southern California, Los Angeles, CA 
90089-1453, USA (fudwadia@usc.edu)

Based on recent results from analytical dynamics, this paper develops a class of
tracking controllers for controlling general, nonlinear, structural and mechanical sys-
tems. Unlike most control methods that perform some kind of linearization and/or
nonlinear cancellation, the methodology developed herein views the nonlinear control
problem from a different perspective. This leads to a simple and new control method-
ology that is capable of ‘exactly’ maintaining the nonlinear system along a certain
trajectory, which, in general, may be described by a set of differential equations in
the observations/measurements. The approach requires very little computation com-
pared with standard approaches. It is therefore useful for online real-time control of
nonlinear systems. The methodology is illustrated with two examples.
Keywords: nonlinear systems; holonomic and non-holonomic systems; tracking control; exact 
control; analytical dynamics; online control

1. Introduction

There are several methodologies that have been developed to date for the control of
nonlinear systems that have tracking requirements (see, for example, Sastry 1999;
Slotine & Li 1991; Vidyasagar 1993). The methodology that we propose in this paper
is inspired by a central result related to the analytical dynamics of constrained motion
(Udwadia 2000; Udwadia & Kalaba 1992, 1993, 1995, 2000, 2002). This leads us to
view the nonlinear control problem from a new and different perspective. And so we
begin this paper with a brief outline of this result from dynamics.

Consider the unconstrained mechanical system with n degrees of freedom whose
equation of motion may be expressed using Lagrange’s equation as

M(q, t)q̈ = F (q, q̇, t), q(0) = q0, q̇(0) = q̇0. (1.1)

Here, the configuration of the system is described by the n-vector (n×1 vector), q, of
generalized coordinates, and the dots refer to differentiation with respect to time. The
matrix M(q, t) is a positive-definite n × n matrix, and the ‘known’ impressed force
vector F (q, q̇, t) is an n-vector. (By ‘known’, we mean here a known function of its
arguments.) We next impose upon this unconstrained system m smooth constraints
given by

ϕi(q, q̇, t) = 0, i = 1, 2, . . . , m, (1.2)
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that may or may not be holonomic, and that may or may not be independent of
one another. The set described by (1.2) may contain holonomic constraints, or non-
holonomic constraints, or a combination of holonomic and non-holonomic constraints.
Differentiating these m constraints with respect to time, t, we obtain the equation

A(q, q̇, t)q̈ = b(q, q̇, t), (1.3)

where A(q, q̇, t) is a known m × n matrix and b(q, q̇, t) is a known m-vector.
The constrained system is thus completely defined by

(i) the known matrices M and A;

(ii) the known vectors F and b; and

(iii) the initial conditions, which we assume are consistent with the constraint
set (1.2).

It can be shown that the explicit equation, which describes the motion of this
constrained mechanical system, is given by (Udwadia & Kalaba 1992)

M(q, t)q̈ = F (q, q̇, t) + F c(q, q̇, t), (1.4)

where the n-vector that gives the force of constraint, F c(q, q̇, t), is given by

F c(q, q̇, t) = K(q, q̇, t)[b(q, q̇, t) − A(q, q̇, t)a(q, q̇, t)]. (1.5)

Here, the n × m matrix K(q, q̇, t) is shown to be

K(q, q̇, t) = M1/2(q, t)[A(q, q̇, t)M−1/2(q, t)]+, (1.6)

and the vector a(q, q̇, t) is the acceleration of the unconstrained system given by

a(q, q̇, t) = M−1(q, t)F (q, q̇, t). (1.7)

The superscript ‘+’ in (1.6) denotes the Moore–Penrose generalized inverse of the
matrix. Equations (1.4)–(1.7) give the explicit equation of motion of the constrained
system in terms of the quantities M , A, F and b.

The right-hand side of (1.5) explicitly provides the force of constraint n-vector,
F c, that is needed so that the unconstrained system (1.1) satisfies the constraint
set (1.2).

There are five things worthy of note in this result:

(i) the constraints in the set given by (1.2) are not required to be functionally
independent and may be holonomic and/or non-holonomic;

(ii) the force of constraint F c(q, q̇, t) is obtained in closed form, as given explicitly
by (1.5);

(iii) its determination involves simple matrix multiplications and additions, and
hence it can be computed rapidly, and in real time;

(iv) the force of constraint is such that, in the presence of the impressed force F ,
the constrained system exactly satisfies the set (1.2); and
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(v) we assume that the constrained system satisfies the initial conditions given
in (1.1).

With this background, we are now ready to ‘reframe’ the problem of constrained
motion in analytical dynamics as a tracking-control problem. We shall reinterpret the
constraint force n-vector, F c, as the control force we desire to apply to the system,
and the constraint set (1.2) as the desired trajectory that the mechanical system is
required to track under the influence of this control force.

2. An exact tracking control methodology for nonlinear structural
and mechanical systems with holonomic and/or non-holonomic

trajectory requirements

As before, we consider an n-degree-of-freedom mechanical system described by
Lagrange’s equations as

M(x, t)ẍ = F (x, ẋ, t), x(0) = x0, ẋ(0) = ẋ0. (2.1)

Here, x is the generalized coordinate used in describing the configuration of the
system. The n × n matrix M is again positive-definite. We shall assume that the
observation m-vector, y(t), is related to the response x(t) by the observation equation

y(t) = Cx(t), (2.2)

where C is the constant m × n measurement matrix.
It is desired to control the system described by (2.1), and determine the control-

force vector F c(y, ẏ, t) so that, for the controlled system described by

M(x, t)ẍ = F (x, ẋ, t) + F c(y, ẏ, t), (2.3)

the measurement y(t) satisfies the s desired tracking relations

h(y, ẏ, t) = 0, (2.4)

where h is an s-vector. We assume that the functions hi(y, ẏ, t) are C1 and that (2.4)
constitutes a set of relations that are feasible for the system to satisfy. The set (2.4)
may contain relations that are integrable and/or non-integrable. (Holonomic trajec-
tory requirements need to be C2.) Also, the system’s initial conditions x(0) and ẋ(0)
are such as to satisfy (2.4), i.e. that the system starts so that, at the initial time, we
satisfy the desired trajectory requirements described by (2.4). Later on, we shall see
how to relax this assumption on the initial conditions.

Differentiating (2.4) with respect to time, one obtains

H(y, ẏ, t)ÿ =
∂h

∂ẏ
ÿ(t) = −∂h

∂y
ẏ − ∂h

∂t
, (2.5)

where we have denoted the s × m matrix ∂h/∂ẏ by H. In view of (2.2), this can be
expressed as

Bẍ = HCẍ(t) = b(y, ẏ, t) = b(Cx, Cẋ, t), (2.6)

where we have denoted the s × n matrix HC by B, and the s-vector b is given by

b(y, ẏ, t) = −∂h

∂y
ẏ − ∂h

∂t
. (2.7)
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We note that, by using relations (2.2) and (2.4) on the right-hand side of (2.7),
the s-vector b may be thought of as a known function of x, ẋ and t, as explicitly
indicated in (2.6). From here on, we shall suppress the arguments of the various
quantities unless required for clarification. We now show the following result.

Result 2.1. The class of control forces that minimize at each instant of time the
quantity

J(t) = (F c)TN(x, t)F c, (2.8)

where the n × n matrix N(x, t) is a given positive definite matrix at each instant of
time t, while causing the controlled system (2.3) to satisfy relation (2.6), is given by

F c = N−1/2G+(b − BM−1F ) (2.9)

where G denotes the matrix B(N1/2M)−1 and G+ denotes the Moore–Penrose gen-
eralized inverse of the matrix G.

Proof . Let
z(t) = N1/2F c = N1/2(Mẍ − F ). (2.10)

Then
J(t) = ‖z(t)‖2

2 (2.11)

and, by (2.10),
ẍ = (N1/2M)−1(z + N1/2F ). (2.12)

Since the controlled system must satisfy (2.6), we require, using (2.12),

B(N1/2M)−1z = b − BM−1F. (2.13)

Setting G = B(N1/2M)−1, the vector z(t) that minimizes J(t) subject to the linear
set of equations (2.13) is given by

z(t) = G+(b − BM−1F ). (2.14)

Noting (2.10), the control force is now explicitly given by

F c = N−1/2G+(b − BM−1F ). (2.15)

�

Remark 2.2. When the matrix N(x, t) is chosen to be the matrix M−1(x, t),
criterion (2.8) becomes equivalent to requiring that the control force satisfy the
principle of D’Alembert. Since this is the principle that underlies the evolution of
constrained motion in mechanical systems in nature, the control force determined
using this criterion would be the one that nature ‘would employ’ were the mechanical
system (2.1) required to satisfy the constraint (2.6). The matrix G now becomes equal
to BM−1/2, and the control force is then obtained as

F c = M1/2(BM−1/2)+(b − BM−1F ). (2.16)

Note that, comparing equations (1.3) and (2.6), this result can be obtained directly
from equations (1.5)–(1.7), by simply replacing the matrix A in them by the matrix
B that is given in (2.6). This illustrates the deeper connections between the tracking
control problem and the analytical dynamics.
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Remark 2.3. The same result would be obtained were (2.13) to be satisfied in
the least-squares sense instead of exactly. That is, even if (2.13) were inconsistent,
the least-squares solution for z that minimizes J(t) would still be given by (2.14).

More specifically, if we had measurement noise, modelled so that (2.6) becomes

Bẍ(t) = b(y, ẏ, t) + ε(t), (2.17)

then (2.13) would change to

B(N1/2M)−1z = b − BM−1F + ε. (2.18)

The vector z that satisfies (2.18) in the least-squares sense and minimizes J(t) is
then again given by

z(t) = G+(b − BM−1F ). (2.19)
The control force in the presence of measurement noise, modelled in this fashion, is
then still given by

F c = N−1/2G+(b − BM−1F ). (2.20)

3. Trajectory stabilization

We note that the control methodology developed here requires that the initial condi-
tions (x0 and ẋ0) satisfy the desired tracking relation (2.4). However, in the presence
of measurement noise, this may not really occur, and (2.4) may be satisfied only
approximately at the initial time. One way of handling this would be by using Lya-
punov stability theory as follows.

Instead of considering the desired trajectory to be described by the set of s (equa-
tion (2.4)), we modify them as

ḣ(y(t), ẏ(t), t) = fh(h, t; α), (3.1)

where fh(h, t; α) is an s-vector, which may contain a parameter p-vector α. This
s-vector fh(h, t; α) is chosen so that the system of equations (3.1) has the following
two properties:

(i) h = 0 is an equilibrium point of the system; and

(ii) this equilibrium point is globally asymptotically stable (GAS).

Actually, the condition on GAS could be relaxed to asymptotic stability of the equi-
librium point with a large enough region of attraction in phase space that includes
a suitable neighbourhood of the trajectory of the controlled system.

Numerous systems that have these two properties can be constructed; for example,
ḣi = −αihi, where the constants αi > 0, i = 1, 2, . . . , s, is one such set of equations.
The specific choice of the s functions fh

i and the parameter p-vector, α, will affect
the rate at which the trajectory approaches the equilibrium point h = 0, and thus
the corresponding rate at which the tracking relation h(y, ẏ, t) = 0 is satisfied.

But were we to use the relations (3.1) as our desired trajectory requirement, then,
upon differentiation, we obtain the s relations

Hÿi = bi + fh
i (h, t; α) = b̃i, i = 1, 2, . . . , s. (3.2)

Our modified tracking requirement (3.1) then requires us to replace (2.5) with (3.2),
and (2.6) with

Bẍ(t) = b̃(y, ẏ, t) = b̃(Cx, Cẋ, t). (3.3)
5



Result 3.1. The control force, F c, that minimizes J(t) (see (2.8)) at each instant
of time while satisfying (3.3) is given by

F c = N−1/2G+(b̃ − BM−1F ), (3.4)

where G again denotes the matrix B(N1/2M)−1.

Proof . The proof is similar to that of result 2.1. We need to simply replace b by
b̃ in relation (2.9). �

Remark 3.2. If the s (feasible) tracking requirements are holonomic, i.e. of the
form

hi(y, t) = 0, i = 1, 2, . . . , s, (3.5)

then these requirements can similarly be modified, for instance, to

ḧi + δiḣ + κih = 0, i = 1, 2, . . . , s, (3.6)

with δi, κi > 0, so that the fixed point s-vector h = ḣ = 0 is asymptotically stable.
Upon using (3.5) in (3.6), the modified tracking requirement (3.6) again reduces to
the form

B̂ẍ = b̂(y, ẏ, t), (3.7)

with B̂ = (∂h/∂y)C, and b̂ is appropriately determined after the necessary differen-
tiations with respect to time are carried out.

The control force, F c, that minimizes J(t) (see (2.8)) at each instant of time while
satisfying (3.7) is again obtained as

F c = N−1/2Ĝ+(b̂ − B̂M−1F ) (3.8)

by simply replacing B by B̂ and b by b̂ in relation (2.9). Now Ĝ denotes the matrix
B̂(N1/2M)−1.

Remark 3.3. Combinations of ‘desired’ trajectories, which we require the con-
trolled system to track, of the form given by (2.4) and (3.5) can thus be easily
simultaneously handled, and so trajectory requirements of both holonomic and non-
holonomic type can be accommodated in the methodology.

4. Examples

Example 4.1. Consider a nonlinear mechanical system subjected to the impressed
forces Fx, Fy and Fz, so that the equation of motion for the system becomes (M = I)

ẍ =

⎡
⎣ẍ1

ẍ2
ẍ3

⎤
⎦ =

⎡
⎣F1(x, ẋ, t)

F2(x, ẋ, t)
F3(x, ẋ, t)

⎤
⎦ = F, x(0) = x0, ẋ(0) = ẋ0. (4.1)

We shall assume that the measurement m-vector y is given by the relation

y = Cx =

⎡
⎣1 1 0

0 1 −1
1 −1 0

⎤
⎦x, (4.2)
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and the desired (and feasible) non-holonomic trajectory we want system (4.1) to
track is given to be

ẏ2 = y3ẏ1, (4.3)

so that
h(y, ẏ, t) = ẏ2 − y3ẏ1 = 0. (4.4)

Differentiating (4.4) with respect to time, we get

H =
[−y3 1 0

]
(4.5)

and
b = ẏ3ẏ1. (4.6)

This yields
B = HC =

[−y3 (1 − y3) −1
]
. (4.7)

Let us choose the weighting matrix N = I.
The control, F c, that minimizes (F c)TF c at each instant of time and causes rela-

tion (4.4) to be exactly satisfied is then explicitly given by relation (2.16) as

F c = B+(b − BF ) =

⎡
⎣ −y3

1 − y3
−1

⎤
⎦ (ẏ1ẏ3 + y3Fx − (1 − y3)Fy + Fz)

(2y2
3 − 2y3 + 2)

, (4.8)

where we have used the fact that, for any non-zero row vector U = [u1, u2, . . . , un],
the Moore–Penrose (MP)-inverse

U+ =
1∑n

i=1 u2
i

UT.

We now show some simulations of our proposed methodology. We consider the
nonlinear mechanical system (4.1), and specify the impressed forces and the initial
conditions. We assume

F1 = σ(x2 − x1) − c1ẋ1, (4.9)
F2 = λx1 − x1x3 − x2 − c2ẋ2, (4.10)
F3 = x1x2 − βx3 − c3ẋ3, (4.11)

with σ = λ = 1 and β = 2. We take the damping parameters to be c1 = c3 = 1
2

and c2 = 0, and the initial conditions to be x1(0) = 0, x2(0) = 1, x3(0) = 1,
ẋ1(0) = ẋ2(0) = ẋ3(0) = 0. Note that these initial conditions satisfy the trajectory
requirement (4.4) at time t = 0. (The right-hand sides in (4.9)–(4.11) are actually
those of the Lorenz equations to which we have added the damping terms in the
velocities. Note, however, that the Lorenz equations are first-order differential equa-
tions.)

Using Matlab’s ODE45 integrator with a relative error tolerance of 10−7 and
an absolute error tolerance of 10−8, figure 1a shows the response vector x of the
uncontrolled system (4.1), figure 1b shows the measurement vector y, and figure 1c
shows the function h(y, ẏ, t), from which we infer that the uncontrolled system does
not satisfy the desired trajectory requirement given by (4.4). In these figures, and
those to follow, a solid line shows the first component of a vector quantity, a dashed
line shows the second and a dash–dot line shows the third.
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Figure 1. (a) Response x of uncontrolled nonlinear system. Component x1(t) is shown by the solid
line, x2(t) is shown by the dashed line and x3(t) is shown by the dash–dot line. (b) Measurements
y1(t), y2(t), y3(t) of uncontrolled system. The component y1(t) is shown by the solid line, y2(t)
by the dashed line and y3(t) by the dash–dot line. (c) Extent to which the trajectory requirement
given by (4.4) is not satisfied by the uncontrolled system.
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Figure 2. (a) Measurements y1(t), y2(t) and y3(t) of controlled system. (b) Extent to which
the trajectory requirement given by (4.4) is satisfied by the controlled system. (c) Control-force
vector required to maintain the trajectory described by (4.4).
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Figure 3. (a) Exponential satisfaction of trajectory requirement when starting with incorrect
initial conditions. (b) Control-force vector, F c, required to maintain the trajectory of (4.12).

We next impose the control force that we described in closed form by (2.9), and
evaluated for this example in (4.8). Parts (a), (b) and (c) of figure 2 show, respectively,
the measurement vector y, the function h(y, ẏ, t) and the control-force vector F c,
required to cause the desired trajectory requirement, h(y, ẏ, t) = 0, to be satisfied.
From figure 2b, we observe that the desired trajectory is satisfied to within the
integrator’s error tolerance (note the vertical scale on the plot). However, inaccuracies
in integration appear to cause a slight drift of h(y, ẏ, t) away from zero. We next use
trajectory stabilization to reduce this effect as well as the effect of measurement
noise.

Our theoretical initial development required that the initial conditions x0 and
ẋ0 satisfy the trajectory requirement h(y, ẏ, t) = 0. We now illustrate the result of
applying the closed-form control described in result 3.1, to a situation when this no
longer holds, possibly due to small measurement errors. Were the initial condition
ẋ2(0) to be changed to 0.1, then the system would not be on the desired trajectory
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Figure 3. (Cont.) (c) Measurements y1(t), y2(t) and y3(t) for the controlled system using
stabilization. y1 is shown by a solid line, y2 by a dashed line and y3 by a dash–dot line.
(d) Expanded-scale graph of the error in satisfaction of the non-holonomic trajectory require-
ment (4.4) when starting from incorrect initial conditions, and using stabilization by means
of (4.12).

initially, and relation (4.4) would not be initially satisfied. In such a circumstance,
one would use trajectory stabilization. We show the efficacy of using the modified
trajectory requirement

ḣ = −0.5h. (4.12)

The satisfaction of this modified requirement, and the necessary control-force vector
to achieve it are shown in parts (a) and (b) of figure 3, respectively. We observe that
the initial discrepancy in satisfaction of the trajectory requirement is exponentially
driven down to zero, causing the requirement h(y, ẏ, t) = 0 to be asymptotically
satisfied, as expected.
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m1

x

y

k1
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m3

k3

Figure 4. Three point masses connected by springs with prescribed initial conditions
falling under gravity as they vibrate, spin and tumble.

The measurements yi, i = 1, 2, 3, for the controlled system are shown in figure 3c.
In figure 3d, we show, on an expanded scale, the extent to which the non-holonomic
trajectory requirement is satisfied. Comparison with figure 2b shows that the track-
ing error is now reduced to the same order of magnitude as the round-off in the
integration, and the offset in it is removed.

Example 4.2. We next consider a system with three point masses mi, i = 1, 2, 3,
connected together by linear springs with spring constants ki, i = 1, 2, 3, as shown in
figure 4. The unstretched lengths of the three springs are li, i = 1, 2, 3, respectively.
Each mass is given an initial velocity and is allowed to fall under gravity. Our aim
to control the system so that the magnitude of the angular momentum vector of the
system about the origin is kept a constant, equal to its initial magnitude. Though a
seemingly simple trajectory requirement, it is both highly nonlinear in the velocities,
and non-integrable. Such requirements on angular momentum often arise in quantum
mechanics and in spacecraft attitude control.

For convenience, we shall take the measurement matrix C to be the 9 × 9 identity
matrix, so that the measurement vector y = x = [x1, y1, z1, x2, y2, z2, x3, y3, z3]T.
Denote the jth component of the angular momentum of mass mi about the origin
by pi,j , so that

pi,x = pi,1 = miui = mi(yiżi − ziẏi), (4.13)
pi,y = pi,2 = mivi = mi(ziẋi − xiżi), (4.14)
pi,z = pi,3 = miwi = mi(xiẏi − yiẋi). (4.15)

The angular momentum trajectory requirement can then be expressed as

h(y, ẏ) = h(x, ẋ) =
3∑

j=1

( 3∑
i=1

pi,j(t)
)2

−
3∑

j=1

( 3∑
i=1

pi,j(0)
)2

= 0. (4.16)

Differentiating relation (4.16) with respect to time, and denoting

d1 =
3∑

i=1

miui, d2 =
3∑

i=1

mivi, d3 =
3∑

i=1

miwi, (4.17)
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Figure 5. (a) The distance between masses 1 and 2 is shown by the solid line; between masses 2
and 3 by the dashed line; and between masses 1 and 3 by the dot–dash line. (b) The extent to
which the magnitude of the angular momentum differs from its initial value when no control
forces are applied.

the 1 × 9 matrix H in (2.5) is then given by

H = 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1(−y1d3 + z1d2)
m1(−z1d1 + x1d3)
m1(−x1d2 + y1d1)
m2(−y2d3 + z2d2)
m2(−z2d1 + x2d3)
m2(−x2d2 + y2d1)
m3(−y3d3 + z3d2)
m3(−z3d1 + x3d3)
m3(−x3d2 + y3d1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

, (4.18)

and the scalar b = 0. Using the weighting matrix N = I, equation (2.16) now yields
13
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Figure 5. (Cont.) (c) Motion for 5 units of time of the coupled system as it vibrates and falls
under gravity. The dashed lines show the contemporaneous positions of the three masses at
various intermediate times.

the exact control forces required to maintain the magnitude of angular momentum
to be a constant. For trajectory stabilization, we use the altered constraint equation

ḣ(y, ẏ) = −αh(y, ẏ), (4.19)

where h(y, ẏ) is given by (4.16).
We determine the motion of the three masses m1 = 1, m2 = 2, m3 = 3 for the

following parameter values (in appropriate units):

k1 = 40, k2 = 50, k3 = 20,

x(t = 0) = [1, 2, 100, 2, 3, 100, 3, 1, 100]T,

ẋ(t = 0) = [0, 0, 20, 0, 0, 10, 0, 0, 5]T.

The acceleration due to gravity, g, is taken to be 9.81 m s−2. The unstretched
lengths, li of the springs are each 2 units, so that the extensions in the three springs
initially are 0.2361, 0.2361 and −0.5858, respectively. The initial angular momentum
of the system with respect to the origin is 155.724, and the integration is done using
the stiff differential equation solver, ODE15s, in the Matlab environment. Figure 5a
shows the variation of inter-mass distances with time. The total angular momentum
of the system varies as the system falls under gravity. Figure 5b shows the change in
the magnitude of the total angular momentum vector with time. The actual three-
dimensional motion of the system is shown in figure 5c. The trajectory of each mass
is shown, and the contemporaneous positions of the three masses at intermediate
times between zero and 5 time units are shown by solid circles connected by dashed
lines. The small circle denotes mass m1, the intermediate-size circle denotes mass m2
and the large circle denotes mass m3.

We next show the corresponding results when the system is subjected to control
forces (N = I) so that the magnitude of the system’s angular momentum vector

14
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Figure 6. (a) Components of the total angular momentum of system. X-component is shown
by solid line, Y -component by dashed line, Z-component by dash–dot line. (b) Extent to which
magnitude of angular momentum of controlled system differs from its value at initial time. Note
the Y -axis scale.

is maintained a constant which equals to its value at time t = 0. The parameter
α in (4.19) is taken to be 4. Figure 6a shows the three components of the total
angular momentum of the controlled system. Figure 6b shows the extent to which
the magnitude of the angular momentum of the system differs from its initial value
when the system is controlled by the control forces that are explicitly given by (3.4).

Comparing figures 5b and 6b, we observe that with the prescribed control the
trajectory requirement is satisfied to within the round-off error in our numerical
integration. Figure 6c shows the motion of the controlled system.

The control-force components required to be applied on each of the masses are
shown in figure 7. These control forces, which are explicitly determined at each
instant of time by (3.4), maintain the ‘stabilized’ trajectory requirement described
by (4.19). The extent to which this requirement is satisfied is shown in figure 6b. It
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Figure 6. (Cont.) (c) Motion for 5 units of time of the controlled coupled system as it vibrates
and falls under gravity. The dashed lines show the contemporaneous positions of the three masses
at various intermediate times.

should be noted that the control-force vector F c is so determined that the stabilized
constraint (4.19) is exactly satisfied, while keeping (F c)TF c a minimum at each
instant of time.

5. Conclusions

In this paper we have provided a powerful new methodology for controlling nonlinear
structural and mechanical systems. The inspiration for this methodology does not
come from the usual well-trodden lines of thinking found in the literature on nonlinear
control theory, but from a different, though closely allied, field, namely analytical
dynamics.

The methodology has the following salient features.

(i) Both holonomic and non-holonomic trajectory-tracking requirements, or a com-
bination of such requirements, are handled in a uniform manner, and with equal
ease.

(ii) Non-holonomic trajectory requirements turn out to be easier to handle than
holonomic ones because they require just one differentiation with respect to
time, instead of two, to get them in the form of (2.6). This is a reversal from
the approaches that are available to date in nonlinear control theory that
often treat holonomic and non-holonomic trajectory requirements differently
and that usually find the non-holonomic ones more difficult to handle.

(iii) The control force required to control the nonlinear system so that it satisfies
these given trajectory requirements is obtained explicitly and in closed form.

(iv) No transformation of coordinates or appeal to any ‘normal forms’ is necessary;
the coordinates in which the control force is obtained are the same as those in
which the uncontrolled system is viewed. In fact, it is this departure from the

16



0 1 2 3 4 5
time

(a)

(b)

(c)

−0.4

−0.3

−0.2

−0.1

0

0.1

−1.0

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0

0.2

co
nt

ro
l f

or
ce

s 
on

 m
as

s 
1

co
nt

ro
l f

or
ce

s 
on

 m
as

s 
2

co
nt

ro
l f

or
ce

s 
on

 m
as

s 
3

Figure 7. (a) The solid line is the component of the control force on mass m1 in the X-direction,
the dashed line is the component in the Y -direction and the dot–dash line is the component
in the Z-direction. (b) The solid line is the component of the control force on mass m2 in
the X-direction, the dashed line is the component in the Y -direction, and dot–dash line is the
component in the Z-direction. (c) The solid line is the component of the control force on mass m3

in the X-direction, the dashed line is the component in the Y -direction, and the dot–dash line
is the component in the Z-direction.
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usual temptation to transform to a different set of coordinates that allows us
to obtain the control force explicitly, and in such a simple form.

(v) This control force, theoretically speaking and in the absence of noise, will cause
the trajectory requirements to be ‘exactly ’ satisfied by the nonlinear controlled
system. No linearization is done.

(vi) The methodology allows the weighted norm of the control force to be minimized
at each instant of time; most control methods minimize time integrals of such
norms.

(vii) The examples shown here indicate that the methodology can be made relatively
insensitive to measurement noise by using the stabilization technique described.

(viii) Having been obtained in closed form, the computations required to determine
the control force involve simple matrix multiplications and additions. This
makes the methodology attractive for real-time online control of nonlinear sys-
tems.

We have illustrated two examples of the control methodology. It has also been
used for precision motion control of multi-arm robots, for on-orbit control of satellites
required to fly in close flight formation and for controlling flexible nonlinear vibrating
systems.
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