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Abstract

Face identification is an important research topic due to areas such as its appli-

cation to surveillance, forensics and human-computer interaction. In the past

few years, a myriad of methods for face identification has been proposed in the

literature, with just a few among them focusing on scalability. In this work, we

propose a simple but efficient approach for scalable face identification based on

partial least squares (PLS) and random independent hash functions inspired by

locality-sensitive hashing (LSH), resulting in the PLS for hashing (PLSH) ap-

proach. The original PLSH approach is further extended using feature selection

to reduce the computational cost to evaluate the PLS-based hash functions, re-

sulting in the state-of-the-art extended PLSH approach (ePLSH). The proposed

approach is evaluated in the dataset FERET and in the dataset FRGCv1. The

results show significant reduction in the number of subjects evaluated in the face

identification (reduced to 0.3% of the gallery), providing averaged speedups up

to 233 times compared to evaluating all subjects in the face gallery and 58 times

compared to previous works in the literature.
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1. Introduction1

According to [1], there are three tasks in face recognition depending on which2

scenario it will be applied: verification, identification and watch-list. In the ver-3

ification task (1 : 1 matching problem), two face images are provided and the4

goal is to determine whether these images belong to the same subject. In the5

identification task (1 : N matching problem), the goal is to determine the iden-6

tity of a face image considering identities of subjects enrolled in a face gallery.7

The watch-list task (1 : N matching problem), which may also be considered as8

an open-set recognition task [2], consists in determining the identity of a face9

image, similar to the identification task, but the subject may not be enrolled10

in the face gallery. In this case, the face recognition method may return an11

identity in the face gallery or a not-enrolled response for any given test sample.12

In this work, we focus on the face identification task. Specifically, the main13

goal is to provide a face identification approach scalable to galleries consist-14

ing of numerous subjects and on which common face identification approaches15

would probably fail on responding in low computational time. There are several16

applications for a scalable face identification method: surveillance scenarios,17

human-computer interaction and social media. The few aforementioned appli-18

cations show the importance of performing face identification fastly and, in fact,19

several works in the literature have been developed in the past years motivated20

by these same types of applications (surveillance, forensics, human-computer21

interaction, and social media). However, most of the works focus on developing22

fast methods to evaluate one test face and a single subject enrolled in the gallery.23

These methods usually develop low computational cost feature descriptors for24

face images that are discriminative and with low memory footprint enough to25

process several images per second. Note that these methods still depend on26

evaluating all subjects in the face gallery. Therefore, if the number of subjects27

in the gallery increases significantly, these methods will not be able to respond28

fastly and new methods shall be developed to scale the face identification to29

this larger gallery.30
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Figure 1: Common face identification pipeline and the proposed pipeline with

the filtering approach which is used to reduce the number of evaluations in the

classification step with low computational cost. The filtering approach is the

main contribution in this work and it is tailored considering recent advances in

large-scale image retrieval and face identification based on PLS.

Face identification methods usually consists of a face representation or de-31

scription in the feature vector where mathematical models can be applied to32

determine the face identity. In this case, it is used one model to determine each33

identity in the face gallery, therefore, being necessary a number of models equal34

to the gallery size. Note that the parameters in each model are learned using35

samples for each subject in the face gallery and every model must be evaluated36

to correctly identify a test sample. In this work, we propose a method to reduce37

the number of models evaluated in the face identification by eliminating iden-38

tities that are somewhat clearly not the identity in the test sample. Figure 139

illustrates the common face identification pipeline employed in practice and the40

main component tackled in this work.41

There is an extensive literature of works regarding large-scale image retrieval42

that could be employed in face identification. However, most of these works43

focus on returning a list containing images from the dataset that are similar to44

the test image. Although reasonable to recover images in large datasets, such45

approaches are not suitable to apply directly to the face identification task. The46

models from subjects in the face gallery should optimally be described regarding47

the discriminative features related to each subject identity, which might consume48
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less memory, specially if several samples per subject are available, and less49

computational time since only discriminative features are evaluated to determine50

the face identity.51

The proposed approach is inspired by the family of methods regarded as52

locality-sensitive hashing (LSH), which are the most popular large-scale image53

retrieval method in the literature, and the partial least squares (PLS), which has54

been explored intensively in numerous past works regarding face recognition [3,55

4, 5, 6]. We call the proposed approach PLS for hashing, abbreviated to PLSH56

and ePLSH in its extension.57

The main goal in LSH is to approximate the representation of samples in58

the high dimensional space using a small binary representation where the search59

can be implemented efficiently employing a hash structure to approximate near-60

identical binary representations. The idea in LSH is to generate random hash61

functions to map the feature descriptor in the high dimensional representation62

to bits in the binary representation.63

In the PLSH approach, the random projection in the aforementioned ex-64

ample is replaced by a PLS regression, which provides discriminability among65

subjects in the face gallery and allow us to employ a combination of different fea-66

ture descriptors to generate a robust description of the face image. PLSH is able67

to provide significant improvement over the brute-force approach (evaluating all68

subjects in the gallery) and compared to other approaches in the literature. Fur-69

thermore, since the evaluation of hash functions in PLSH requires a dot product70

between the feature and regression vectors, additional speedup can be achieved71

by employing feature selection methods, resulting on the extended version of72

PLSH (ePLSH).73

The following contributions are presented in this work. (i) A fast approach74

for face identification that support a combination of several feature descriptors75

and high dimensional feature vectors. (ii) The proposed approach presents at76

least comparable performance with other methods in the literature and up to 5877

times faster when enough samples per subject are available for train. (iii) Ex-78

tensive discussion and experimentation regarding alternative implementations79
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that may guide future development in scalable face identification methods. (iv)80

The proposed approach is easy to implement and to deploy in practice since81

only two trade-off parameters need to be estimated. This work is closely related82

to [7], where we proposed the PLSH approach. The main difference of this work83

compared to [7] is the additional discussions about the PLSH consistency, rela-84

tion to Hamming embedding, computational cost, alternative implementations,85

better feature set and the proposal of the ePLSH approach.86

The remaining of this work is organized as follows. In Section 2, we review87

works related to face identification, fast face identification and large-scale image88

retrieval. In Section 3, we describe PLS for regression, face identification and89

face hashing, which are the main components for the proposed face identification90

pipeline. Experiments and discussions regarding the proposed approach are91

discussed in Section 4. Finally, we conclude this work with final remarks and92

author suggestions for future directions in Section 5.93

2. Related work94

This section reviews works related to face identification (Section 2.1) and95

large-scale image retrieval (Section 2.2). The reader may find more information96

regarding face identification in the book titled Handbook of face recognition [8].97

For large-scale image retrieval, we refer the reader to the work [9] regarding98

locality-sensitive hashing.99

2.1. Face identification100

Face identification methods consist generally of two components: classifier101

and face representation. The classifier is responsible for receiving the face repre-102

sentation and returning an identity in the gallery, more specifically, it evaluates103

whether a face representation from a test image refers to a subject in the face104

gallery.105

Feature descriptors provide a robust manner to represent face images in-106

variant to misalignment, illumination and pose of the face. Regarding feature107
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descriptors considered in face identification, the most commons are local binary108

patterns (LBP) [10, 11], Gabor filters [12, 13] and descriptors based on gradient109

images [14, 15]. These feature descriptors capture mainly texture and shape110

of the face image, which are relevant for face identification [4]. There are two111

manners to represent the face image [16]: appearance-based (holistic), where the112

whole face image is represented in a feature descriptor vector; and feature-based113

(local), where fiducial points of the face image, such as nose tip or corners, eyes114

and mouth, are represented instead of the whole image.115

The advantage of the holistic representation is the rich and easy encoding116

of the overall appearance of the face image. Since every pixel value contributes117

somehow to the final feature descriptor, more information is available to dis-118

tinguish between samples from different subjects. However, preprocessing is119

usually necessary to correct misalignment, illumination and pose. Feature de-120

scriptors commonly employed in holistic methods are the local binary patterns121

(LBP) [10], Gabor filters [12], combination of both [17], and large feature sets122

coupled with dimension reduction techniques [4].123

The advantage of the local representation is its robustness to differences in124

pose, partial occlusion and shadowing. If some fiducial points are shadowed or125

occluded due to pose, for instance, other points may still be used to recognize126

the face image. However, the resulting feature vector is often ambiguous and127

imposes difficulties to identify the face image due to the reduced amount of128

data present in the small patch around the fiducial point. Common feature129

descriptors employed in local methods include LBP [11] and Gabor filter [13].130

Fiducial points can be detected considering salient regions in the face image,131

which include corners and textured regions in the face. These salient regions,132

opposed to homogeneous regions such as cheek and forehead, tend to be sta-133

ble among face images in different poses and lightning conditions. However, a134

method to match the detected salient regions among face images is necessary135

to compare feature descriptors. Liu et al. [15] employ the popular SIFT [18]136

to detect and match salient regions among face images. Another option is to137

learn common detectors for fiducial points (eye corner, nose tip, among others)138
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such that the match of fiducial points among face images is no longer necessary139

since feature descriptors from a common type of fiducial point can be directly140

compared [19].141

In the past few years, a different approach based on sparse representation-142

based classification (SRC) has been providing high accuracy in face identifica-143

tion datasets [20]. SRC consists in representing a test face image as a linear144

combination of a dictionary of images, which is learned using samples in the145

face gallery. Although the original proposal of SRC requires a fair number of146

controlled samples per subject for training, Deng et al. [21] extended SRC to147

cope with few uncontrolled samples in the face gallery.148

2.1.1. Fast face identification149

Fast face identification is not a largely explored research topic and there150

are few works in the literature about it [22, 23, 24, 25, 4]. In [22], compact151

descriptors based on local binary patterns are used to compare quickly the152

candidates in the face gallery. In [23] and [24], a fast optimization algorithm is153

considered for SRC to reduce the computational cost when calculating the linear154

combination between the test and the samples in the dictionary. Similar to [26],155

where least trimmed squares (LTS) is considered to cope with noise in SRC-156

based face identification, Shen et. al. [27] propose an approximation of the least157

median squares (LMS), which provides speedup of some order of magnitude158

in the SRC approach while still dealing with noise in the gallery samples.159

Although the aforementioned methods provide significant improvement in the160

test-subject comparison, poor performance is observed when there are numerous161

subjects in the face gallery since these approaches still present linear asymptotic162

complexity with the gallery size.163

To approach face identification in large galleries, a cascade of classifiers to164

discard a considerable number of candidates in early initial stages with low165

computation cost classifiers was proposed by Yuan et al. [25]. To keep high166

accuracy, the final stages of the cascade consists in more accurate and time-167

consuming classifiers. In [4], a binary tree structure was used to reduce the168
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number of subjects tested in the face gallery, resulting in a reduced computa-169

tional complexity considering the number of subjects in the face gallery when170

compared to the brute-force approach.171

The approach proposed in this work is an extension of [4] and the main172

difference is the employment of hashing instead of search trees. PLS is also173

considered with a combination of feature descriptors as in [4], which improves174

the face identification recognition rate compared to single feature descriptors. In175

this case, the contribution of the proposed approach lies in the distinct manner176

in which PLS is employed for hashing and the considerable improvement in177

speedup compared to the aforementioned scalable face identification approaches.178

2.2. Large-scale image retrieval179

The goal in the image retrieval task is to return a sorted list of “relevant”180

images enrolled in the gallery considering their similarity to a test sample. For181

reference of a few distinguished works, Jegou et. al. [28] employ quantization of182

feature descriptors considering a random rotation of the PCA transformation to183

ensure equal variance among projected features. Gong et. al. [29] employ a sim-184

ilar approach but considering the minimal quantization error of zero-mean sam-185

ples in a zero-centered binary hypercube. In this case, an efficient optimization186

algorithm can be formulated, referred to as iterative quantization (ITQ), which187

provides better results than the random rotation employed in [28]. Shen et.188

al. [30] propose a method for embedding the gallery samples on non-parametric189

manifolds in an iterative manner from an initial subset of the samples, such190

that the embedding can be applied to large datasets. Shen et. al. [31] employ191

maximum margin linear classifiers to learn optimal binary codes by relaxing the192

bit discretization.193

In this section, we focus only on locality-sensitive hashing which is the basis194

of our work. For a complete review of image hashing and large-scale image195

retrieval methods in the literature, we refer the reader to the work [9].196

8



2.2.1. Locality-sensitive hashing197

Locality-sensitive hashing (LSH) refers to a family of embedding approaches198

that aims at mapping similar feature descriptors to the same hash table bucket199

with high probability while keeping dissimilar features in different buckets.200

There are two types of hash functions in LSH [9]: data independent, where201

hash functions are defined regardless of the data; and data dependent, where202

the parameters of the hash functions are selected according to the training203

data. These two types are different from supervised and unsupervised learning204

of hash functions, in which the difference lies on whether data label is consid-205

ered. For instance, data dependent hash functions may not consider the label of206

the data when learning hash functions. However, all supervised hash functions207

are intrinsically data dependent, since the family of hash functions H will be208

selected to discriminate labels.209

Data independent hash functions are employed in the works of Data et210

al. [32], based on p-stable distributions; Chum et al. [33], based on min-hash;211

Joly et al. [34] and Poullot et al. [35], both works based on space filling curves.212

Data independent hash functions are usually employed in heterogeneous data213

like in the object recognition task. In this case, the overall distribution of the214

data is not modeled easily using data dependent hash functions. For instance,215

the distribution of a common object (more samples) may outweigh uncommon216

objects (few samples). In this case, unsupervised data dependent functions will217

be biased toward representing the sample distribution of the common object.218

Other advantages of the data independent hash functions are the fast learning219

process, which is independent from the gallery size, and the enrollment of new220

samples, which does not require retraining hash functions.221

Data dependent hash functions select a family H considering aspects of the222

data, such as discriminability among different labels and dimensions with max-223

imum energy. In this case, hash functions unrelated to the data are discarded,224

which is not the case in data independent hash functions. Considering the same225

number of hash functions employed in the data independent approach, the num-226
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ber of relevant hash functions which raise the gap between higher p1 and lower227

p2 is often higher in data dependent hash functions. Examples of works employ-228

ing data dependent hash functions include metric learning [36], k-means [32],229

spectral hashing [37], restricted Boltzmann machine [38], maximum margin [39]230

and deep learning [40].231

There are numerous LSH approaches for different metric spaces. The most232

common applications include LSH approaches for lp metric space [32] based233

on p-stable distributions; random projections [41], which approximate cosine234

distances; Jaccard coefficient [42]; and Hamming distances [43],235

It is important to emphasize that the proposed approach is not included in236

the LSH family. We do employ hash functions generated independently from237

each other and the proposed approach considers data labels, but there is no238

associated distance metric and, therefore, no approximated k-NN solution. We239

focus on returning correct identities in a shortlist of candidates rather than240

approximating nearest neighbors in a given metric space.241

The proposed approach also behaves similarly to LSH methods, where the242

increase in the number of hash functions provides improved results, but we243

cannot prove the approximation limits of the proposed approach in the same244

way as in LSH. In our experiments, we notice that the results never exceed the245

recognition rate of the brute-force based on PLS, which might indicate that the246

proposed method approximates the results from PLS-based approaches.247

3. Methodology248

This section describes the methods considered in the proposed approach,249

namely PLS for regression (Section 3.1) and PLS for face identification (Sec-250

tion 3.2). The proposed PLSH is described in Section 3.3 and in Section 3.4,251

we describe a PLSH extension (ePLSH), which consists in employing PLS-based252

feature selection to improve the performance of PLSH.253
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3.1. Partial least squares regression254

PLS is a regression method that combines ordinary least squares applied to a255

latent subspace of the feature vectors. Several works have employed PLS for face256

identification [4], face verification [3], and open-set face recognition [6]. These257

works consider PLS mainly due to the robustness to combine several feature258

descriptors, capability to deal with thousands of dimensions, and robustness to259

unbalanced classes. In this work, we consider PLS due to the high accuracy260

presented when used to retrieve candidates in PLSH and the low computational261

cost to test samples since only a single dot product between the regression262

coefficients and the feature vector is necessary to estimate the PLS response.263

PLS is calculated as follows. The p-dimensional latent subspace is estimated264

by decomposing the zero mean matrices Xn×d, with n feature vectors and d265

dimensions, and Yn, with response values, in266

Xn×d = Tn×pP
T
d×p + En×d,

Yn×1 = Un×pQp×1 + Fn×1,
(1)

where Tn×p and Un×p denote latent variables from feature vectors and response267

values, respectively. The matrix Pd×p and the vector Qp represent loadings268

and the matrix E and the vector F are residuals from the transformation.269

PLS algorithms compute P and Q such that the covariance between U and270

T is maximum [44]. We consider the nonlinear iterative PLS (NIPALS) algo-271

rithm [45] which calculates the maximum covariance between the latent variables272

T = {t1, ..., tp} and U = {u1, ..., up} using the matrix Wd×p = {w1, ..., wp}, such273

that274

arg max[cov(ti, ui)]
2 = arg max

|wi|=1

[cov(Xwi, Y )]2.

The regression vector β between T and U is calculated using matrix W according275

to276

β = W (PTW )−1(TTT )−1TTY. (2)

The PLS regression response ŷ for a probe feature vector x1×d is calculated277

according to ŷ = ȳ + βT (x− x̄), where ȳ and x̄ denote average values of Y and278
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Figure 2: Overview of the filtering and the face identification pipeline. (1)

Different feature descriptors are extracted from the test image and concatenated

resulting in a large feature vector more robust to image effects than single feature

descriptors. (2) The feature vector is presented to the filtering approach, which

employs a large-scale image retrieval approach to (3) generate the candidate list

sorted by the probability that the candidate is the subject in the test image.

(4) A small percentage of the candidate list (high probability candidates) is

presented to the face identification which will evaluate only the models relative

to these candidates.

elements of X, respectively. The PLS model is defined as the variables necessary279

to estimate ŷ, which are β, x̄ and ȳ.280

Efficient implementations of the NIPALS algorithm using graphical cards281

exist in the literature and they can provide speedup of up to 30 times compared282

to the CPU version [46].283

3.2. Face identification based on partial least squares284

The proposed approach consists in filtering subjects in the gallery using285

methods for large-scale image retrieval. For a given face identification approach,286

the evaluation of all subjects in the gallery (without filtering) is regarded as the287

brute-force approach, which is undesirable since the asymptotic time complex-288

ity is linear with the number of subjects enrolled in the gallery. The filtering289
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approach consists in providing a shortlist to the face identification so that it290

evaluates only subjects presented in that shortlist.291

An overview of the filtering and face identification pipeline is presented in292

Figure 2, which consists of the following steps. Different feature descriptors293

are extracted from a probe sample and concatenated in the first step (feature294

extraction). Then, the combined feature vector is presented to the filtering295

step, which employs large-scale image retrieval methods to generate a list of296

candidates sorted in decreasing order of probability that the candidate is the297

subject in the probe. Then, a small number of high probability candidates in298

the list is provided to the face identification method, which evaluates subjects299

following the order in the candidate list until the face identification returns a300

subject in the face gallery. In this case, speedup is achieved because it is not301

necessary to evaluate the remaining subjects in the candidate list once a gallery302

match is found, reducing therefore, the computational cost compared to the303

brute-force approach.304

To evaluate the filtering and face identification pipeline, we consider the face305

identification method described by Schwartz et al. [4], which consists in employ-306

ing a large feature set concatenated to generate a high dimensional feature de-307

scriptor. Then, a PLS model is learned for each subject in the gallery following308

a one-against-all classification scheme: samples from the subject are learned309

with response equal to +1 and samples from other subjects with response equal310

to −1. Test samples are presented to each PLS model and associated to the311

identity related to the model that returns the maximum score. We consider the312

evaluation of all PLS models as the brute-force approach and, in the proposed313

pipeline, only PLS models that correspond to subjects in the candidate list are314

evaluated.315

3.3. Partial least squares for face hashing (PLSH)316

The PLSH method is based on two principles: (i) data dependent hash func-317

tions and (ii) hash functions generated independently among each other. Data318

dependent hash functions provide better performance in general (see discussion319
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Figure 3: Overview of PLS for face hashing (PLSH) with (left) train and (right)

test steps. In the train, a PLS regression model is learned to discriminate

between two balanced random subsets of subjects in the face gallery (positive

and negative subsets). In the test, the test sample is presented to each PLS

model to obtain a regression response r. Then, a vote-list, initially zero, is

incremented by r in each position corresponding to subjects in the positive

subset.

in Section 2.2.1). Hash functions generated independently are necessary to in-320

duce uniform distribution of binary codes among subjects in the gallery [39]. A321

diagram of the PLSH method is presented in Figure 3.322

PLSH consists of the learn and the test steps. In the learn, for each hash323

model, subjects in the face gallery are randomly divided into two balanced324

subgroups, positive and negative. Then, a PLS regression model, regarded as325

hash function in this work, is learned to discriminate the subjects in the positive326

subset (response +1) from the subjects in the negative subset (response −1).327

The association of one subject to one of the two subsets consists in sampling328

from a Bernoulli distribution with parameter p equal to 0.5 and associating that329

subject to the positive subset in case of “success”. Note that, the association to330

each subset can be viewed as a bit in the Hamming embedding and the Bernoulli331

distribution with p equal to 0.5 is important to distribute the Hamming strings332

uniformly among the subjects in the face gallery. A PLSH hash model is defined333

as a PLS model and the subjects in the positive subset necessary to evaluate334

the test samples.335

In the test, the test sample (probe sample) is presented to each PLSH hash336
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model to obtain a regression value r. We define a vote-list of size equal to the337

number of subjects in the gallery initially with zeros, then, each position of the338

vote-list is increased by r according to the indexes of subjects in the positive339

subset of the same PLSH hash model. Note that this scheme allows us to store340

half of the subject indexes to increment the vote-list since it will be equivalent to341

increment subjects in the negative set by |r| when r is negative (the differences342

among pairs of votes will be the same). Finally, the list of subjects is sorted in343

decreasing order of values and presented as candidates for the face identification.344

In practice, the majority of subjects with low values in the candidate list are345

discarded because they rarely corresponds to the test sample. The candidate list346

only serves to indicate the evaluation order for the face identification method.347

In this case, if an identity is assigned to the probe when evaluating the first348

candidates in the list, there is no need to evaluate the remaining candidates.349

PLSH is similar to the work of Joly et al. [39], in which SVM classifiers are350

employed to determine each bit in the Hamming embedding. The advantage of351

employing PLS in this case is the robustness to unbalanced classes and support352

for high dimensional feature descriptors [6]. We do not provide approximation353

bounds to PLSH as LSH methods because PLSH is based on regression scores354

rather than distance metrics, which are not compatible with the LSH framework.355

3.3.1. Consistency356

The consistency of the PLSH algorithm with the goal to discriminate among357

the subjects in the face gallery is given as follows. In one hand, if r is approxi-358

mately equal to +1 in the test, the probe sample is more similar to the subjects359

in the positive subset and the positions in the vote-list corresponding to the360

subjects in the positive subset will receive more votes. On the other hand, if361

r is approximately equal to -1, the votes in the vote-list corresponding to sub-362

jects in the positive subset will be decremented. If r is close to zero then the363

vote-list will not change significantly. Assuming that be equal to +1 whenever364

the correct subject in the test sample is in the positive subset, even if other365

subjects in the positive subset receive the same vote, their respective votes in366
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the vote-list will be decrement whenever they are not in the same subset as the367

correct subject.368

Note that the aforementioned statement holds for a large number of hash369

functions since the probability of at least two subjects being in the same subsets370

is negligible. A large number of hash functions also mitigate the problem of a371

few hash functions not returning r roughly equal to 1 even if the correct subject372

is in the positive subset and the increase in the number of hash functions is373

limited only by the computational cost to evaluate them.374

3.3.2. Hamming embedding375

We do not estimate the Hamming embedding directly since there is no binary376

string associated to any face sample. However, PLSH is equivalent to estimating377

the Hamming embedding for a test sample and comparing it with the binary378

strings generated for each subject in the gallery. In addition, each bit of the test379

binary string is weighted by the absolute value of the PLS regression response.380

To demonstrate the aforementioned claims, consider that PLS responses can381

be only +1 or −1, such that any test sample can be represented by the sequence382

X = {+1,−1}H , where H denotes the number of PLSH hash models. Consider383

also that each subject s in the face gallery is represented by the binary string384

Ys = {1, 0}H , where yi ∈ Ys is set to 1 if the subject s was associated to the385

positive subset of the i-th PLSH hash model in the train step, or 0, otherwise.386

In this context, the weight ws given by PLSH to each subject in the gallery is387

calculated as388

ws =

H∑
i=1

xiyi.

Note that the maximum ws is equal to the sum of +1 elements in X, which389

occurs when yi = 1, if xi = +1, and yi = 0, otherwise. Similarly, the minimum390

weight is equal to the sum of −1 elements in X, which occurs when yi = 1,391

if xi = −1, and yi = 0, otherwise. If we transform X onto a binary string X̂392

such that x̂i = 1, if the corresponding xi is +1, and x̂i = 0, otherwise; we can393

calculate the Hamming distance between X̂ and Ys. In fact, the exactly same394
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Hamming distance can be calculate using ws as395

d(X,Y )H = wmax − ws, (3)

where wmax denotes maximum possible ws. The same analogy can be applied396

to the weighted Hamming distance if we consider xi assuming any real number.397

In this case, the weight of each bit αi is the absolute value of r and the weighted398

Hamming distance is equivalent to Equation 3.399

3.3.3. Computational requirements400

The amount of space necessary for the PLS algorithm depends on the number401

of hash models H, the dimensionality of the data D and the number of subjects402

in the gallery N . Each hash model holds a PLS regression vector in RD and403

the indexes of subjects in the positive subset (N/2), therefore, H × D real404

numbers and (H ×N)/2 integer indexes of space are necessary. Note that it is405

not necessary to store the feature vectors used to train the PLS models in the406

test and they can be safely discarded since the PLS regression vector holds the407

necessary information to discriminate among the enrolled subjects.408

The computational time necessary to evaluate a test sample in the PLSH409

algorithm depends on the dot product between the PLS regression vectors from410

all hash models and the feature vector, which is accomplished with D×H multi-411

plications. Then, there is the computational time to sort the vote-list, which has412

asymptotical cost O(Nlog(N)). It is possible to reduce the computational time413

to sort the vote-list by eliminating all negative values from the vote-list before414

sorting it and without any impact on the results [7]. However, since the com-415

putational time needed to evaluate all the hash functions is considerably higher416

than the time spent to sort the vote-list, we do not employ this heuristics in our417

experiments.418

3.3.4. Alternative implementations419

In principle, some aspects of the PLSH algorithm can be changed such that420

PLSH can provide potential performance improvement. For instance, the pa-421

rameter p of the Bernoulli distribution used to determine the subsets of subjects422
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may be changed given that PLS hardly finds common discriminative features423

among subjects in a large set [6]. However, changing p from 0.5 to other value424

results in a nonuniform distribution of subjects among subsets (raise hash table425

collisions), therefore, reducing the accuracy. As demonstrated in our previous426

work [7], maintaining a balanced subset of subjects to learn each hash model427

(p = 0.5) provide the best results.428

Another possible implementations of PLSH that does not modify much the429

results is the product of votes instead of the sum, which is akin to the intersec-430

tion of subsets among all hash functions. It is also possible to employ multiple431

partitions instead of only two by using a categorical rather than Bernoulli dis-432

tribution. However, multiple partitions present no significant difference in the433

results and they require twice the space requirement since the indexes of sub-434

jects that were learned with +1 target response in the PLS model need to be435

stored to allow them to receive the votes in the test.436

The computational cost to evaluate the hash functions can be reduced by437

calculating the PLS regression value using the few discriminative dimensions in438

the feature vector. As will be presented in the experiments, the feature selection439

include a new parameter in the PLSH algorithm, the number of features selected,440

which can be estimated jointly with the number of hash functions to provide441

much better results than in PLSH without feature selection.442

3.4. Feature selection for face hashing (ePLSH)443

The algorithms for PLSH described in Section 3.3 require a dot product444

between the PLS regression vector and the feature descriptor to calculate each445

hash function. This section describes methods to reduce the computational cost446

to evaluate hash functions. To discriminate PLSH with the feature selection447

version and to maintain consistence with the nomenclature given in our publi-448

cations, PLSH with feature selection is called extended PLSH (ePLSH) in the449

rest of this work.450

In practice, ePLSH is equivalent to PLSH when all features are considered451

to evaluate hash functions. The main advantage of ePLSH is the possibility of452
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Figure 4: Overview of PLS for face hashing and feature selection (ePLSH) with

(left) train and (right) test steps. The train consists of the same procedures

employed in PLSH with the difference of the feature selection method based on

the top discriminative features between the positive and negative subsets. The

indexes of the selected features are stored along with the PLS model and used

in the test to calculate an approximate PLS regression score.

employing thousands of additional hash functions, resulting in considerable in-453

crease of the recognition rate while keeping low computational cost to calculate454

the hash functions. The common feature setup considered in the PLSH and455

in the ePLSH approaches consists in combining four feature descriptors, which456

leads to a feature vector with 120,059 dimensions. However, we show in our457

experiments that, for the feature set considered in this work, about 500 dimen-458

sions with an increased number of hash functions provides better candidate lists459

than PLSH with about the same computational cost. A summary of ePLSH is460

presented in Figure 4.461

The ePLSH consists of two steps: train and test. In the train, it calculates the462

β regression vector following the same procedure of PLSH. Then, the indexes463

of the k more discriminative features are stored. Considering that the range464

of values in the feature vector is known (zero mean and unit variance in our465

experiments), it is possible to calculate an approximated score using only the466

more discriminative features. However, if only such features are used to calculate467

the regression value without rebuilding the PLS model, the result would not be468

accurate because of the large number of remaining features, even though they469

present a very low contribution individually. To tackle this issue, we learn a470

new PLS model to replace the full feature version in PLSH, which is performed471
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by eliminating the dimensions from the matrix X that do not correspond to the472

k select features and recalculate β using Equation 2.473

We define the ePLSH hash model as the PLS model, the subjects in the474

positive subset and the k selected features. Finally, the test step is carried in475

the same manner as in PLSH, but with the difference that only features selected476

in the ePLSH hash model are considered to calculate the regression score.477

There are numerous works about PLS-based feature selection in the litera-478

ture and they are divided in three categories [47]: filter, wrapper and embedded.479

Filter methods are the simplest of the three and work in two steps. First, the480

PLS regression model is learned and, then, a relevance measure based on the481

learned PLS parameters is employed to select the most relevant features. Wrap-482

per methods consist in an iterative filter approach coupled with a supervised483

feature selection method. Finally, embedded methods consist in nesting feature484

selection approaches in each iteration of the PLS algorithm. We suggest the485

work presented by Mehmood et al. [47] for a comprehensive list and description486

of PLS feature selection methods.487

In this work, we focus on PLS filter methods for feature selection for sim-488

plicity reasons. However, ePLSH is defined without lost of generality such that489

other PLS feature selection methods could be considered if necessary. Mehmood490

et al. [47] describe three filter methods called loading weights (W ), variable im-491

portance on projection (VIP) and regression coefficients (β). These methods492

are described in Sections 3.4.1, 3.4.2 and 3.4.3, respectively.493

3.4.1. Loading weights494

The idea in the loading weight approach is, for each PLS component, to495

select the features associated with higher absolute wi value (alternately features496

above a threshold [47]). Recall W being the output of NIPALS algorithm1 used497

to calculate latent variables. In this way, the absolute coefficient wf,i ∈ W , for498

the f -th PLS component and the i-th feature, is directly associated to the f -th499

1see Section 3.1 for the PLS description
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latent variable. Note that one feature may be relevant to one PLS component500

and irrelevant for another, specially because the latent variable basis represented501

by W is orthonormal. Therefore, the goal is to find the set of features that are502

relevant to calculate at least one PLS latent variable. In this context, the loading503

weight method consists in selecting features i ∈ [1, N ] with highest relevance504

measure defined as maxf=1:p(wp,i).505

3.4.2. Variable importance on projection506

Variable importance on projection (VIP) consists in calculating a measure507

that summarize the loading weights (W ) of all factors for each dimension in the508

feature vector. VIP measure is calculated as2
509

vi =

√√√√n

p∑
f=1

(
b2fw

2
f,i

)
/

p∑
f=1

b2f . (4)

In our experiments, the product by n can be ignored since n is constant for all510

features. In this case, the VIP measure will not be normalized and the common511

VIP threshold described in [47], which determines that relevant features present512

VIP higher than 0.8, cannot be employed directly. Recall bi as proportional to513

the covariance between projected features and target values. The sum in the nu-514

merator of Equation 4 represents the squared sum of the loading coefficients for515

a specific feature weighted by the predictive capacity of each coefficient. In this516

way, the main difference between the loading weights and the VIP approaches517

is the employment of bi in the latter.518

3.4.3. Regression coefficients519

Regression coefficients for feature selection is the simplest of the three520

filter methods and consists in using the regression vector directly to select521

the most relevant features. Recall from Section 3.1 the regression vector as522

β = W (PTW )−1(TTT )−1TTY , where P and T are loading matrices from fea-523

tures and target values, respectively. Similar to the loading weights approaches,524

2see Section 3.1 for variable definitions.
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regression coefficients are also related to predictive capacity of the latent vari-525

ables to estimate target values, however, in a more transparent manner since526

they are directly employed to estimate the regression values. The main differ-527

ence from the regression coefficient and the aforementioned filter approaches is528

the correlation of the latent variables with target values embedded in the PLS529

regression vector, which provides a small improvement over the loading weights530

and VIP results.531

3.5. Early-stop search heuristic532

To stop the search for the correct subject in the candidate list, we employ533

the heuristic described by Schwartz et al. [4]. For a short number of initial534

samples (15), all subjects in the candidate list are evaluated and the median535

value of the scores is taken as threshold for the remaining test samples. Then,536

subjects in the candidate list are evaluated until a score equal or higher than537

the threshold is obtained or the end of the list is reached.538

Note that, in practice, the candidate list size is a percentage of the subjects539

enrolled in the gallery and most of the candidates with low weights can be540

discarded because they rarely corresponds to the probe sample. In this case,541

the worst case scenario consists in evaluating all subjects in the candidate list for542

every probe sample. However, the early-stop search heuristic alone is shown to543

reduce the number of tests in the face identification up to 63% without degrading544

the recognition rate so the speedup achieved is usually higher than the ratio of545

the gallery size divided by the number of subjects in the candidate list.546

4. Experimental results547

In this section, we evaluate PLSH and ePLSH in two standard face iden-548

tification datasets (FERET and FRGCv1). Section 4.1 contains the common549

experimental setup, including datasets, number of dimensions in PLS models550

for the face identification, PLSH and ePLSH, evaluation metric, description of551

the computer used in the experiments, and feature descriptors. The PLSH pa-552

rameter validation is presented in Section 4.2. The parameter validation for553
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ePLSH is discussed in Section 4.3. Evaluation on the datasets and comparisons554

with other methods in the literature are presented in Section 4.4 (FERET) and555

in Section 4.5 (FRGCv1).556

4.1. Experimental setup557

All experiments regarding parameter validation in Sections 4.2 and 4.3 were558

performed on the FERET dataset, since it is the dataset with the largest number559

of subjects (1, 196 in total). FERET consists of four test sets and we use dup2560

in Sections 4.2 and 4.3, which is considered the hardest of the dataset. The561

only exception is the experiment regarding the number of hash models and the562

gallery size in Section 4.3.3, where fb test set was employed since it provides563

more test samples (1, 195) than the others (194, 722 and 234 in fc, dup1 and564

dup2, respectively).565

The experiments were conducted using an Intel Xeon X5670 CPU with 2.93566

GHz and 72 GB of RAM running Ubuntu 12.04 operating system. All tests were567

performed using a single CPU and no more than 8 GB of RAM were necessary.568

4.1.1. FERET dataset569

The facial recognition technology (FERET) dataset [48] consists of 1, 196570

images, one per subject for training, and four test sets designed to evaluate the571

effects of lightning conditions, facial expression and aging on face identification572

methods. The test sets are: fb, consisting of 1, 195 images taken with different573

facial expressions; fc, consisting of 194 images taken in different lightning con-574

ditions; dup1, consisting of 722 images taken between 1 minute and 1, 031 days575

after the gallery image; dup2, is a subset of dup1 and consists of 234 images576

taken 18 months after the gallery image. In our experiments, all images were577

cropped in the face region using annotated coordinates of the face, scaled to578

128× 128 pixels and normalized using the self-quotient image (SQI) method to579

remove lightning effects [49].580
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4.1.2. FRGC dataset581

The face recognition grand challenge dataset (FRGC) [50] consists of 275582

subjects and samples that include 3D models of the face and 2D images taken583

with different illumination conditions and facial expressions. We follow the584

same protocol described by Yuan et al. [25], which considers only 2D images585

and consists in randomly selecting different percentages of samples from each586

subject to compose the face gallery and using the remaining samples to test.587

The process is repeated five times and the mean and standard deviation of588

the rank-1 recognition rate and speedup (considering the brute-force approach)589

are reported. The samples were cropped in the facial region, resulting in size590

138× 160 pixels, and scaled to 128× 128 pixels.591

4.1.3. Evaluation metric (MARR)592

According to the face identification pipeline presented in Section 3.2, the593

candidate list calculated in the filter approach (PLSH and ePLSH) is employed594

to reduce the number of PLS models evaluated in the face identification. In this595

context, the error rate of the pipeline results from errors induced by the filter596

approach (fail to return identity of test sample in the candidate list) and by the597

face identification approach (fail to identify correctly the subject in the candi-598

date list). Therefore, to assess the performance of the filter approach alone, we599

provide results considering the maximum achievable recognition rate (MARR),600

which is calculated considering that a perfect face identification method is em-601

ployed for different percentages of candidates visited in the list.602

Note that the MARR value is the upper bound for the recognition rate603

achieved by the filter and face identification pipeline. Figure 5 illustrates the604

MARR evaluation metric where better results present MARR close to one and605

low percentage of candidates visited (curves close to the upper left corner of the606

plots).607
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Figure 5: An example of the plots regarding the MARR evaluation metric for

two sample curves. The MARR metric (vertical axis) considers that the candi-

date list is presented to an ideal face identification method, therefore, providing

the upper bound of the recognition rate achievable when considering a given fil-

tering method such as PLSH and ePLSH. The horizontal axis presents different

percentages of the candidate list that are presented to the face identification

approach. The best curve presents MARR equal to one for any percentage of

subjects in the candidate list.

4.1.4. Number of dimensions in the PLS models608

PLS-based face identification requires only one parameter, the number of609

dimensions in the PLS latent space (p). Schwartz et al. [4] evaluated p by varying610

it from 13 to 21 without noticing large variation in the results. Therefore, we611

set p to 20 for the face identification method in our experiments. We conducted612

experiments in PLSH by varying p between 4 and 19, in steps of 3, and we did613

not noticed large difference in the results for p between 7 and 19. Therefore, for614

PLSH and ePLSH, we set p to 10.615

4.1.5. Feature descriptors616

We consider four feature descriptors in this work, CLBP [51], Gabor fil-617

ters [52], HOG [53] and SIFT [18], which mainly captures information about618
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texture and shape of the face image. This set of features was chosen because619

they present slightly better results in the face identification and indexing com-620

pared to the previous works [4, 7].621

On the CLBP feature descriptor, we set the radius parameter to 5, which is622

the common parameter employed in face recognition tasks. CLBP histograms623

are calculated in a sliding window approach with size equal to 16 pixels and624

stride equal to 8 pixels. We also consider accumulating all normal codes (codes625

with more than 2 transitions between bits) in the same histogram bin to reduce626

the dimensionality. The final descriptor is the concatenation of all histograms627

in the face image, resulting in 9, 971 dimensions and taking 118 milliseconds, on628

average, to calculate.629

To compute Gabor filters, we convolve the face image with filters of size630

16 × 16 pixels, 8 scales, equally distributed between [0, π2 ], and 5 orientations,631

equally distributed between [0, π], which results in 40 convolved images. The632

images were downscaled by a factor of 4 and concatenated to assemble the final633

feature descriptor, resulting in 40, 960 dimensions and taking 1, 475 milliseconds634

to calculate per face image, on average.635

Two feature setups are considered for HOG. The first setup consists in block636

size equal to 16× 16 pixels, stride equal to 4 pixels and cell size equal to 4× 4637

pixels. The second setup consists in block size equal to 32 × 32 pixels, stride638

equal to 8 pixels and cell size equal to 8 × 8 pixels. The feature descriptor639

consists in concatenating the HOG descriptors from the two setups, resulting640

in 36, 360 dimensions and taking 81 milliseconds to calculate per face image, on641

average.642

We consider SIFT descriptors calculated in 256 keypoints evenly spaced in643

the face image. We employed the default parameters employed by Lowe [18],644

which are 4×4 histogram cells, each with 8 bins, contrast threshold 0.04, Gaus-645

sian smoothness 1.6 and edge threshold 10. The final feature descriptor is the646

concatenation of all SIFT descriptors in the face image and has 32, 768 dimen-647

sions with average time to calculate equal to 30 milliseconds.648
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Figure 6: Evaluation of the CLBP, Gabor, HOG and SIFT feature descriptors

and their combination.

4.2. PLSH parameters validation649

Herein we evaluate the aspects regarding PLSH model and parameter se-650

lection. In Section 4.2.1, we evaluate each single feature descriptor with their651

combination. In Section 4.2.2, we evaluate different numbers of hash models.652

In Section 4.2.3, we discuss stability regarding PLSH results.653

4.2.1. Combination of feature descriptors654

Figure 6 presents the MARR curves for each of the four feature descriptors655

considered in this work and their combination. The number of hash models in656

this experiment was empirically set to 150. According to Figure 6, the combi-657

nation of CLBP, Gabor, HOG and SIFT is responsible for an increase of about658

10 percentage points (p.p.) in MARR compared to the best individual feature659

descriptor (CLBP). Therefore, we employ the combination of these feature de-660

scriptors in the remaining experiments. The combined feature descriptor has661

120, 059 dimensions with averaged time to calculate equal to 1.7 seconds. It is662

important to point out that the time spent to calculate the feature descriptors663

for a probe sample is constant (it does not depend on the number of subjects664
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Figure 7: Number of hash models as a function of the MARR for different

percentages of subjects in the candidate list.

enrolled in the face gallery). In fact, the computational time to extract the fea-665

ture descriptors can be adapted in exchange for reduced MARR. For instance,666

Gabor filters could be discarded to reduce the computational time to extract667

the features since they take 1.4 seconds per face image to calculate, on average.668

4.2.2. Number of hash models669

Figure 7 presents MARR for a number of hash models equal to670

10, 50, 100, 150 and 200. According to the results, a large improvement in MARR671

(for any number of subjects in the candidate list) takes place when the number672

of hash models increases from 10 to 150 can be seen in Figure 7. However, the673

increase in MARR is negligible when the number of hash models is raised from674

150 to 200. Since the face identification and the PLSH approaches depend on675

a single dot product between the feature and the PLS regression vectors, the676

computational cost to evaluate each hash function in PLSH is about the same677

as the cost to evaluate each subject in the gallery. Therefore, to obtain a low678

computational cost for testing samples, we consider 150 hash functions in the679

remaining PLSH experiments. As a reference, the average time to evaluate each680

hash function in this experiment was 426 microseconds.681
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Figure 8: Average MARR and standard deviation for 10 PLSH runs considering

1% of subjects in the candidate list.

4.2.3. Stability of the results682

Figure 8 presents the mean MARR and standard deviation when running683

PLSH 10 times. Although PLSH is a nondeterministic method, it still pro-684

vide fair stability, assessing that all experiments performed in this sections are685

easily reproducible. For instance, the best individual feature descriptor in Sec-686

tion 4.2.1, Gabor filter, provides MARR (at 1% of subjects in the candidate687

list) equal to 0.67, which is considerable lower than the averaged 0.76 MARR688

presented in Figure 8. The conclusion is that even with the variation in the re-689

sults from the feature combination, PLSH rarely presents MARR equals to 0.67,690

assessing that the combination of features is better than individual features.691

4.3. ePLSH parameters validation692

In this section, we conduct experiments regarding stability and scalability of693

ePLSH in Sections 4.3.4 and 4.3.3, respectively. The feature selection methods694

described in Section 3.4 are evaluated in Section 4.3.2. A discussion regarding695

the number of features selected is presented in Section 4.3.1.696
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Figure 9: MARR with different numbers of hash models and the feature selected

in the ePLSH.

4.3.1. Number of hash models and features selected697

Figure 9 presents MARR for 1% of subjects in the candidate list for different698

numbers of hash models (m) and selected features (d). The ePLSH aims at699

reducing the computational cost to evaluate PLSH hash functions, which can700

be roughly approximated to a number of multiplication operations equal to701

m×d. It is important to point out that d equal to 500 provides nearly the same702

MARR for a sufficient large enough m. Therefore, we fix d to 500 and vary m703

for different datasets and number of subjects in the face gallery.704

We achieve minimum computational cost with almost maximum MARR us-705

ing 5, 000 hash models and with 2.5 million multiplications. Note that this706

number of multiplications refers only to the ePLSH approach such that the707

total computational cost of the pipeline also includes the number of multiplica-708

tions in the face identification. As a comparison, the number of multiplications709

necessary in the brute-force approach for the 1, 196 subjects in the gallery is710

1, 196×120, 059 = 143.5 millions, which is about 57 times more than the number711

of multiplications necessary to calculate all of the 5, 000 ePLSH hash functions.712

The time spent to calculate each ePLSH hash function is considerable lower713
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than PLSH hash functions. Since both approaches consists in a dot product714

between the feature vector and the regression vector, the number of multipli-715

cations needed to compute each hash function is equal to the dimensionality of716

the feature vector in PLSH (120, 059 multiplications) and equal to the number717

of selected features in ePLSH (500 multiplications). In this way, ePLSH hash718

functions should be theoretically 240 times faster than PLSH hash functions.719

However, the nonlinear access to the feature vector in ePLSH hash functions720

may induce an additional overhead due to the weak locality of reference (ac-721

cessing positions in the memory that are far from each other).722

The average time to calculate each PLSH hash function is 446 microseconds723

compared to 12 microseconds for each ePLSH hash function. However, since724

a considerable number of hash functions is employed in ePLSH compared to725

PLSH, the time to train ePLSH is significant higher than PLSH. The time726

spent to train all the 5, 000 hash functions in ePLSH is 14 hours compared to727

22 minutes for the 150 hash functions in PLSH, which may not impose an issue728

because the train is performed offline and only once for a fixed face gallery.729

The train can also be accelerated considering other PLS algorithms such as730

SIMPLS [54] rather than NIPALS.731

4.3.2. Feature selection732

In this section, we compare the feature selection approaches described in Sec-733

tion 3.4. We also compare whether we should retrain the PLS model in the re-734

gression coefficients approach to redistribute weights from the discarded feature735

among the selected features. According to the results presented in Figure 10,736

there is no significant difference in the feature selection approaches evaluated.737

Considering the experiments in Section 4.3.4, the MARR at 1% of subjects in738

the candidate list for the regression coefficients approach vary roughly between739

0.92 and 0.96. In this case, it can be concluded that the regression coefficients740

approach is better than the loading weights and VIP. Furthermore, there is741

no significant difference between retraining or not the hash model regression742

coefficients after the feature selection step.743
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Figure 10: Evaluation of loading weights, variable importance on projection

(VIP) and regression coefficients for feature selection.

4.3.3. Number of hash models and gallery size744

In all experiments presented so far, we considered a fixed number of subjects745

in the gallery, which are in total 1, 196 for the FERET dataset. We still need746

to assess the ePLSH performance with an increasing number of subjects in the747

face gallery, which, theoretically, should require a logarithmic number of hash748

models to index the subjects in the face gallery [7]. For the experiment in this749

section, we randomly select 50, 100, 250, 500, 750, 1000 subjects in the FERET750

dataset to be enrolled onto the face gallery. We consider the fb test set in751

FERET because it has more test samples (1, 195 in total) and ePLSH because752

it provides more stable and better results than PLSH. We also consider only753

test samples of subjects enrolled in the face gallery because we are evaluating754

the closed set recognition. We raise the number of hash models from 50 to 550,755

in steps of 50, until we reach at least 0.95 MARR for 1% of subjects in the756

candidate list.757

The results in Figure 11 demonstrate that at least the number of hash models758

necessary to maintain accuracy is logarithmic with the size of the face gallery.759

However, the number of subjects in the candidate list still depend on 1% of the760
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Figure 11: Number of hash models necessary to provide at least 0.95 MARR

with different gallery sizes and 1% of subjects in the candidate list.

gallery size. The problem in this case is that the face identification still needs761

to evaluate 1% of subjects in the face gallery, considering the worst case of the762

early-stop heuristic. We tried varying the percentage -or fixing to a small value-763

the number of subjects in the candidate list, but for both cases, the number764

of hash models did not stabilize for the number of enrolled subjects evaluated.765

We believe this happens because the number of subjects in our evaluation is766

not large enough to demonstrate convergence of the number of hash models.767

Nonetheless, Figure 11 indicates that we can reduce at least in two orders of768

magnitude the number of subjects evaluated in the face identification, which is769

so far, the best known result in the literature as will be presented in the next770

sections.771

4.3.4. Stability of the results772

The same experiment regarding stability of the PLSH results is performed773

for ePLSH in this section. The averaged MARR and standard deviation for 10774

ePLSH runs are presented in Figure 12. We are considering regression coeffi-775

cients for feature selection in this experiment and we retrain the PLS model776

after the feature selection step as discussed in Section 3.4. In this case, the777
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Figure 12: Average MARR and standard deviation for 10 ePLSH runs consid-

ering 1% of subjects in the candidate list.

ePLSH presents considerable more stable results than PLSH, with standard de-778

viation around 0.006 compared to 0.03 in PLSH. We believe that the increase779

in stability is a consequence of the augmented number of hash models, which780

reduces the variance of the sum of scores in the vote-list, resulting in a more781

stable distribution.782

4.4. Results on the FERET dataset783

Results regarding MARR and rank-1 recognition rate for PLSH in all test784

sets from the FERET dataset are presented in Figures 13a and 13b. For the785

test sets fb and fc, about 1% of subjects in the candidates list is enough to786

achieve more than 95% of the rank-1 recognition rate of the brute-force approach787

(presented in the legend of Figure 13b for each test set). However, for the test788

sets dup1 and dup2, about 5% of subjects in the candidate list ensured at least789

95% of the brute-force rank-1 recognition rate. The theoretical speedup in the790

worst case can be calculated considering the 150 PLSH hash function evaluations791

and the 5% of the gallery size, which consists of 60 PLS projections. In this792

case, if the early-stop search heuristic is not considered, i.e., all subjects in the793

candidate list are evaluated for each test sample, the number of PLS projections794
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would be 210 compared to the 1, 196 projections necessary in the brute-force795

approach, which would still results in a 5.6 times speedup.796

Results from ePLSH are presented in Figures 13c and 13d. Using only 1%797

of subjects in the candidate list, it is possible to recover all subjects in the798

rank-1 recognition rate from brute-force approach for all four test sets. In this799

case, the rank-1 recognition rate from the ePLSH pipeline is the same as the800

brute-force approach, but with reduction to 1% of the subjects evaluated in the801

identification. Considering that the cost to evaluate all hash models in ePLSH802

is about the same as in PLSH, the theoretical speedup is 7.38 times compared803

to the brute-force approach in the worst case.804

4.5. Results on the FRGC dataset805

Results from the FRGC dataset for PLSH and ePLSH are presented in Ta-806

ble 1 along with results from three other methods as presented in the literature.807

The three methods are the cascade of rejection classifiers (CRC) from [25], the808

PLS-based search tree [4], and our previous published work [7], which consists of809

PLSH with the combination of HOG, Gabor filter and LBP feature descriptors.810

For PLSH and ePLSH, we vary the number of hash models and the maximum811

percentage of subjects visited in the candidate list and we present the results812

with rank-1 recognition rate close to 0.95 and higher speedups. In this way, it813

is possible to compare directly the maximum speedup achievable when using814

PLSH and ePLSH compared to the other approaches, which also provide rank-1815

recognition rate close to 0.95.816

Results for a fixed setup that provide at least 0.95 rank-1 recognition rate are817

also provided, consisting of 50 hash models with 25% of subjects in the candidate818

list for PLSH and 200 hash models with 10% of subjects in the candidate list for819

ePLSH. The experiments were conducted with the following percentages of sub-820

jects in the candidate list (rounding up): 0.1, 0.5, 1, 3, 5, 7, 10, 13, 15, 20, 25, 30.821

The number of hash models evaluated are: 10, 15, 20, 25, 30, 35, 40, 45, 50; for822

PLSH, and 25, 50, 75, 100, 125, 150, 175, 200, for ePLSH.823
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According to Table 1, it is possible to conclude that the rank-1 recogni-824

tion rate is reasonably stable, with variance in the first decimal place, which is825

similar to the results regarding stability presented for PLSH and ePLSH. The826

speedup for PLSH and ePLSH decreases considerable as the number of samples827

per subject available for train reduce. The reason for that is the increase in828

the number of hash models and the maximum number of subjects visited in the829

candidate list to guarantee at least 0.95 rank-1 recognition rate. Even with re-830

duced speedups considering 35% of samples available for train, ePLSH provides831

significant improvement over the speedup achieved by the tree-based approach832

(3.6 times faster), while PLSH provides competitive speedup.833

The speedup provided by PLSH and ePLSH compared to the tree-based834

approach is noticed with 90% of the samples available for train, where PLSH835

is about 5 times faster than the tree-based approach while ePLSH is about 13836

times faster than PLSH. Finally, in the worse case, ePLSH provides at least 14837

times speedup considering the brute-force approach in the setup with 200 hash838

models and 10% of subjects in the candidate list.839
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Figure 13: Results on the FERET dataset. (a) PLSH MARR curves, (b) PLSH

rank-1 recognition rate, (c) ePLSH MARR curves and (d) ePLSH rank-1 recog-

nition rate. Number in parenthesis indicate rank-1 recognition rate for the brute

force approach.
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% of samples

for train 90% 79% 68% 57% 35%

CRC [25]
Speedup 1.58× 1.58× 1.60× 2.38× 3.35×

Rank-1 rec. rate 80.5% 77.7% 75.7% 71.3% 58.0%

Tree-based [4]
Speedup 3.68× 3.64× 3.73× 3.72× 3.80×

Rank-1 rec. rate 94.3% 94.9% 94.3% 94.46% 94.46%

PLSH [7]

HOG,Gabor filter

LBP

Speedup (16.84± 1.56)× (7.30± 1.40)× (5.66± 0.41)× (3.42± 0.34)× (2.79± 0.11)×

Rank-1 rec. rate (96.5± 0.7)% (96.7± 1.6)% (93.4± 1.3)% (93.6± 0.5)% (93.3± 0.7)%

Hash models 10 20 25 35 35

Max. candidates 3% 10% 13% 20% 30%

PLSH

Speedup (18.24± 1.28)× (8.61± 0.30)× (6.95± 0.31)× (3.96± 0.05)× (3.49± 0.17)×

Rank-1 rec. rate (95.31± 0.62)% (95.31± 0.70)% (93.60± 1.15)% (94.67± 0.34)% (94.60± 0.16)%

Hash models 10 20 30 50 50

Max. candidates 3% 13% 13% 15% 25%

PLSH
fixed params.

Speedup (2.95± 0.03)× (4.00± 0.16)× (4.13± 0.30)× (3.16± 0.03)× (3.49± 0.17)×

Rank-1 rec. rate (99.69± 0.12)% (98.26± 0.06)% (97.74± 0.42)% (96.19± 0.15)% (94.60± 0.16)%

ePLSH

Speedup (233.61± 37.05)× (98.93± 8.39)× (45.42± 3.84)× (22.29± 1.03)× (14.21± 1.74)×

Rank-1 rec. rate (96.03± 0.70)% (95.02± 0.45)% (95.98± 0.31)% (94.67± 0.49)% (94.44± 0.40)%

Hash models 50 100 150 150 200

Max. candidates 0.1% 0.5% 3% 5% 10%

ePLSH
fixed params

Speedup (19.74± 1.35)× (16.30± 1.01)× (19.12± 1.89)× (12.28± 0.57)× (14.21± 1.74)×

Rank-1 rec. rate (99.79± 0.22)% (98.30± 0.11)% (97.63± 0.04)% (96.71± 0.36)% (94.44± 0.40)%

Table 1: Comparison between the proposed approach and other approaches in the literature. The highest speedups are shown

in bold. The fixed parameter setup is the same employed when evaluating 35% of samples for train (50 hash models with 25%

of subjects in the candidate list for PLSH and 200 hash models with 10% of subjects in the candidate list for ePLSH).
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5. Conclusions and future works840

In this work, we proposed and evaluated PLSH and its extension ePLSH for841

face indexing. PLSH is inspired by the well-known locality-sensitive hashing for842

large-scale image retrieval and PLS for face identification, which provides fast843

and robust results for face indexing. Additional gain in speedup was achieved844

with the ePLSH, a method that employs PLS-based feature selection to reduce845

the computational cost to evaluate hash functions, enabling a large amount of846

additional hash functions to be employed and raising the indexing precision. We847

evaluated several parameters and alternative implementations of PLSH in the848

hope that they will be useful for future face indexing development. The experi-849

ments were conducted on two face identification standard datasets, FERET and850

FRGCv1, with 1, 196 and 275 subjects, respectively. Although these datasets851

do not provide enough number of subjects for a proper evaluation regarding852

scalability to large galleries, PLSH and ePLSH still provide significant improve-853

ment in speedup compared to other scalable face identification approaches in854

the literature.855

The conclusions and considerations regarding PLSH and ePLSH are the fol-856

lowing: (i) they support for high dimensional feature vectors, allowing different857

complementary feature descriptors to be employed to increase the robustness of858

the face indexing; (ii) they are easy to implement and deploy in practice since859

the only parameters needed to be set are the number of hash models and sub-860

jects in the candidate list. (iii) they do not provide good performances when861

the number of samples per subject is reduced and (iv) incremental enrollment862

of subjects in the framework requires re-training of the hash models, which863

may be prohibitive to perform in practice, specially for ePLSH which demands864

considerable more hash models.865

In future works, we may consider the incremental learning algorithm for PLS866

rather than NIPALS [55], which might solve the issue regarding the incremental867

enrollment of subjects. We also may consider learning PLSH hash models for868

different subsets of subjects in the gallery, which have already been extensively869
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studied to make PLS face identification scalable to incremental enrollment of870

subjects in the gallery [5]. In this way, it is possible, for instance, to distribute871

the processing among numerous nodes in a computer cluster, which should be872

necessary to scale the approach for millions of subjects. The performance drop873

of PLSH and ePLSH when there are few samples per subject in the face gallery874

might be alleviated by generating synthetic samples using face morphing meth-875

ods, which has already been considered for PLS face identification to leverage876

the recognition rates [4].877
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