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AN ELEMENTARY PROOF OF THE POSITIVITY
OF THE INTERTWINING OPERATOR
IN ONE-DIMENSIONAL TRIGONOMETRIC DUNKL THEORY

JEAN-PHILIPPE ANKER

ABSTRACT. This note is devoted to the intertwining operator in the one—dimensional
trigonometric Dunkl setting. We obtain a simple integral expression of this operator
and deduce its positivity.

To appear in Proc. Amer. Math. Soc.

1. INTRODUCTION

We use the lecture notes [6] as a general reference about trigonometric Dunkl theory.
In dimension 1, this special function theory is a deformation of Fourier analysis on
R, depending on two complex parameters k; and ko, where the classical derivative is
replaced by the Cherednik operator

Df(x) = () F(@) + {iZ= + == @)~ f(=0)} = (5 +k2) f(2)
= (%)f(:c) + {kﬁk? coth 5 + % tanh  } {f(z)—f(—2)} — (%+k2)f(—x) ,

2
the Lebesgue measure by A(z)dz, where

A(z) = [2sinh £ *M [2sinhz [**2 |

and the exponential function e*** by the Opdam hypergeometric function
frt ba—L ko—1 BLfkotin | kitka+3, kot
Gia(r) = pon 7 G+ gimn (Sinha) o, A (E)

o / . /

~— ~

o F1 (" ko +id, " ko —iXskitko+ 15 —sinh®2)  oF1 ("t ko + 140X, 5 4 ko 41— iX; k1 +ko+ 25— sinh?Z)
Here 5% (z) denotes the Jacobi function and 5 Fy(a,b;c; Z) the classical hypergeometric

function.

In a series of papers ([2], [5], [7], [3], [8], [9], [10], [11], ... ), Triméche and his collaborators
have studied an intertwining operator V:C®(R) — C'*(R), which is characterized by

Vo(L)=DoV and §yoV =4,
and the dual operator V': CP(R) — C*(R), which satisfies

[ vs@sw amas = [ i vt ay

—00
Let us mention in particular the following facts.

e Figenfunctions. For every AeC,
V(z— ) =Gy .
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e Explicit expression. An integral representation of V was computed in [2] (and inde-
pendently in [1]), under the assumption that k>0, ko >0 with ky+ ke > 0.

e Analytic continuation. It was shown in [3]| that the intertwining operator V extends
meromorphically with respect to ke C?, with singularities in {k € C?| kj+ko+3€—N}.

e Positivity. On the one hand, the positivity of V was disproved in [2]|, by using the
above-mentioned expression of V in the case k; >0, ks > 0. On the other hand, the
positivity of V was investigated in [8], [9], [10], [11] by using the positivity of a heat
type kernel in the case k1 =0, ky > 0.

In Section 2, we obtain an integral representation of ¥V and V' when Rek; > 0 and
Re ks > 0. The expression is simpler and the proof is quicker than the previous ones in
[2] or [1]. In Section 3, we deduce the positivity of V and V' when k; >0, ko> 0, and
comment on the positivity issue.

2. INTEGRAL REPRESENTATION OF THE INTERTWINING OPERATOR

In this section, we resume the computations in [2, Section 2| and prove the following
result.

Theorem 2.1. Let k= (ki,ky) € C? with Rek;>0 and Reky>0. Then

Vf(x) = f K fdy VaeR

and
Vigt) = | Kie.9)g(o) A)
z|>y
where
||
K(z,y) = EA(x)_lf o(z,y,z) (cosh Z— cosh £)*1 ! (cosh x — cosh z)*> ™"
i (1)
x (sinh ) dz,
with Pkt ks )
_ 93k1+3k2 1thats
c=2 VAT (o) T(k2) @
and
o(z,y,z) = (signz) {e% (2cosh 3) — ¢~% (2 cosh )}, (3)

Proof. As observed in [2] and [5],
+|
Vi) = || Kio) Sy
is an integral operator, whose kernel

K(z,y) = 1 K(3.%) + (signz) (2+22) A(2) T K(5, )~ (signa) § A(x) ' £ K(,%) (4)

can be expressed in terms of the kernel
K(z,y) = 2c A(2z) " |sinh 2z |

g (5)
X J (cosh z — cosh y)* 7! (cosh 22 — cosh 22)%2 7! (sinh 2) dz
|

Yl
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of the intertwining operator in the Jacobi setting (see [4, Subsection 5.3]) and of its
integral

~

K(z,y) = | K(w,y)AQ2w)dw

Iyl il (6)
= k—z J (cosh z — cosh y)’l‘“’1 (cosh 2z — cosh 2,2)"€2 (sinh z)dz.
lyl
Let us integrate by parts (6) and differentiate the resulting expression with respect to y.
This way, we obtain

N |z

K(z,y) = i—f J (cosh z — cosh y)** (cosh 2 — cosh 22)** 7! (cosh 2) (sinh z) dz,  (7)
ly|

and

~ ||
% K(z,y) = —4c(sinhy) ﬁ | (cosh z — cosh y)¥ ! (cosh 2 — cosh 22)*2 ™! .
y
X (cosh z) (sinh z) dz .

We conclude by substituting (5), (6), (7), (8) in (4) and more precisely (6), respectively
(7) in
(signz) % A(:v)’lf?(g, ), respectively (signz) % A(z) K (2,

Nk

).

N8

O

Remark 2.2. Let z,y€R such that |z|>|y|. The expression (1) extends meromorphi-
cally with respect to ke C?, with singularities in {ke C*|ky+ kﬁ—%e —N}, produced by
the factor T'(ki+ke+3) in (2). In the limit cases where either ki or ko vanishes, (1)
reduces to the following expressions, already obtained in |2] and [1]:

e Assume that k;=0 and Reky>0. Then

ko—1 F(szr%)

K(z,y) =2 Tt |sinh 2| 72" (cosh z — cosh y)*2 7! (sign z) (e*—e7¥).  (9)
o Assume that ke=0 and Rek;>0. Then
o Tki+3) | . .o - 1. z _y
K(z,y) = 2M72 ﬁF(k21) |sinh Z|72* (cosh £ — cosh €)™ ! (signz) (e2—e " 2).  (10)

3. POSITIVITY OF THE INTERTWINING OPERATOR

Corollary 3.1. Assume that k1>0 and ko>0. Then the kernel (1) is strictly positive,
for every x,y€R such that |x|>|y|. Hence the intertwining operator V and its dual V!
are positive.

Proof. Let us check the positivity of (3) when z,y, z€ R satisfy |z|> z>|y|. On the one
hand, if >0, then

o(z,y,2) = e? (2cosh %) — e (2 cosh 2)

e3—e73) (2cosh 3) > 0.

Vv

On the other hand, if x <0, then
o(z,y,2) = e 8 (2cosh %) — e (2 cosh z)

> e 2 (2cosh ¥) — e2 (2coshg) =e¥—e">0.
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Remark 3.2. As already observed in |2|, the positivity of (9), respectively (10) is im-
mediate in the limit case where ky=0 and ky> 0, respectively ko=0 and k;>0.

Remark 3.3. The positivity of V was mistakenly disproved in |2, Theorem 2.11| when
k1> 0 and ko> 0. More precisely, by using a more complicated formula than (1), the

density K(x,y) was shown to be negative, when x>0 and y\, —x. The error in the
k sinh(2x)—sinh(2|y|)

W % and which tends to

proof lies in the expression Ay, which is equal to

k cosh(2x)
+2 %’ sinh(2z) >0.

Remark 3.4. A different approach, based on the positivity of a heat type kernel, was
used in (8], 9], [10] and [11] in order to tackle the positivity of V. While [8] may be
right, the same flaw occurs in 9], [10], [11], namely the cut-off 1y, breaks down the
differential-difference equations, which are not local.

In conclusion, the present note settles in a simple way the positivity issue in dimension
1 and hence in the product case. Otherwise, the positivity of the interwining operator
Y and its dual V!, when the multiplicity function % is >0, remains an open problem in
higher dimensions.
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