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AN ELEMENTARY PROOF OF THE POSITIVITY

OF THE INTERTWINING OPERATOR

IN ONE–DIMENSIONAL TRIGONOMETRIC DUNKL THEORY

JEAN–PHILIPPE ANKER

Abstract. This note is devoted to the intertwining operator in the one–dimensional
trigonometric Dunkl setting. We obtain a simple integral expression of this operator
and deduce its positivity.

1. Introduction

We use the lecture notes [6] as a general reference about trigonometric Dunkl theory.
In dimension 1, this special function theory is a deformation of Fourier analysis on
R, depending on two complex parameters k1 and k2, where the classical derivative is
replaced by the Cherednik operator
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the Lebesgue measure by Apxqdx, where
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Here ϕ
α,β
λ pxq denotes the Jacobi function and 2F1pa,b;c;Zq the classical hypergeometric

function.

In a series of papers ([2], [5], [7], [3], [8], [9], . . . ), Trimèche and his collaborators have
studied an interwining operator V :C8pRq ÝÑ C8pRq, which is characterized by

V ˝
`

d

dx

˘
“ D ˝ V and δ0 ˝ V “ δ0 .

Let us mention in particular the following facts.

‚ Eigenfunctions. For every λPC,

V px ÞÝÑ eiλxq “ Giλ .

‚ Explicit expression. An integral representation of V was computed in [2] (and inde-
pendently in [1]), under the assumption that k1ě 0, k2 ě 0 with k1`k2 ą 0.

‚ Analytic continuation. It was shown in [3] that the interwining operator V extends
meromorphically with respect to k PC2, with singularities in tk PC2 | k1`k2`

1
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‚ Positivity . On the one hand, the positivity of V was disproved in [2], by using the
above–mentioned expression of V in the case k1 ą 0, k2 ą 0. On the other hand, the
positivity of V was proved in [8], [9] by using the positivity of the heat kernel in the
case k1ě 0, k2 ě 0.

In Section 2, we obtain an integral representation of V when Re k1 ą 0 and Re k2 ą 0.
The expression is simpler and the proof is quicker than the previous ones in [2] or [1].
In Section 3, we deduce the positivity of V when k1 ą 0, k2 ą 0, and comment on the
positivity issue.

2. Integral representation of the interwining operator

In this section, we resume the computations in [2, Section 2], [1, Ch. 4] and prove the
following result.

Theorem 2.1. Let k “ pk1,k2q PC2 with Re k1ą 0 and Re k2 ą 0. Then
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Proof. As observed in [2] and [5],
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can be expressed in terms of the kernel
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of the interwining operator in the Jacobi setting (see [4, Subsection 5.3]) and of its
integral
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Let us integrate by parts (6) and differentiate the resulting expression with respect to y.
This way, we obtain
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Remark 2.2. Let x, y PR such that |x| ą |y|. The expression (1) extends meromorphi-

cally with respect to k P C2, with singularities in tk P C2 | k1`k2` 1
2
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reduces to the following expressions, already obtained in [2] and [1] :
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3. Positivity of the interwining operator

Corollary 3.1. Assume that k1ą0 and k2 ą0. Then the kernel (1) is stricly positive,

for every x, y PR such that |x|ą|y|.

Proof. It is enough to check that σpx, y, zq ą 0, for every x, y, z PR such that |x|ą z ą|y|.
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Remark 3.2. As already observed in [2], the positivity of (9), respectively (10) is im-

mediate in the limit case where k1“ 0 and k2 ą 0, respectively k2 “ 0 and k1ą 0.

Remark 3.3. The positivity of V was mistakenly disproved in [2, Theorem 2.11] when

k1 ą 0 and k2 ą 0. More precisely, by using a more complicated formula than (1), the

density Kpx, yq was shown to be negative, when x ą 0 and y Œ ´x. The error in the

proof lies in the expression A1, which is equal to
k

k 1

sinhp2xq´sinhp2|y|q
E

and which tends to

`2
k

k 1

coshp2xq
sinhp2xq ą 0.

Remark 3.4. A different approach, based on the positivity of the heat kernel, was used

in [8] and [9], in order to tackle the positivity of V.
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