
HAL Id: hal-01399626
https://hal.science/hal-01399626

Preprint submitted on 21 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Flexible WCET Analysis Method for Safety-Critical
Real-Time System using UML-MARTE Model Checker

Ning Ge, Marc Pantel, Bernard Berthomieu

To cite this version:
Ning Ge, Marc Pantel, Bernard Berthomieu. A Flexible WCET Analysis Method for Safety-Critical
Real-Time System using UML-MARTE Model Checker. 2016. �hal-01399626�

https://hal.science/hal-01399626
https://hal.archives-ouvertes.fr

A Flexible WCET Analysis Method for
Safety-Critical Real-Time System using
UML-MARTE Model Checker∗

Ning Ge1, Marc Pantel1, and Bernard Berthomieu2

1 IRIT-CNRS/ENSEEIHT/INPT
2 rue Charles Camichel, 31071 Toulouse, France
{Ning.Ge, Marc.Pantel}@enseeiht.fr

2 LAAS-CNRS
7 avenue du Colonel Roche, 31077 Toulouse, France
bernard@laas.fr

Abstract
This paper presents a flexible analysis method for Worst-Case Execution Time (WCET) using
UML-MARTE Model Checker, aiming at detecting wrong software designs and refine correct ones
with respect to WCET. This method uses UML-MARTE as the modelling language and Time
Transition System (TTS) as the verification language. The software is modelled by UML Activity
and Composite Structure diagrams using MARTE profile, and the hardware is modelled by the
Resource and Scheduler packages in MARTE. This method allows to gradually refine the software
in different phases of development process, and to alter the modelling granularity to balance the
accuracy and the computability of WCET, making it flexible.

Keywords and phrases Model-driven engineering; Formal analysis, Worst-case execution time;
Real-time embedded system; UML; MARTE; Time Transition System

1 Introduction

Worst-Case Execution Time (WCET) is a key requirement for safety critical Real-Time
Embedded System (RTES). Usually, WCET is assessed for the embedded binary software
taking into account the target hardware, relying on real or symbolic execution. As Model-
Driven Engineering (MDE) is nowadays considered as an effective development methodology
for RTES, it becomes mandatory to integrate model based WCET analysis since the early
phases of the development process.

Two main criteria for evaluating a WCET analysis method are the safety and the precision
[20]. The safety denotes that the estimated WCET should be superior or equal to the
possible/real WCET. The precision requires a smallest possible upper difference. To guarantee
the safety, the analysis shall not rely on hypotheses that may underestimate the execution
time. To improve the precision, the hardware needs to be modelled as accurately as possible,
which might introduce the complexity issue to the analysis. The paradox is that the
simplification/abstraction of hardware requires to add some hypotheses, that might violate
the safety criteria. With respect to the above problems, a compromise needs to be made
to balance between the WCET accuracy and computability. A reasonable solution is to
guarantee the computability in the early design phase using rapid and abstract prototyping,
and then back to the accuracy when the design reaches some level of maturity. This solution

∗ This work was funded by the French ministries of Industry and Research and the Midi-Pyrénées regional
authorities through the ITEA2 OPEES and FUI Projet P projects

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

2 WCET Analysis for Safety-Critical Real-Time System

allows to apply a homogeneous method to handle both criteria and their balance through
the development process.

This paper presents a flexible method for the analysis of WCET against the design model
based on formal specification and verification techniques. The method aims to eliminate
wrong software designs and refine correct ones with respect to the real-time constraints (WCET
in this paper). This contribution illustrates how to analyse WCET through requirement
evolution of the accuracy and complexity. The proposed method covers the early design,
detailed design and implementation phases. By refining the model of software and hardware,
the estimated value of WCET is more precise. Meanwhile, the designer can keep the balance
of accuracy-computability by altering the refinement level of the hardware model.

In order to experiment our method, we rely on the UML-MARTE modelling language
[16, 17] to specify the system, and use model checking techniques to assess the WCET
property. The software is modelled by UML activity and composite structure diagrams, and
the hardware is modelled by the Resource and Scheduler profiles in MARTE. The latest
possible termination time of the final action of the model is taken as the system’s WCET.
The formal analysis relies on the TINA (TIme petri Net Analyser)1 model checker, of which
the input verification language is the Time Transition System (TTS). The translation from
the UML-MARTE design model to the TTS verification model has been implemented in our
verification framework UML-MARTE model checker [5, 11], in which TINA is used as the
back-end checker.

This paper is structured as follows. Section 2 introduces the UML modelling language and
its profile MARTE, the verification language TTS and the TINA toolset; Section 3 introduces
the model elements used for the software and the hardware in UML-MARTE; Section 4
illustrates how to provide a compromise between accuracy and computability of WCET by
altering the modelling granularity in different phases of the development process. Section 5
details the verification and computation method for WCET using the UML-MARTE model
checker; Section 6 present some related works. Finally, concluding remarks and further
perspectives are discussed in Section 7.

2 Technical Background

2.1 UML and MARTE
UML [16] and its domain specific extensions are becoming widely used notations to cope
with the design of complex automotive real-time embedded applications. However, the
semi-formal nature of its semantics makes it limited for verification. In particular, it has
a partial executable semantics that does not ease the use of model checking technologies.
MARTE [17] is a UML profile standardized by the OMG. This profile adds capabilities to UML
for model-driven development of real-time embedded systems. MARTE provides foundations
for model-based description of real time and embedded systems.

2.2 Time Petri Net (TPN) and Time Transition System (TTS)
Time Petri Nets [14] extends Petri Nets with timing constraints on the firing of transitions.
Here we use the formal definition of TPN from [3] to explain its syntax and semantics.

I Definition 1 (Time Petri Net). A TPN T is a tuple 〈P, T, •(.), (.)•,M0, (α, β)〉, where:

1 http://projects.laas.fr/tina/

N. Ge, M. Pantel, B. Berthomieu 3

P = {p1, p2, ..., pm} is a finite set of places;
T = {t1, t2, ..., tn} is a finite set of transitions;
•(.) ∈ (NP)T is the backward incidence mapping;
(.)• ∈ (NP)T is the forward incidence mapping;
M0 ∈ NP is the initial marking;
α ∈ (Q≥0)T and β ∈ (Q≥0 ∪ ∞)T are respectively the earliest and latest firing time
constraints for transitions.

Following the definition of enabledness in [1], a transition ti is enabled in a marking
M iff M ≥ •(ti) and α(ti) ≤ vi ≤ β(ti) (vi is the elapsed time since ti was last enabled).
There exists a global synchronized clock in the whole TPN, and α(ti) and β(ti) correspond
to the local clock of ti. The local clock of each transition is reset to zero once the transition
becomes enabled. The predicate ↑ Enabled(tk,M, ti) is satisfied if tk is enabled by the firing
of transition ti from marking M , and false otherwise.

↑ Enabled(tk,M, ti) = (M − •(ti) + (ti)• ≥ •(tk))∧ ((M − •(ti) < •(tk))∨ (tk = ti)) (1)

I Example 2 (Time Petri Net). An example of Time Petri Net (presented in Figure 1) models
concurrent execution of a process. Compared to Petri Nets, the transitions in Time Petri net
are extended with a time constraint that controls their firing time. Pinit is the place holding
an initial token. Through the fork transition Tfork, concurrent task1 (Texe1) and task2
(Texe2) start at the same time within respective execution time [11,15] and [19,27]. The time
constraint uses a local clock which starts once a transition becomes enabled. Until meeting
join state (Pjoin), the system will exit (Texit) or restart (Trestart) the whole execution
according to the running time.

[0,0] [3,10]

2

[11,15]

[19,27]Pinit Tfork

Task2_running

Task1_running

Task2_ends

Task1_ends

Pjoin Texit Pexit

]10, ∞]

2

Trestart

Figure 1 Time Petri Net Example

Time Petri Nets are widely used to formally capture the temporal behavior of concurrent
real-time systems due to their easy-to-understand graphical notation and the available
analysis tool TINA. Time Petri Nets are suitable for correctness, dependability, performance
and timing analysis in early stages of design.

The formalism of TPN that is extended with arithmetic guards and actions that manipulate
this set of variables is called Time Transition Systems (TTS). Each transition in a TTS has
two associated functions:

Pre represents an arithmetic guard: the transition will be enabled only when the TPN’s
marking and time preconditions and the guard are satisfied.
Act is the performed actions when the transition is fired. It can modify the variables that
are used to compute the guards.

An example of TTS extends Example 2 by adding Pre(Texe1) ={Ptask2=0} and Act(Texe1)
= {X=10} on transition Texe1. When the number of token in the place Ttask2 is zero, Texe1
can be fired. Once Texe1 is fired, variable X is set to 10.

4 WCET Analysis for Safety-Critical Real-Time System

2.3 TINA (TIme petri Net Analyser)
TINA [2] is a toolset for the editing and analysis of Petri net, TPN and TTS. In addition
to the usual editing and analysis facilities of such environments (computation of marking
reachability sets, coverability trees, semi-flows), Tina offers various abstract state space
constructions that preserve specific classes of properties of the concrete state spaces of the
nets. These classes of properties may be general properties (reachability properties, deadlock
freeness, liveness), specific properties relying on the linear structure of the concrete space
state (linear time temporal logic properties, test equivalence), or properties relying on its
branching structure (branching time temporal logic properties, bi-simulation).

3 Modelling Software and Hardware

3.1 Software modelling
UML Activity diagram is used to specify software’s behavior. The basic behavioral units are
Action and Control Flow Elements. An action is a 5-tuple of (I ,C ,T ,R,D), where

I refers to its identification, derived from its behavior semantics. Only two actions with
exactly the same behavior can have the same identification.
C refers to its context. The actions having the same behavior but different context should
be labelled with the same identification but different context.
T refers to time measure, representing the minimum and maximum execution time.
R refers to resource usages. The execution of an action goes on only when its required
resources are ready and allocated to it. More precisely, the resource usage is a set of
<R,N>, indicating that for a given resource type R, an action requires N of its available
instances. In this work, the resource usage represents the interaction between the software
scheduling and the hardware platform.
D refers to data section. It contains inputs, outputs and data manipulation description.

For complex systems, the software structure and the interaction between components are
modelled by UML Composite Structure diagram. The components are modelled by Part,
the interfaces of data interchange by Port, and the communication paths of data flow by
Connector.

3.2 Hardware modelling
MARTE is used to describe the hardware’s architecture and its internal behavior. Each
hardware part is modelled by a set of Resource and corresponding Scheduler. A resource is a
3-tuple of (I, S, Q), where I refers to its identification, designating the type of the resource.
S is the scheduler used to answer to resource requirements. A scheduler is specified with two
aspects: scheduling algorithm and whether it allows pre-emption. Q is the instance quantity
of the given resource.
Example 1 . A 4-core CPU with internal high speed bus and L3 cache is modelled in Table 1.
The method specifies all the hardware elements as schedulers. At TTS model checking level,
no matter how complex a scheduling algorithm is, it does not expand the model checking
state space. Meanwhile, as a scheduler allows to disable some possible enabling transitions,
the introduction of a scheduler will also reduce the state space. A set of classic scheduling
algorithms, like FIFO/LO, RM, EDF will be provided in the end. The advantage of this
segregation is that all the complexity of hardware platform is hidden in specific schedulers,
by using the Pre and Act functions of TTS. For this reason, they can be easily reused.

N. Ge, M. Pantel, B. Berthomieu 5

Table 1 Hardware modelling Example

Identification Scheduler Quantity

CPU_CORE (Round Robin/Pre-emptive) 4

INT_BUS (Rate Monotonic/Non Pre-emptive) 1

L3_CACHE (FIFO/Non Pre-emptive) 1

4 Modelling Granularity through Development Process

The proposed method is aimed at integrating WCET analysis through the whole development
process, respectively in the phases of early design, detailed design and implementation. The
refinement activities are depicted in Figure 2. The software and hardware are gradually
refined, leading to a more precise estimation of WCET, and a more complex computation.
This method allows to gradually refine the software, and to alter the modelling granularity
to balance between the accuracy and computability. As shown in Figure 2, the software
is refined with respect to the granularities of functional segment, programming language
statement block and machine code block. The hardware is not mandatory for the early
design phase, then is refined with respect to the requirements of the software. We detail the
refinement methods for each phase in this section. To perform the analysis, both software
and hardware are translated to the TTS model. The translation and analysis activities will
be presented in Section 5.3.

Software
Functional segment

Hardware
(not mandatory)

TTS

Software
Statement block

Hardware
ALU memory cache

TTS

Software
Machine code

Hardware
Specific features

TTS

Early design Detailed design Implementation

refinement

refinement

refinement

refinement

translation translation translation

Complexity of analysis

WCET precision

Figure 2 Modelling Granularity and Design Refinement through Development Process

4.1 Early design Phase
In the phase of early design, it is common that the target hardware platform is not yet available.
Thus the main objective is to eliminate the less efficient software design with respect to
WCET. The sufficient granularity for software is functional segment, which represents what
to do but rarely how to do using the Action node in UML Activity diagram. In this phase,
the time analysis is a draft measurement. The modelling principles in the early design phase
are given hereafter.

6 WCET Analysis for Safety-Critical Real-Time System

The resource usage is optional if the information on the hardware platform is not yet
available, or it may only specify the processor distribution. For example, if the target
platform is based on multiprocessor, the early design can specify the processors in charge
of forked threads using the Fork and Join nodes in the UML Activity diagram.
The specification of processor type, memory and buses are not mandatory.
The data section in the software design is optional, only the data for computing the loop
bound is specified. If the loop bound depends on the input data, then an estimated upper
bound shall be provided in the requirements.

4.2 Detailed Design Phase

The detailed design phase specifies how the system responds to the requirements. For the
software, the granularity turns from functional segments to programming choices that take
into account strategies of different efficiency. For example, a search algorithm using breadth-
first or depth-first strategy within the same execution context may result in completely
different WCET. In the phase of detailed design, the Action node in the UML Activity diagram
specifies a programming language statement block. This is similar to the structure-based
approach [19], where the time measurement is calculated using the number of executable
statements in the block. At this granularity, the method follows the principles hereafter.

The data section is mandatory to provide a precise loop bound. Note that the model
checking technique is not very scalable for programs embracing complex arithmetic. A
commonly used method is to estimate some key time constraints, such as the bound of
loop, using abstract interpretation [21]. The abstract interpretation is applied on each
action of the activity to compute their time bound.
The resource usage relies on a more refined hardware. Generally, an assignment statement
needs memory access; an expression statement requires the usage of ALU (Arithmetic
Logic Unit), or more precisely the integer and floating-point units; several consecutive
statements require cache access.

At this granularity, splitting sequential statement blocks (no control flow element involved)
into actions is an important issue. An action that depends on a large number of statements,
is likely programmed using more local variables than the interface ones (input/output of the
action). For the action with less inputs, its state space for the combination of input value is
smaller. This improves the method’s computability. For the action with more inputs, the
information about resource usage is less accurate. This decreases the accuracy. We give an
example to illustrate the splitting strategy.

I Example 3. In Figure 3(a) thread A is implemented by [c = a+ b; d = c+ d;] and thread
B by [e = a+ b; f = c+ d;]. Both share the same processor with two ALUs. Compared to
Figure 3(a), the split implemented by Figure 3(b) is less concurrent with respect to the ALU
usage, and then its estimated time bound is more accurate.

We’ve shown that two options are available to compromise the between the accuracy and
computability. To guarantee a rapid estimation, the statements are re-organized to minimize
the total number of interface variables of the whole system. To get a relative more accurate
estimation, the statements are re-organized to minimize the total number of common resource
usage category in the same action.

N. Ge, M. Pantel, B. Berthomieu 7

c=a+b;

d=c+d;

e=a+b;

f=c+d;

c=a+b; e=a+b;

d=c+d; f=c+d;

(a) Sequential Statements

A

A B

B

(b) Splited Sequential Statements

Figure 3 Example of Splitting Sequential Statements

4.3 Implementation Phase

To analyse WCET in the phase of implementation, integrating both software and hardware
is indispensable. The specific features of the hardware shall be modelled in detail, which
requires precise refinement of its dependant schedulers. The granularity of software is of
machine code level. The actions in activity specify a block of machine code. The analysis
method is similar to the phase of detailed design. The precision of WCET is improved thanks
to detailed modelling of the processors, such as the cache for data and instructions, and the
pipeline for instructions.

5 WCET Analysis

The system software and hardware are modelled using UML-MARTE. Now this model will
translated to the TTS model to be analysed by using the TINA model checker. The modelling,
translation and checking methods have been integrated and implemented in our UML-MARTE
model checker prototype. In this section, we first present this tool (see Section 5.1), and then
illustrate the WCET verification and computation method using model checking in a case
study (see Sections 5.2 and 5.3).

5.1 UML-MARTE Model Checker

The UML-MARTE Model Checker [5, 11] is aimed at specifying system design and verifying
the real-time requirements against the design model. The framework of our prototype is
depicted in Figure 4. The UML-MARTE design model is mapped to the TPN model (TTS in
this work) [8]. The real-time requirements (WCET in this work) are specified using real-time
property patterns and are then translated to TPN/TTS observers [7]. After optimizing
the TPN/TTS model using real-time property-specific reduction method [6], the reduced
TPN/TTS integrated with observers are checked against the property using LTL (Linear
Temporal Logic) [18], CTL (Computation Tree Logic) [13], or Marking Formula and the
TINA model checker. When a safety property is falsifiable, counterexamples and diagnostics
feedback are generated using automatic fault localization method [9, 10] to ease and accelerate
the debug.

5.2 Verification of WCET

The verification is based on the In order to illustrate the computation of WCET using model
checking in our framework, we take a simple software model at the early design phase as

8 WCET Analysis for Safety-Critical Real-Time System

TPN

Reduced
Observer TPN MMC

TPN Model CheckingTag Property
Pattern Result

Architecture/
Behavior
Mapping

Observer TPN
Generation

Iteration
Tag

Property Pattern
Result

Real-Time Property
Specification

Verification
Result

Computation

Real-Time Property
Verification Result

Feedback
Generation

System Model
Real-Time

Requirement
Architecture

Model
Behavior

Model

UML Real-Time Software Model

Timing Property
Pattern

Timing Property
Pattern

Real-Time
Property Patterns

1

5

3

2

3

3

Observer
TPN

Tag Property
Pattern Result
Interpretation

3

TPN
Reduction

4

Figure 4 UML-MARTE Model Checker

the example, without considering the hardware modelling (as the hardware modelling is not
mandatory in the early phase), see Example 4.

I Example 4. The UML activity diagram in Figure 5 specifies the behaviour of a software
at the early phase of development. The time constraints of actions are specified using the
«TimeProcessing» stereotype of MARTE profile. The WCET constraint of this system is the
value of WCET is bounded in an expected value 50.

<<TimeProcessing>>

Start

<<TimeProcessing>>

End

<<TimeProcessing>>

Left A

<<TimeProcessing>>

Left B

<<TimeProcessing>>

Right A

<<TimeProcessing>>

Right B

<<TimeProcessing>>

Left C

<<TimeProcessing>>

Right C

[left < 2] [right < 2]

 left = left + 1

 left = 0;
right= 0;

 right = right + 1

<<TimeProcessing>>

Start

<<TimeProcessing>>

End

<<TimeProcessing>>

Left A

<<TimeProcessing>>

Left B

<<TimeProcessing>>

Right A

<<TimeProcessing>>

Right B

<<TimeProcessing>>

Left C

<<TimeProcessing>>

Right C

[left < 2] [right < 2]

 left = left + 1

 left = 0;
right= 0;

 right = right + 1

TimeProcessing value:
Start : [2, 8] End : [1, 4]
Left A: [3, 5] Right A: [4, 8]
Left B: [1, 7] Right B: [2, 6]
Left C: [2, 6] Right C: [3, 7]

Figure 5 UML Software Model of the WCET Example

N. Ge, M. Pantel, B. Berthomieu 9

The UML-MARTE design model is translated to the TTS verification model, to which the
property observer in TPN generated from the WCET property pattern is attached. Figure 6
shows the TTS model with WCET observer. To reduce the state space of model checking, we
use marking abstraction

p0

Start[2,8]

t3

[0,0] p8

t4

[0,0]

p9 p10

Left C

[2,6]

p7

Right C

[3,7]

init

a tester1 b tester2

[0,0]

[0,0] p11

End [1,4]
overflow1

[50,50]

overflow2

[50,50]

Left B

[1,7]

Right B

[2,6]

Right A

[4,8]

p6p1

Left A

[3,5]

Act: left = left + 1;
Act: right = right + 1;

left < 2; Pre: right < 2;

Act: left = 0;
right= 0;

Observer

Pre: left < 2;

Figure 6 TTS Model of the WCET Example

The assertion to check the property P of WCET <= 50 is defined as Formula 2, where A
is the state space of the system and observer, N(A) is the number of marking of A, and the
WCET predicate P is ¬(overflow1 ∨ overflow2).

N(¬(overflow1 ∨ overflow2) ∧ A) = N(A) (2)

This property is interpreted by the occurrence modifier: Always, the predicate: Maximum
time interval between Init and event, and the scope modifier: Global. An occurrence modifier
can be Exist, Absent, and Always. It is used together with predicates and scopes to assess
a real-time property. Assume that in the state class graph, N(P) is the number of states
that match the predicate P , N(A) is the number of states that match the scope Always,
and N(P ∧ A) is the number of states that match both the predicate and the scope Always.
According to the semantics of Exist, Absent, Always, we have the following assertions:

Exist predicate in scope:
{

N(P ∧ A) ≥ 1 if N(A) > 0;
True if N(A) = 0.

Absent predicate in scope: N(P ∧ A) = 0
Always predicate in scope: N(P ∧ A) = N(A)

For the WCET in the example, the assertion of Always predicate in scope is satisfied, and
then the property of WCET is guaranteed by the design.

5.3 Computation of WCET Bound Value
If WCET < t is true, then the WCET might be lower than t. We use a binary search algorithm
to compute the bound value.

10 WCET Analysis for Safety-Critical Real-Time System

If WCET < t
2 is true, the bound value must be in the time interval [1, t

2], otherwise, the
bound value must be in the time interval [t

2 , t]. According to these results, the next search
will be performed on one of them until we find the exact WCET value.

K-ary searching algorithm follows the same principle: in each iteration, the original
range [a, b] will be divided into K sections: [a, a+(b-a)/K], [a+(b-a)/K, a+2(b-a)/K], ...,
[a+(K-1)(b-a)/K, b]. To simplify the discussion, we call the minimal value in each interval
as vmin, and call the maximal value as vmax. Among these K sections, only one section
will have the model checking result such that WCET < vmin is false and WCET < vmax is
true. Therefore the new range for the next iteration is [vmin, vmax]. If vmax-vmin = 1, the
iteration is over and the WCET is vmax. For generalization, the initial range is always [0,
N], where N is the predefined lower(upper) bound that should be large enough to cover all
quantitative property’s value in practice.

A concern about this search method is the risk introduced by cavity intervals. An example
is given to explain this concern (see Example 5).

I Example 5 (Cavity Discussion). The execution time of a given system is specified as two
time intervals [2,8] and [12,18] (see Figure 7). The property P (WCET < 20) is proved as
true. Now the exact bound value of WCET is required, which is 18.

2 181280 20

1 2

10 15

0

Figure 7 Cavity Discussion Example

Binary search algorithm is used to compute this exact bound value. Firstly, in the
assertion WCET < t, t is set to be 10, which falls in the cavity [8,12]. Since there exists
execution time [12,18], the transition Overflow in the observer (Figure 6) will fire. The
checking for WCET < 10 is thus false. Then we need to check WCET < 15, whose checking
result is also false. Then we try WCET < 18, which is still false. At last we try WCET < 19,
whose result is true. The exact bound value is thus 18.

This example shows that the search algorithm using observers in model checking is sound
even in the presence of cavities in the specified execution time.

6 Related Works

Metzner shows in [15] that model checking is adequate and, furthermore, can improve the
results of WCET analysis. Because a model checker traverses the entire state space of a
model and therefore returns a concrete path in the program, better results can be obtained
than the other methods, because of their abstract nature.

Most of the works are meant to apply model checking in the program analysis. In [4],
Dalsgaard et. al. present a method based on model checking and static analysis, that
determines WCET for programs running on platforms featuring caching and pipelining. The
method constructs a UPPAAL model of the program and then combines this model with
the UPPAAL model of the hardware platform. In [12], Gu and Shin proposes to model
the software and hardware in Timed Petri Nets, and then translate them into Automata
and use model checker UPPAAL to analyse the model. Compared with these 2 work, our
method allows the model designer to construct the software and hardware models at UML

N. Ge, M. Pantel, B. Berthomieu 11

level and makes the formal activities transparent to the user. In addition, our method is
integrated in the framework of UML-MARTE model checker, allowing refining the software
design according to the WCET analysis results during the development process.

7 Conclusion and Further Perspectives

This paper presents a flexible analysis method for Worst-Case Execution Time (WCET) using
UML-MARTE Model Checker, aiming at detecting wrong software designs and refine correct
ones with respect to WCET. This method uses UML-MARTE as the modelling language and
Time Transition System (TTS) as the verification language. The software is modelled by
UML Activity and Composite Structure diagrams using MARTE profile, and the hardware
is modelled by the Resource and Scheduler packages in MARTE. This method allows to
gradually refine the software in different phases of development process, and to alter the
modelling granularity to balance the accuracy and the computability of WCET, making it
flexible. We show the design and analysis process using the framework of UML-MARTE
model checker on the WCET use case at the early design phase.

The modelling of hardware needs to be refined using the MARTE profile. The translation
from UML-MARTE to TTS for the part of hardware needs to be completed.

References
1 Bernard Berthomieu and Michel Diaz. Modeling and verification of time dependent systems

using time petri nets. IEEE transactions on software engineering, 17(3):259, 1991.
2 Bernard Berthomieu*, P-O Ribet, and François Vernadat. The tool tina–construction of

abstract state spaces for petri nets and time petri nets. International Journal of Production
Research, 42(14):2741–2756, 2004.

3 Franck Cassez and Olivier H Roux. Structural translation from time petri nets to timed
automata. Journal of Systems and Software, 79(10):1456–1468, 2006.

4 Andreas E Dalsgaard, Mads Chr Olesen, Martin Toft, René Rydhof Hansen, and Kim Guld-
strand Larsen. Metamoc: Modular execution time analysis using model checking. In
OASIcs-OpenAccess Series in Informatics, volume 15. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2010.

5 Ning Ge and Marc Pantel. Time properties verification framework for uml-marte safety crit-
ical real-time systems. In European Conference on Modelling Foundations and Applications,
pages 352–367. Springer, 2012.

6 Ning Ge and Marc Pantel. Real-time property specific reduction for time petri net. In
International Workshop on Petri Nets and Software Engineering (PNSE@PetriNets), pages
165–179, 2014.

7 Ning Ge, Marc Pantel, and Xavier Crégut. Formal specification and verification of task time
constraints for real-time systems. In International Symposium On Leveraging Applications
of Formal Methods, Verification and Validation, pages 143–157. Springer, 2012.

8 Ning Ge, Marc Pantel, and Xavier Crégut. Time properties dedicated transformation from
uml-marte activity to time transition system. ACM SIGSOFT Software Engineering Notes,
37(4):1–8, 2012.

9 Ning Ge, Marc Pantel, and Xavier Crégut. Automated failure analysis in model checking
based on data mining. In International Conference on Model and Data Engineering, pages
13–28. Springer, 2014.

10 Ning Ge, Marc Pantel, and Xavier Crégut. Probabilistic failure analysis in model validation
& verification. In International Conference on Embedded Real Time Software and Systems
(ERTS), 2014.

12 WCET Analysis for Safety-Critical Real-Time System

11 Ning Ge, Marc Pantel, and Xavier Crégut. A uml-marte temporal property verification tool
based on model checking. In International Conference on Embedded Real Time Software
and Systems (ERTS), 2014.

12 Zonghua Gu and Kang G Shin. An integrated approach to modeling and analysis of
embedded real-time systems based on timed petri nets. In Distributed Computing Systems,
2003. Proceedings. 23rd International Conference on, pages 350–359. IEEE, 2003.

13 Thilo Hafer and Wolfgang Thomas. Computation tree logic ctl* and path quantifiers in the
monadic theory of the binary tree. In International Colloquium on Automata, Languages,
and Programming, pages 269–279. Springer, 1987.

14 Philip Merlin and David Farber. Recoverability of communication protocols-implications
of a theoretical study. IEEE transactions on Communications, 24(9):1036–1043, 1976.

15 Alexander Metzner. Why model checking can improve wcet analysis. In International
Conference on Computer Aided Verification, pages 334–347. Springer, 2004.

16 Object Management Group, Inc. OMG Unified Modeling LanguageTM (OMG UML), Su-
perstructure, February 2009.

17 Object Management Group, Inc. UML Profile for MARTE: Modeling and Analysis of
Real-Time Embedded Systems Version 1.0, November 2009.

18 Amir Pnueli. The temporal logic of programs. In Foundations of Computer Science, 1977.,
18th Annual Symposium on, pages 46–57. IEEE, 1977.

19 Alan C. Shaw. Reasoning about time in higher-level language software. IEEE Transactions
on Software Engineering, 15(7):875–889, 1989.

20 Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,
David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra,
Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenström. The
worst-case execution time problem - overview of methods and survey of tools. ACM Trans-
actions on Embedded Computing Systems (TECS), 7(3), 2008.

21 Reinhard Wilhelm and Björn Wachter. Abstract interpretation with applications to tim-
ing validation. In International Conference on Computer Aided Verification, pages 22–36.
Springer, 2008.

	Introduction
	Technical Background
	UML and MARTE
	Time Petri Net (TPN) and Time Transition System (TTS)
	TINA (TIme petri Net Analyser)

	Modelling Software and Hardware
	Software modelling
	Hardware modelling

	Modelling Granularity through Development Process
	Early design Phase
	Detailed Design Phase
	Implementation Phase

	WCET Analysis
	UML-MARTE Model Checker
	Verification of WCET
	Computation of WCET Bound Value

	Related Works
	Conclusion and Further Perspectives

