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Abstract We conduct a thorough study of photomet-

ric stereo under nearby point light source illumination,

from modeling to numerical solution, through calibra-

tion. In the classical formulation of photometric stereo,

the luminous �uxes are assumed to be directional, which

is very di�cult to achieve in practice. Rather, we use

light-emitting diodes (LEDs) to illuminate the scene

to be reconstructed. Such point light sources are very

convenient to use, yet they yield a more complex photo-

metric stereo model which is arduous to solve. We �rst

derive in a physically sound manner this model, and

show how to calibrate its parameters. Then, we dis-

cuss two state-of-the-art numerical solutions. The �rst
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one alternatingly estimates the albedo and the normals,

and then integrates the normals into a depth map. It

is shown empirically to be independent from the ini-

tialization, but convergence of this sequential approach

is not established. The second one directly recovers the

depth, by formulating photometric stereo as a system of

nonlinear partial di�erential equations (PDEs), which

are linearized using image ratios. Although the sequen-

tial approach is avoided, initialization matters a lot and

convergence is not established either. Therefore, we in-

troduce a provably convergent alternating reweighted

least-squares scheme for solving the original system of

nonlinear PDEs. Finally, we extend this study to the

case of RGB images.

Keywords 3D-reconstruction · Photometric stereo ·
Point light sources · Variational methods · Alternating
reweighted least-squares.

1 Introduction

3D-reconstruction is one of the most important goals

of computer vision. Among the many techniques which

can be used to accomplish this task, shape-from-shading

[28] and photometric stereo [64] are photometric tech-

niques, as they use the relationship between the gray or

color levels of the image, the shape of the scene, sup-

posedly opaque, its re�ectance and the luminous �ux

that illuminates it.

Let us �rst introduce some notations that will be

used throughout this paper. We describe a point x on

the scene surface by its coordinates [x, y, z]> in a frame

originating from the optical center C of the camera,

such that the plane Cxy is parallel to the image plane

and the Cz axis coincides with the optical axis and

faces the scene (cf. Fig. 1). The coordinates [u, v]> of a
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point p in the image (pixel) are relative to a frame Ouv

whose origin is the principal point O, and whose axes

Ou and Ov are parallel to Cx and Cy, respectively. If f

refers to the focal length, the conjugation relationship

between x and p is written, in perspective projection:
x =

z

f
u,

y =
z

f
v.

(1.1)
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n(x)

s(x)

xs

ns

p

O

C

u

v

x
y

z

θ
f

Fig. 1 Schematic representation of the geometric setup. A
point x = [x, y, z]> ∈ R3 on the scene surface and a pixel p =
[u, v]> ∈ R2 in the image plane are conjugated according to
Eq. (1.1). Eq. (2.1) states that, when the scene is illuminated
by a LED located in xs ∈ R3, the gray level I(p) of the
pixel p conjugated to x is a function of the angle between the
lighting vector s(x) and the normal n(x) to the surface in x
(illuminance), of the angle θ between the principal direction
ns of the LED and s(x) (anisotropy), of the distance ‖x −
xs‖ between the surface point and the light source location
(inverse-of-square fallo�), and of the albedo in x (Lambertian
re�ectance).

The 3D-reconstruction problem consists in estimat-

ing, in each pixel p of a part Ω of the image domain, its

conjugate point x in 3D-space. Eq. (1.1) shows that it

su�ces to �nd the depth z to determine x = [x, y, z]
>

from p = [u, v]
>
. The only unknown of the problem is

thus the depth map z, which is de�ned as follows:

z : Ω ⊂ R2 → R+

p = [u, v]> 7→ z(p).
(1.2)

We are interested in this article in 3D-reconstruction

of Lambertian surfaces by photometric stereo. The re-

�ectance in a point of such a surface is completely char-

acterized by a coe�cient ρ, called albedo, which is 0

if the point is black and 1 if it is white. Photometric

stereo is nothing else than an extension of shape-from-

shading: instead of a single image, the former uses m >
3 shots Ii, i ∈ {1, . . . ,m}, taken from the same an-

gle, but under varying lighting. Considering multiple

images allows to circumvent the di�culties of shape-

from-shading: photometric stereo techniques are able

to unambiguously estimate the 3D-shape as well as the

albedo i.e., without resorting to any prior.

A parallel and uniform illumination can be charac-

terized by a vector s ∈ R3 oriented towards the light

source, whose norm is equal to the luminous �ux den-

sity. We call s the lighting vector. For a Lambertian

surface, the classical modeling of photometric stereo is

written, in each pixel p ∈ Ω, as the following system1:

Ii(p) = ρ(x) si · n(x), i ∈ {1, . . . ,m}, (1.3)

where Ii(p) denotes the gray level of p under a paral-

lel and uniform illumination characterized by the light-

ing vector si, ρ(x) denotes the albedo in the point x

conjugate to p, and n(x) denotes the unit-length out-

going normal to the surface in this point. Since there

is a one-to-one correspondence between the points x

and the pixels p, we write for convenience ρ(p) and

n(p), in lieu of ρ(x) and n(x). Introducing the nota-

tion m(p) = ρ(p)n(p), System (1.3) can be rewritten

in matrix form:

I(p) = Sm(p), (1.4)

where vector I(p) ∈ Rm and matrix S ∈ Rm×3 are

de�ned as follows:

I(p) =

 I
1(p)
...

Im(p)

 and S =

 s
1>

...

sm>

 . (1.5)

As soon as m > 3 non-coplanar lighting vectors are

used, matrix S has rank 3. The (unique) least-squares

solution of System (1.4) is then given by

m(p) = S† I(p), (1.6)

where S† is the pseudo-inverse of S. From this solution,

we easily deduce the albedo and the normal:

ρ(p) = ‖m(p)‖ and n(p) =
m(p)

‖m(p)‖
. (1.7)

The normal �eld estimated in such a way must even-

tually be integrated so as to obtain the depth map,

knowing that the boundary conditions, the shape of

domain Ω as well as depth discontinuities signi�cantly

complicate this task [55].

To ensure lighting directionality, as is required by

Model (1.3), it is necessary to achieve a complex op-

tical setup [45]. It is much easier to use light-emitting

diodes (LEDs) as light sources, but with this type of

light sources, we should expect signi�cant changes in

the modeling, and therefore in the numerical solution.

The aim of our work is to conduct a comprehensive and

detailed study of photometric stereo under point light

source illumination such as LEDs.

1 The equalities (1.3) are in fact proportionality relation-
ships: see the expression (2.12) of I(p).
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Related works. Modeling the luminous �ux emitted by

a LED is a well-studied problem, see for instance [46].

One model which is frequently considered in computer

vision is that of nearby point light source. This model

involves an inverse-of-square law for describing the at-

tenuation of lighting intensity with respect to distance,

which has long been identi�ed as a key feature for solv-

ing shape-from-shading [32] and photometric stereo [12].

Attenuation with respect to the deviation from the prin-

cipal direction of the source (anisotropy) has also been

considered [7].

If the surface to reconstruct lies in the vicinity of a

plane, it is possible to capture a map of this attenua-

tion using a white planar reference object. Conventional

photometric stereo [64] can then be applied to the im-

ages compensated by the attenuation maps [3,40,61].

Otherwise, it is necessary to include the attenuation co-

e�cients in the photometric stereo model, which yields

a nonlinear inverse problem to be solved.

This is easier to achieve if the parameters of the illu-

mination model have been calibrated beforehand. Lots

of methods exist for estimating a source location [1,4,

11,17,22,54,59,62]. Such methods triangulate this lo-

cation during a calibration procedure, by resorting to

specular spheres. This can also be achieved online, by

introducing spheres in the scene to reconstruct [37].

Calibrating anisotropy is a more challenging problem,

which was tackled recently in [48,67] by using images of

a planar surface. Some photometric stereo methods also

circumvent calibration by (partly or completely) auto-

matically inferring lighting during the 3D-reconstruction

process [36,37,38,44,51,57].

Still, even in the calibrated case, designing numeri-

cal schemes for solving photometric stereo under nearby

point light sources remains di�cult. When only two im-

ages are considered, the photometric stereo model can

be simpli�ed using image ratios. This yields a quasi-

linear PDE [42,43] which can be solved by provably

convergent front propagation techniques, provided that

a boundary condition is known. To improve robustness,

this strategy has been adapted to the multi-images case

in [38,39,41,56], using variational methods. However,

convergence guarantees are lost. Instead of consider-

ing such a di�erential approach, another class of meth-

ods [2,8,13,29,34,47,51,69] rather modify the classical

photometric stereo framework [64], by alternatingly es-

timating the normals and the albedo, integrating the

normals into a depth map, and updating the lighting

based on the current depth. Yet, no convergence guar-

antee does exist. A method based on mesh deformation

has also been proposed in [68], but convergence is not

established either.

Contributions. In contrast to existing works which focus

either on modeling, calibrating or solving photometric

stereo with near point light sources such as LEDs, the

objective of this article is to propose a comprehensive

study of all these aspects of the problem. Building upon

our previous conference papers [56,57,58], we introduce

the following innovations:

• We present in Section 2 an accurate model for pho-

tometric stereo under point light source illumina-

tion. As in recent works [38,39,42,43,41,47,48,67],

this model takes into account the nonlinearities due

to distance and to the anisotropy of the LEDs. Yet,

it also clari�es the notions of albedo and of source in-

tensity, which are shown to be relative to a reference

albedo and to several parameters of the camera, re-

spectively. This section also introduces a practical

calibration procedure for the location, the orienta-

tion and the relative intensity of the LEDs.

• Section 3 reviews and improves two state-of-the-

art numerical solutions in several manners. We �rst

modify the alternating method [2,8,13,29,34,47,51,

69] by introducing an estimation of the shape scale,

in order to recover the absolute depth without any

prior. We then study the PDE-based approach which

employs image ratios for eliminating the nonlinear-

ities [38,39,41,56], and empirically show that local

minima can be avoided by employing an augmented

Lagrangian strategy. Nevertheless, neither of these

state-of-the-art methods is provably convergent.

• Therefore, we introduce in Section 4 a new, prov-

ably convergent method, inspired by the one re-

cently proposed in [57]. It is based on a tailored

alternating reweighted least-squares scheme for ap-

proximately solving the non-linearized system of PDEs.

Following [58], we further show that this method

is easily extended in order to address shadows and

specularities.

• In Section 5, we build upon the analysis conducted

in [56] in order to tackle the case of RGB-valued

images, before concluding and suggesting several fu-

ture research directions in Section 6.

2 Photometric Stereo under Point Light Source

Illumination

Conventional photometric stereo [64] assumes that the

primary luminous �uxes are parallel and uniform, which

is di�cult to guarantee. It is much easier to illuminate

a scene with LEDs.
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Keeping this in mind, we have developed a pho-

tometric stereo-based setup for 3D-reconstruction of

faces, which includes m = 8 LEDs2 located at about

30 cm from the scene surface (see Fig. 2-a). The face

is photographed by a Canon EOS 7D camera with fo-

cal length f = 35 mm. Triggering the shutter in burst

mode, while synchronically lighting the LEDs, provides

us with m = 8 images such as those of Figs. 2-b, 2-c

and 2-d. In this section, we aim at modeling the forma-

tion of such images, by establishing the following result:

If the m LEDs are modeled as anisotropic (imperfect

Lambertian) point light sources, if the surface is Lam-

bertian and if all the automatic settings of the camera

are deactivated, then the formation of the m images can

be modeled as follows, for i ∈ {1, . . . ,m}:

Ii(p) = Ψ i ρ(p)

[
nis ·
(
x−xis

)
‖x−xis‖

]µi{
(xis−x) · n(p)

}
+

‖xis−x‖3
,

(2.1)

where:

• Ii(p) is the �corrected gray level� at pixel p conju-

gate to a point x located on the surface (cf. Eq. (2.12));

• Ψ i is the intensity of the i-th source multiplied by an

unknown factor, which is common to all the sources

and depends on several camera parameters and on

the albedo ρ0 of a Lambertian planar calibration pat-

tern (cf. Eq. (2.14));

• ρ(p) is the albedo of the surface point x conjugate

to pixel p, relatively to ρ0 (cf. Eq. (2.22));

• nis ∈ S2 ⊂ R3 is the (unit-length) principal direction

of the i-th source, xis ∈ R3 its location (cf. Fig. 2),

and µi ≥ 0 its anisotropy parameter (cf. Fig. 3 and

Eq. (2.5));

• {·}+ is the positive part operator, which accounts for

self-shadows:

{x}+ = max{x, 0}. (2.2)

In Eq. (2.1), the anisotropy parameters µi are (in-

directly) provided by the manufacturer (cf. Eq. (2.6)),

and the other LEDs parameters Ψ i, nis and xis can be

calibrated thanks to the procedure described in Sec-

tion 2.2. The only unknowns in System (2.1) are thus

the depth z of the 3D-point x conjugate to p, its (rel-

ative) albedo ρ(p) and its normal n(p). The estima-

tion of these unknowns will be discussed in Sections 3

and 4. Before that, let us show step-by-step how to de-

rive Eq. (2.1).

2 We use white LUXEON Rebel LEDs: http://www.

luxeonstar.com/luxeon-rebel-leds.

(a)

(b) (c) (d)

Fig. 2 (a) Our photometric stereo-based experimental setup
for 3D-reconstruction of faces using a Canon EOS 7D camera
(highlighted in red) and m = 8 LEDs (highlighted in blue).
The walls are painted in black in order to avoid the re�ections
between the scene and the environment. (b-c-d) Three out of
the m = 8 images obtained by this setup.

2.1 Modeling the Luminous Flux Emitted by a LED

For the LEDs we use, the characteristic illuminating

volume is of the order of one cubic millimeter. There-

fore, in comparison with the scale of a face, each LED

can be seen as a point light source located at xs ∈ R3.

At any point x ∈ R3, the lighting vector s(x) is nec-

essarily radial i.e., collinear with the unit-length vector

ur = x−xs
‖x−xs‖ . Using spherical coordinates (r, θ, φ) of x

in a frame having xs as origin, it is written

s(x) = −Φ(θ, φ)
r2

ur, (2.3)

where Φ(θ, φ) > 0 denotes the intensity of the source3,

and the 1/r2 attenuation is a consequence of the conser-

vation of luminous energy in a non-absorbing medium.

Vector s(x) is purposely oriented in the opposite di-

rection from that of the light, in order to simplify the

writing of the Lambertian model.

Model (2.3) is very general. We could project the in-

tensity Φ(θ, φ) on the spherical harmonics basis, which

allowed Basri et al. to model the luminous �ux in the

case of uncalibrated photometric stereo [6]. We could

also sample Φ(θ, φ) in the vicinity of a plane, using a

plane with known re�ectance [3,40,61].

3 The intensity is expressed in lumen per steradian (lm ·
sr−1) i.e., in candela (cd).

http://www.luxeonstar.com/luxeon-rebel-leds
http://www.luxeonstar.com/luxeon-rebel-leds
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Using the speci�c characteristics of LEDs may lead

to a more accurate model. Indeed, most of the LEDs

emit a luminuous �ux which is invariant by rotation

around a principal direction indicated by a unit-length

vector ns [46]. If θ is de�ned relatively to ns, this means

that Φ(θ, φ) is independent from φ. The lighting vector

in x induced by a LED located in xs is thus written

s(x) =
Φ(θ)

‖xs − x‖2
xs − x

‖xs − x‖
. (2.4)

The dependency on θ of the intensity Φ character-

izes the anisotropy of the LED. The function Φ(θ) is

generally decreasing over [0, π/2] (cf. Fig. 3).

(a) (b)

Fig. 3 Intensity patterns of the LEDs used (source: http:
//www.lumileds.com/uploads/28/DS64-pdf). (a) Anisotropy
function Φ(θ)/Φ0 as a function of θ. (b) Polar representation.
These diagrams show us that θ1/2 = π/3, which corresponds
to µ = 1 according to Eq. (2.6) (Lambertian source).

An anisotropy model satisfying this constraint is

that of �imperfect Lambertian source�:

Φ(θ) = Φ0 cosµ θ, (2.5)

which contains two parameters Φ0 = Φ(0) and µ > 0,

and models both isotropic sources (µ = 0) and Lamber-

tian sources (µ = 1). Model (2.5) is empirical, and more

elaborate models are sometimes considered [46], yet it

has already been used in photometric stereo [38,39,41,

42,47,48,57,67], including the case where all the LEDs

are arranged on a plane parallel to the image plane,

in such a way that ns = [0, 0, 1]> [43]. Model (2.5)

has proven itself and, moreover, LEDs manufacturers

provide the angle θ1/2 such that Φ(θ1/2) = Φ0/2, from

which we deduce, using (2.5), the value of µ:

µ = − log(2)

log(cos θ1/2)
. (2.6)

As shown in Fig. 3, the angle θ1/2 is π/3 for the LEDs

we use. From Eq. (2.6), we deduce that µ = 1, which

means that these LEDs are Lambertian. Plugging the

expression (2.5) of Φ(θ) into (2.4), we obtain

s(x) = Φ0 cosµ θ
xs − x

‖xs − x‖3
, (2.7)

where we explicitly keep µ to address the most general

case. Model (2.7) thus includes seven parameters: three

for the coordinates of xs, two for the unit vector ns, plus

Φ0 and µ. Note that ns appears in this model through

the angle θ.

In its uncalibrated version, photometric stereo al-

lows the 3D-reconstruction of a scene surface without

knowing the lighting. Uncalibrated photometric stereo

has been widely studied, including the case of nearby

point light sources [29,36,44,51,69], but if this is pos-

sible, we should rather calibrate the lighting4.

2.2 Calibrating the Luminous Flux Emitted by a LED

Most calibration methods of a point light source [1,4,

11,17,22,54,59,62] do not take into account the atten-

uation of the luminous �ux density as a function of the

distance to the source, nor the possible anisotropy of the

source, which may lead to relatively imprecise results.

To our knowledge, there are few calibration procedures

taking into account these phenomena. In [67], Xie et

al. use a single pattern, which is partially specular and

partially Lambertian, to calibrate a LED. We intend to

improve this procedure using two patterns, one spec-

ular and the other Lambertian. The specular one will

be used to determine the location of the LEDs by tri-

angulation, and the Lambertian one to determine some

other parameters by minimizing the reprojection error,

as recently proposed by Pintus et al. in [53].

Specular Spherical Calibration Pattern. The location xs
of a LED can be determined by triangulation. In [54],

Powell et al. advocate the use of a spherical mirror.

To estimate the locations of the m = 8 LEDs for our

setup, we use a billiard ball. Under perspective projec-

tion, the edge of the silhouette of a sphere is an ellipse,

which we detect using a dedicated algorithm [52]. It is

then easy to determine the 3D-coordinates of any point

on the surface, as well as its normal, since the radius

of the billiard ball is known. For each pose of the bil-

liard ball, detecting the re�ection of the LED allows

us to determine, by re�ecting the line of sight on the

spherical mirror, a line in 3D-space passing through xs.

In theory, two poses of the billiard ball are enough to

estimate xs, even if two lines in 3D-space do not neces-

sarily intersect, but the use of ten poses improves the

robustness of the estimation.

4 It is also necessary to calibrate the camera, since the 3D-
frame is attached to it. We assume that this has been made
beforehand.

http://www.lumileds.com/uploads/28/DS64-pdf
http://www.lumileds.com/uploads/28/DS64-pdf
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Lambertian Model. To estimate the principal direction

ns and the intensity Φ0 in Model (2.7), we use a Lam-

bertian calibration pattern. A surface is Lambertian if

the apparent clarity of any point x located on it is inde-

pendent from the viewing angle. The luminance L(x),

which is equal to the luminous �ux emitted per unit

of solid angle and per unit of apparent surface, is in-

dependent from the direction of emission. However, the

luminance is not characteristic of the surface, as it de-

pends on the illuminance E(x) (denoted E from French

�éclairement�), that is to say on the luminous �ux per

unit area received by the surface in x. The relationship

between luminance and illuminance5 is written, for a

Lambertian surface:

L(x) =
ρ(x)

π
E(x), (2.8)

where the albedo ρ(x) ∈ [0, 1] is de�ned as the propor-

tion of luminous energy which is reemitted i.e., ρ(x) = 1

if x is white, and ρ(x) = 0 if it is black.

The parameter ρ(x) is enough to characterize the

re�ectance6 of a Lambertian surface. In addition, the

illuminance at a point x of a (not necessarily Lamber-

tian) surface with normal n(x), lit by the lighting vector

s(x), is written7

E(x) = {s(x) · n(x)}+ . (2.9)

Focusing the camera on a point x of the scene sur-

face, the illuminance ε(p) of the image plane, at pixel

p conjugate to x, is related to the luminance L(x) by

the following �almost linear� relationship [27]:

ε(p) = β cos4 α(p)L(x), (2.10)

where β is a proportionality coe�cient characterizing

the clarity of the image, which depends on several fac-

tors such as the lens aperture, the magni�cation, etc.

Regarding the factor cos4 α(p), where α(p) is the an-

gle between the line of sight and the optical axis, it

is responsible for darkening at the periphery of the im-

age. This e�ect should not be confused with vignetting,

since it occurs even with ideal lenses [16].

With current photosensitive receptors, the gray level

J(p) at pixel p is almost proportional8 to its illumi-

nance ε(p), except of course in case of saturation. De-

noting γ this coe�cient of quasi-proportionality, and

combining equalities (2.8), (2.9) and (2.10), we get the

5 A luminance is expressed in lm ·m−2 ·sr−1 (or cd ·m−2),
an illuminance in lm ·m−2, or lux (lx).
6 The re�ectance is generally referred to as the bidirectional

re�ectance distribution function, or BRDF.
7 Negative values in the right hand side of Eq. (2.9) are

clamped to zero in order to account for self-shadows.
8 Provided that the RAW image format is used.

following expression of the gray level in a pixel p con-

jugate to a point x located on a Lambertian surface:

J(p) = γ β cos4 α(p)
ρ(x)

π
{s(x) · n(x)}+ . (2.11)

We have already mentioned that there is a one-to-one

correspondence between a point x and its conjugate

pixel p, which allows us to denote ρ(p) and n(p) in-

stead of ρ(x) and n(x). As the factor cos4 α(p) is easy

to calculate in each pixel p of the photosensitive re-

ceptor, since cosα(p) = f√
‖p‖2+f2

, we can very easily

compensate for this source of darkening and will ma-

nipulate from now on the �corrected gray level�:

I(p) =
J(p)

cos4 α(p)
= γ β

ρ(p)

π
{s(x) · n(p)}+ . (2.12)

Lambertian Planar Calibration Pattern. To estimate the

parameters ns and Φ0 in Model (2.7) i.e., to achieve

photometric calibration, we use a second calibration pat-

tern consisting of a checkerboard printed on a white pa-

per sheet, which is itself stuck on a plane (cf. Fig. 4),

with the hope that the unavoidable outliers to the Lam-

bertian model will not in�uence the accuracy of the es-

timates too much.

(a) (b)

Fig. 4 Two out of the q poses of the Lambertian planar
calibration pattern used for the photometric calibration of
the LEDs. The parts of the white cells which are used for
estimating the LEDs principal directions and intensities are
highlighted in red.

The use of a convex calibration pattern (planar, in

this case) has a signi�cant advantage: the lighting vec-

tor s(x) at any point x of the surface is purely primary

i.e., it is only due to the light source, without �bounc-

ing� on other parts of the surface of the target, provided

that the walls and surrounding objects are covered in

black (see Fig. 2-a). Thanks to this observation, we can

replace the lighting vector s(x) in Eq. (2.12) by the ex-

pression (2.7) which models the luminous �ux emitted

by a LED. From (2.7) and (2.12), we deduce the gray

level I(p) of the image of a point x located on this

calibration pattern, illuminated by a LED:

I(p) = γ β
ρ(p)

π
Φ0 cos

µθ
{(xs − x)·n(p)}+
‖xs − x‖3

. (2.13)
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If q > 3 poses of the checkerboard are used, nu-

merous algorithms exist for unambiguously estimating

the coordinates of the points xj of the pattern, for the

di�erent poses j ∈ {1, . . . , q}. These algorithms also al-

low the estimation of the q normals nj (we omit the

dependency in p of nj , since the pattern is planar),

and the intrinsic parameters of the camera9. As for the

albedo, if the use of white paper does not guarantee that

ρ(p) ≡ 1, it still seems reasonable to assume ρ(p) ≡ ρ0
i.e., to assume a uniform albedo in the white cells. We

can then group all the multiplicative coe�cients of the

right hand side of Eq. (2.13) into one coe�cient

Ψ = γ β
ρ0
π
Φ0. (2.14)

With this de�nition, and knowing that θ is the angle be-

tween vectors ns and x−xs, Eq. (2.13) can be rewritten,
in a pixel p of the set Ωj containing the white pixels

of the checkerboard in the jth pose (these pixels are

highlighted in red in the images of Fig. 4):

Ij(p) = Ψ

[
ns ·

(
xj − xs

)
‖xj − xs‖

]µ {
(xs − xj) · nj

}
+

‖xs − xj‖3
.

(2.15)

To be sure that in Eq. (2.15), Ψ is independent from

the pose j, we must deactivate all automatic settings of

the camera, in order to make β and γ constant.

Since xs is already estimated, and the value of µ is

known, the only unknowns in Eq. (2.15) are ns and Ψ .

Two cases may occur:

• If the LED to calibrate is isotropic i.e., if µ = 0, then

it is useless to estimate ns, and Ψ can be estimated

in a least-squares sense, by solving

min
Ψ

q∑
j=1

∑
p∈Ωj

[
Ij(p)− Ψ

{
(xs − xj) · nj

}
+

‖xs − xj‖3

]2
,

(2.16)

whose solution is given by

Ψ =

q∑
j=1

∑
p∈Ωj

Ij(p)

{
(xs − xj) · nj

}
+

‖xs − xj‖3

q∑
j=1

∑
p∈Ωj

[{
(xs − xj) · nj

}
+

‖xs − xj‖3

]2 . (2.17)

• Otherwise (if µ > 0), Eq. (2.15) can be rewritten

Ψ
1
µ ns︸ ︷︷ ︸
ms

· (xj−xs)=
[
Ij(p)

‖xs − xj‖3+µ

{(xs−xj)·nj}+

] 1
µ

. (2.18)

9 To perform these operations, we use the Computer Vision

toolbox from Matlab.

The least-squares estimation of vector ms de�ned

in (2.18) is thus written

min
ms

q∑
j=1

∑
p∈Ωj

[
ms · (xj−xs)−

[
Ij(p)

‖xs−xj‖3+µ

{(xs−xj) · nj}+

] 1
µ

]2
.

(2.19)

This linear least-squares problem can be solved us-

ing the pseudo-inverse. From this estimate, we easily

deduce those of parameters ns and Ψ :

ns =
ms

‖ms‖
and Ψ = ‖ms‖µ. (2.20)

In both cases, it is impossible to deduce from the es-

timate of Ψ that of Φ0, because in the de�nition (2.14)

of Ψ , the product γ β ρ0
π is unknown. However, since this

product is the same for all LEDs (deactivating all auto-

matic settings of the camera makes β and γ constant),

all the intensities Φi0, i ∈ {1, . . . ,m}, are estimated up

to a common factor.

Fig. 5 shows a schematic representation of the ex-

perimental setup of Fig. 2-a, where the LEDs parame-

ters were estimated using our calibration procedure.
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Fig. 5 Two views of a schematic representation of the ex-
perimental setup of Fig. 2-a. The camera center is located in
(0, 0, 0). A black marker characterizes the location xs of each
LED (unit mm), the orientation of a blue arrow its principal
direction ns, and the length of this arrow its intensity Φ0 (up
to a common factor).
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2.3 Modeling Photometric Stereo with Point Light Sources

If the luminous �ux emitted by a LED is described by

Model (2.7), then we obtain from (2.13) and (2.14) the

following equation for the gray level at pixel p:

I(p) = Ψ
ρ(p)

ρ0

[
ns ·(x−xs)
‖x−xs‖

]µ {(xs−x)·n(p)}+
‖xs−x‖3

. (2.21)

Let us introduce a new de�nition of the albedo relative

to the albedo ρ0 of the Lambertian planar calibration

pattern:

ρ(p) =
ρ(p)

ρ0
. (2.22)

By writing Eq. (2.21) with respect to each LED, and

by using Eq. (2.22), we obtain, in each pixel p ∈ Ω, the
system of equations (2.1), for i ∈ {1, . . . ,m}.

To solve this system, the introduction of the aux-

iliary variable m(p) = ρ(p)n(p) may seem relevant,

since this vector is not constrained to have unit-length,

but we will see that this trick loses part of its interest.

De�ning the following m vectors, i ∈ {1, . . . ,m}:

ti(x) = Ψ i

[
nis ·

(
x− xis

)
‖x− xis‖

]µi
xis − x

‖xis − x‖3
, (2.23)

and neglecting self-shadows ({x}+ = x), then System (2.1)

is rewritten in matrix form:

I(p) = T(x)m(p), (2.24)

where I(p) ∈ Rm has been de�ned in (1.5) and T(x) ∈
Rm×3 is de�ned as follows:

T(x) =

 t
1(x)>

...

tm(x)>

 . (2.25)

Eq. (2.24) is similar to (1.4). Knowing the matrix �eld

T(x) would allow us to estimate its �eld of pseudo-

inverses in order to solve (2.24), just as calculating the

pseudo-inverse of S allows us to solve (1.4). However,

the matrix �eld T(x) depends on x, and thus on the

unknown depth. This simple di�erence induces major

changes when it comes to the numerical solution, as

discussed in the next two sections.

3 A Review of Two Variational Approaches for

Solving Photometric Stereo under Point Light

Source Illumination, with New Insights

In this section, we study two variational approaches

from the literature for solving photometric stereo under

point light source illumination.

The �rst one inverts the nonlinear image formation

model by recasting it as a sequence of simpler subprob-

lems [2,8,13,29,34,47,51,69]. It consists in estimating

the normals and the albedo, assuming that the depth

map is �xed, then integrating the normals into a new

depth map, and to iterate. We show in Section 3.1 how

to improve this standard method in order to estimate

absolute depth, without resorting to any prior.

The second approach �rst linearizes the image for-

mation model by resorting to image ratios, then di-

rectly estimates the depth by solving the resulting sys-

tem of PDEs in an approximate manner [38,39,41,56].

We show in Section 3.2 that state-of-the-art solutions,

which resort to �xed point iterations, may be trapped

in local minima. This shortcoming can be avoided by

rather using an augmented Lagrangian algorithm.

As in these state-of-the-art methods, self-shadows

will be neglected throughougt this section i.e., we abu-

sively assume {x}+ = x. To enforce robustness, we sim-

ply follow the approach advocated in [10], which sys-

tematically eliminates, in each pixel, the highest gray

level, which may come from a specular highlight, as well

as the two lowest ones, which may correspond to shad-

ows. More elaborate methods for ensuring robustness

will be discussed in Section 4.

Apart from robustness issues, we will see that the

state-of-the-art methods studied in this section remain

unsatisfactory, because their convergence is not estab-

lished.

3.1 Scheme Inspired by the Classical Numerical Solu-

tion of Photometric Stereo

For solving Problem (2.24), it seems quite natural to

adapt the solution (1.6) of the linear model (1.4). To

linearize (2.24), we have to assume that matrix T(x) is

known. If we proceed iteratively, this can be made pos-

sible by replacing, at iteration (k+1), T(x) by T(x(k)).

This very simple idea has led to several numerical so-

lutions [2,8,13,29,34,47,51,69], which all require some

kind of a priori knowledge on the depth. On the con-

trary, the scheme we propose here requires none, which

constitutes a signi�cant improvement. This new scheme

consists in the following algorithm:
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Algorithm 1 (alternating approach)

1: Initialize x(0). Set k := 0.

2: loop

3: Solve Problem (2.24) in the least-squares sense

in each p ∈ Ω, replacing T(x) by T(x(k)), which

provides a new estimation of m(p):

m(k+1)(p) = T(x(k))† I(p). (3.1)

4: Deduce a new estimation of the normal n(p):

n(k+1)(p) =
m(k+1)(p)

‖m(k+1)(p)‖
. (3.2)

5: Integrate the new normal �eld n(k+1) into an up-

dated 3D-shape x(k+1), up to a scale factor.

6: Estimate this scale factor by nonlinear optimiza-

tion.

7: Set k := k + 1 as long as k < kmax.

8: ρ(p) =
∥∥∥m(kmax)(p)

∥∥∥ . (3.3)

For this scheme to be completely speci�ed, we need

to set the initial 3D-shape x(0). We use as initial guess

a fronto-parallel plane at distance z0 from the camera,

z0 being a rough estimate of the mean distance from

the camera to the scene surface.

Integration of Normals. Stages 3 and 4 of the scheme

above are trivial and can be achieved pixelwise, but

Stages 5 and 6 are trickier. From the equalities in (1.1),

and by denoting ∇z(p) = [∂uz(p), ∂vz(p)]
>
the gradi-

ent of z in p, it is easy to deduce that the (non-unit-

length) vector

n(p) =

 f ∂uz(p)

f ∂vz(p)

−z(p)− p · ∇z(p)

 (3.4)

is normal to the surface. Expression (3.4) shows that

integrating the (unit-length) normal �eld n allows to

estimate the depth z only up to a scale factor κ ∈ R,
since:

n(p) ∝

 f ∂uz(p)

f ∂vz(p)

−z(p)−p·∇z(p)

 ∝
 f ∂u(κ z)(p)

f ∂v(κ z)(p)

−(κ z)(p)−p·∇(κ z)(p)

 .
(3.5)

The collinearity of n(p) and n(p) = [n1(p), n2(p), n3(p)]
>

leads to the system{
n3(p) f ∂uz(p)+n1(p) [z(p)+p ·∇z(p)] = 0,

n3(p) f ∂vz(p)+n2(p) [z(p)+p ·∇z(p)] = 0,
(3.6)

which is homogeneous in z(p). Introducing the change

of variable z̃ = log(z), which is valid since z > 0, (3.6)

is rewritten{
[f n3(p) + un1(p)] ∂uz̃(p) + v n1(p)∂v z̃(p) = −n1(p),
u n2(p)∂uz̃(p) + [f n3(p) + v n2(p)] ∂v z̃(p) = −n2(p).

(3.7)

The determinant of this system is equal to

f n3(p) [un1(p)+v n2(p)+f n3(p)] = f n3(p) [p · n(p)] ,
(3.8)

if we denote

p = [u, v, f ]>. (3.9)

It is then easy to deduce the solution of (3.7):

∇z̃(p) = − 1

p · n(p)

[
n1(p)

n2(p)

]
. (3.10)

Let us now come back to Stages 5 and 6 of Algo-

rithm 1. The new normal �eld is n(k+1)(p), from which

we can deduce the gradient ∇z̃(k+1)(p) thanks to Eq.

(3.10). By integrating this gradient between a pixel p0,

chosen arbitrarily inside Ω, and any pixel p ∈ Ω, and
knowing that z = exp{z̃}, we obtain:

z(k+1)(p)=z(k+1)(p0) exp

{∫ p

p0

∇z̃(k+1)(q) · dq
}
. (3.11)

This integral can be calculated along one single path

inside Ω going from p0 to p, but since the gradient

�eld ∇z̃(k+1)(p) is never rigorously integrable in prac-

tice, this calculus usually depends on the choice of the

path [66]. The most common parry to this well-known

problem consists in resorting to a variational approach,

see for instance [55] for some discussion.

Expression (3.11) con�rms that the depth can only

be calculated, from n(k+1)(p), up to a scale factor equal

to z(k+1)(p0). Let us determine this scale factor by

minimization of the reprojection error of Model (2.24)

over the entire domain Ω. Knowing that, from (1.1)

and (3.9), we get x = z
f p, this comes down to solving

the following nonlinear least-squares problem:

z(k+1)(p0) = argmin
w∈R+

Ealt(w) :=
∑
p∈Ω

∥∥∥I(p)
−T

(w
f
exp

{∫ p

p0

∇z̃(k+1)(q) · dq
}
p
)
m(k+1)(p)

∥∥∥2,
(3.12)

which allows us to eventually write the 3D-shape up-

date (Stages 5 and 6):

x(k+1)=
z(k+1)(p0)

f
exp

{∫ p

p0

∇z̃(k+1)(q) · dq
}
p. (3.13)
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Experimental Validation. Despite the lack of theoret-

ical guarantee, convergence of this scheme is empiri-

cally observed, provided that the initial 3D-shape x(0)

is not too distant from the scene surface. For the curves

in Fig. 6, several fronto-parallel planes with equation

z ≡ z0 were tested as initial guess. The mean dis-

tance from the camera to the scene being approximately

700mm, it is not surprising that the fastest convergence

is observed for this value of z0. Besides, this graph also

shows that under-estimating the initial scale quite a lot

is not a problem, whereas over-estimating it severely

slows down the process.
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Iterations
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z0 = 500 mm

z0 = 650 mm

z0 = 700 mm

z0 = 750 mm

z0 = 900 mm

Fig. 6 Evolution of the energy Ealt of the alternating ap-
proach, de�ned in (3.12), in function of the iterations, when
the initial 3D-shape is a fronto-parallel plane with equation
z ≡ z0. The used data are the m = 8 images of the plaster
statuette of Fig. 2. The proposed scheme consists in alternat-
ing normal estimation, normal integration and scale estima-
tion (cf. Algorithm 1). It converges towards the same solution
(at di�erent speeds), for the �ve tested values of z0.

Fig. 7 allows to compare the 3D-shape obtained by

photometric stereo, from sub-images of size 920× 1178

in full resolution (bounding box of the statuette), which

contain 773794 pixels inside Ω, with the ground truth

obtained by laser scanning, which contains 1753010 points.

The points density is thus almost the same on the front

of the statuette, since we did not reconstruct its back.

However, our result is achieved in less than ten seconds

(�ve iterations of a Matlab code on a recent i7 proces-

sor), instead of several hours for the ground truth, while

we also estimate the albedo.

Fig. 8-a shows the histogram of point-to-point dis-

tances between our result (Fig. 7-a) and the ground

truth (Fig. 7-c). The median value is 1.3 mm. The spa-

tial distribution of these distances (Fig. 8-b), shows that

the largest distances are observed on the highest slopes

of the surface. This clearly comes from the facts that,

even for a di�use material such as plaster, the Lamber-

tian model is not valid under skimming lighting, and

that self-shadows were neglected.

(a) (b) (c)

Fig. 7 (a) 3D-reconstruction and (b) albedo obtained with
Algorithm 1. (c) Ground truth 3D-shape obtained by laser
scanning. Photometric stereo not only provides a 3D-shape
qualitatively similar to the laser scan, but also provides the
albedo.
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Fig. 8 (a) Histogram of point-to-point distances between
the alternating 3D-reconstruction and the ground truth
(cf. Fig. 7). The median value is 1.3 mm. (b) Spatial distri-
bution of these distances. The histogram peak is not located
in zero. As we will see in Section 3.2, this bias can be avoided
by resorting to a di�erential approach based on PDEs.

More realistic re�ectance models, such as the one

proposed by Oren and Nayar in [49], would perhaps im-

prove accuracy of the 3D-reconstruction in such points,

and we will see in Section 4 how to handle self-shadows.

But, as we shall see now, bias also comes from normal

integration. In the next section, we describe a di�er-

ent formulation of photometric stereo which permits to

avoid integration, by solving a system of PDEs in z.
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3.2 Direct Depth Estimation using Image Ratios

The scheme proposed in Section 3.1 su�ers from several

defects. It requires to integrate the gradient ∇z̃(k+1)(p)

at each iteration. This is not achieved by the naive for-

mulation (3.12), but using more sophisticated methods

which allow to overcome the problem of non-integrability

[14]. Still, bias due to inaccurate normal estimation

should not have to be corrected during integration. In-

stead, it seems more justi�ed to directly estimate the

depth map, without resorting to intermediate normal

estimation. This can be achieved by recasting photo-

metric stereo as a system of quasilinear PDEs.

Di�erential Reformulation of Problem (2.24). Let us re-

call (cf. Eq. (1.1)) that the coordinates of the 3D-point

x conjugate to a pixel p are completely characterized

by the depth z(p):

x =
z(p)

f

[
p

f

]
. (3.14)

The vectors ti(x) de�ned in (2.23) thus depend on the

unknown depth values z(p). Using once again the change

of variable z̃ = log(z)10, we consider from now on each ti,

i ∈ {1, . . . ,m}, as a vector �eld depending on the un-

known map z̃:

ti(z̃) : Ω → R3

p 7→ ti(z̃)(p) = Ψ i
[
−nis·v

i(z̃)(p)
‖vi(z̃)(p)‖

]µi
vi(z̃)(p)
‖vi(z̃)(p)‖3 ,

(3.15)

where each �eld ti(z̃) depends in a nonlinear way on

the unknown (log-) depth map z̃, through the following

vector �eld:

vi(z̃) : Ω → R3

p 7→ vi(z̃)(p) = xis −
exp(z̃(p))

f

[
p

f

]
. (3.16)

Knowing that the (non-unit-length) vector n(p) de-

�ned in (3.4), divided by z(p), is normal to the sur-

face, and still neglecting self-shadows, we can rewrite

System (2.1), in each pixel p ∈ Ω:

Ii(p) =
ρ(p)

d(z̃)(p)
ti(z̃)(p) ·

[
f∇z̃(p)

−1− p· ∇z̃(p)

]
,

i ∈ {1, . . . ,m}, (3.17)

with

d(z̃)(p) =

√
f2 ‖∇z̃(p)‖2 + (−1− p· ∇z̃(p))2. (3.18)

10 Without this change of variable, one would obtain a sys-
tem of homogeneous PDEs in lieu of (3.23), which would need
regularization to be solved, see [56].

Partial Linearization of (3.17) using Image Ratios. In

comparison with Eqs. (2.1), the PDEs (3.17) explic-

itly depend on the unknown map z̃, and thus remove

the need for alternating normal estimation and integra-

tion. However, these equations contain two di�culties:

they are nonlinear and cannot be solved locally. We can

eliminate the nonlinearity due to the coe�cient of nor-

malization d(z̃)(p). Indeed, neither the relative albedo

ρ(p), nor this coe�cient, depend on the index i of the

LED. We deduce from any pair {i, j} ∈ {1, . . . ,m}2,
i 6= j, of equations from (3.17), the following equalities:

ρ(p)

d(z̃)(p)
=

Ii(p)

ai(z̃)(p) · ∇z̃(p)− bi(z̃)(p)

=
Ij(p)

aj(z̃)(p) · ∇z̃(p)− bj(z̃)(p)
, (3.19)

with the following de�nitions of ai(z̃)(p) and bi(z̃)(p),

denoting ti(z̃)(p) = [ti1(z̃)(p), t
i
2(z̃)(p), t

i
3(z̃)(p)]

>:

ai(z̃)(p) = f

[
ti1(z̃)(p)

ti2(z̃)(p)

]
− ti3(z̃)(p)p, (3.20)

bi(z̃)(p) = ti3(z̃)(p). (3.21)

From the equalities (3.19), we obtain:[
Ii(p)aj(z̃)(p)− Ij(p)ai(z̃)(p)

]︸ ︷︷ ︸
ai,j(z̃)(p)

· ∇z̃(p)

=
[
Ii(p) bj(z̃)(p)− Ij(p) bi(z̃)(p)

]︸ ︷︷ ︸
bi,j(z̃)(p)

. (3.22)

The �elds ai,j(z̃) and bi,j(z̃) de�ned in (3.22) de-

pend on z̃ but not on ∇z̃: Eq. (3.22) is thus a quasi-

linear PDE in z over Ω. It could be solved by the char-

acteristic strips expansion method [42,43] if we were

dealing with m = 2 images only, but using a larger

number of images is necessary in order to design a ro-

bust 3D-reconstruction method. Since we are provided

with m > 2 images, we follow [20,38,39,41,56,60] and

write
(
m
2

)
PDEs such as (3.22) formed by the

(
m
2

)
pairs

{i, j} ∈ {1, . . . ,m}2, i 6= j. Forming the matrix �eld

A(z̃) : Ω → R(
m
2 )×2 by concatenation of the row vec-

tors ai,j(z̃)(p)>, and the vector �eld b(z̃) : Ω → R(
m
2 )

by concatenation of the scalar values bi,j(z̃)(p), the sys-

tem of PDEs to solve is written:

A(z̃)∇z̃ = b(z̃) over Ω. (3.23)

This new di�erential formulation of photometric stereo

seems simpler than the original di�erential formula-

tion (3.17), since the main source of nonlinearity, due

to the denominator d(z̃)(p), has been eliminated. How-

ever, it still presents two di�culties. First, the PDEs (3.23)

are generally incompatible and hence do not admit an
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exact solution. It is thus necessary to estimate an ap-

proximate one, by resorting to a variational approach.

Assuming that each of the
(
m
2

)
equalities in System

(3.23) is satis�ed up to an additive, zero-mean, Gaus-

sian noise11, one should estimate such a solution by

solving the following variational problem:

min
z̃:Ω→R

Erat(z̃) := ‖A(z̃)∇z̃ − b(z̃)‖2L2(Ω). (3.24)

Second, the PDEs (3.22) do not allow to estimate

the scale of the scene. Indeed, when all the depth val-

ues simultaneously tend to in�nity, then both members

of (3.22) tend to zero (because the coordinates of ti

do so, cf. (3.15)). Thus, a large, distant 3D-shape will

always �better� �t these PDEs (in the sense of the crite-

rion Erat de�ned in Eq. (3.24)) than a small, nearby one

(cf. Figs. 10 and 11). A �locally optimal� solution close

to a very good initial estimate should thus be sought.

Fixed Point Iterations for Solving (3.24). It has been

proposed in [38,39,41,56] to iteratively estimate a so-

lution of Problem (3.24), by uncoupling the (linear) es-

timation of z̃ from the (nonlinear) estimations of A(z̃)

and of b(z̃). This can be achieved by rewriting (3.24)

as the following constrained optimization problem:

min
z̃:Ω→R

‖A∇z̃ − b‖2L2(Ω)

s.t.

{
A = A(z̃),

b = b(z̃),

(3.25)

and resorting to a �xed point iterative scheme:

z̃(k+1) = argmin
z̃:Ω→R

‖A(k)∇z̃ − b(k)‖2L2(Ω), (3.26)

A(k+1) = A(z̃(k+1)), (3.27)

b(k+1) = b(z̃(k+1)). (3.28)

In the linear least-squares variational problem (3.26),

the solution can be computed only up to an additive

constant. Therefore, the matrix of the system arising

from the normal equations associated to the discretized

problem will be symmetric, positive, but rank-1 de�-

cient, and thus only semi-de�nite. Fig. 9 shows that

this may cause the �xed point scheme not to decrease

the energy after each iteration. This issue can be re-

solved by resorting to the alternating direction method

of multipliers (ADMM algorithm), a standard proce-

dure which dates back to the 70's [15,18], but has been

revisited recently [9].

11 In fact, any noise assumption should be formulated on
the images, and not on Model (3.23), which was obtained by
considering ratios of gray levels: if the noise on gray levels
is Gaussian, then that on ratios is Cauchy-distributed [25].
Hence, the least-squares solution (3.24) is the best linear un-
biased estimator, but it is not the optimal solution.
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Fig. 9 Evolution of the energy Erat of the ratio-based ap-
proach, de�ned in (3.24), in function of the iterations, for the
data of Fig. 2 (the initial 3D-shape is a fronto-parallel plane
with equation z ≡ 700mm). With the �xed point scheme, the
energy is not always decreased after each iteration, contrarily
to the ADMM scheme we are going to introduce.

ADMM Iterations for Solving (3.24). Instead of �freez-

ing� the nonlinearities of the variational problem (3.24),

z̃ can be estimated not only from the linearized parts,

but also from the nonlinear ones. In this view, we in-

troduce an auxiliary variable z and reformulate Prob-

lem (3.24) as follows:

min
z,z̃
‖A(z)∇z̃ − b(z)‖2L2(Ω)

s.t. z̃ = z.
(3.29)

In order to solve the constrained optimization prob-

lem (3.29), let us introduce a dual variable h and a de-

scent step ν. A local solution of (3.29) is then obtained

at convergence of the following algorithm:

Algorithm 2 (ratio-based ADMM approach)

1: Initialize z̃(0) = z(0), h(0) ≡ 0. Set k := 0.

2: loop

3: Update z̃ by using the linear part, �while keeping

z̃ close to z(k)�:

z̃(k+1) = argmin
z̃

∥∥∥A(z(k))∇z̃ − b(z(k))
∥∥∥2
L2(Ω)

+
1

2 ν

∥∥∥z̃ − z(k) + h(k)
∥∥∥2
L2(Ω)

. (3.30)

4: Update z by using the nonlinear part, �while keep-

ing z close to z̃(k+1)�:

z(k+1) = argmin
z

∥∥∥A(z)∇z̃(k+1) − b(z)
∥∥∥2
L2(Ω)

+
1

2 ν

∥∥∥z̃(k+1)−z+h(k)
∥∥∥2
L2(Ω)

. (3.31)

5: Update the dual variable h:
h(k+1) = h(k) + z̃(k+1) − z(k+1). (3.32)

6: If the stopping criterion is not satis�ed, then set

k := k + 1.
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(a) z0 = 500 mm (b) z0 = 650 mm (c) z0 = 700 mm (d) z0 = 750 mm (e) z0 = 900 mm

Fig. 10 3D-reconstructions after 10 iterations of the ADMM scheme, taking as initial guess di�erent fronto-parallel planes
z ≡ z0. The median of the distances to ground truth is, from left to right: 3.05mm, 2.88mm, 1.68mm, 2.08mm and 5.86mm.
When the initial guess is too close to the camera, the 3D-reconstruction is �attened, while the scale is overestimated when
starting too far away from the camera (although this yields a lower energy, see Fig. 11).

Stage (3.30) of Algorithm 2 is a linear least-squares

problem which can be solved using the normal equa-

tions of its discrete formulation12. The presence of the

regularization term now guarantees the positive de�-

niteness of the matrix of the system. This matrix is

however too large to be inverted directly. Therefore, we

resort to the conjugate gradient algorithm.

Thanks to the auxiliary variable z, which decouples

∇z̃ and z̃ in Problem (3.29), Stage (3.31) of Algorithm 2

is a local nonlinear least-squares problem: in fact, ∇z
is not involved in this problem, which can be solved

pixelwise. Problem (3.31) thus reduces to a nonlinear

least-squares estimation problem of one real variable,

which can be solved by a standard method such as the

Levenberg-Marquardt algorithm.

Because of the nonlinearity of Problem (3.31), it is

unfortunately impossible to guarantee convergence for

this ADMM scheme, which depends on the initializa-

tion and on parameter ν [9]. A reasonable initialization

strategy consists in using the solution provided by Al-

gorithm 1 (cf. Section 3.1). As for the descent step ν,

we iteratively calculate its optimal value according to

the Penalty Varying Parameter procedure described in

[9]. Finally, the iterations stop when the relative vari-

ation of the criterion of Problem (3.24) falls under a

threshold equal to 10−4.

Fig. 9 shows that with such choices, Problem (3.24)

is solved more e�ciently than with the �xed point scheme:

the energy is now decreased at each iteration. Fig. 11

shows that this is the case whatever the initial guess,

although initialization has a strong impact on the solu-

tion, as con�rmed by Fig. 10.

12 In our experiments, the gradient operator ∇ is discretized
by forward, �rst-order �nite di�erences with a Neumann
boundary condition.
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Fig. 11 Evolution of the energy Erat de�ned in (3.24), in
function of the iterations, for the data of Fig. 2. Using as
initialization z̃(0) ≡ log(z0), the ADMM scheme always con-
verges towards a local minimum, yet this minimum strongly
depends on the value of z0. Besides, a lower �nal energy does
not necessarily means a better 3D-reconstruction, as shown
in Fig. 10. Hence, not only a careful initial guess is of pri-
mary importance, but the criterion derived from image ratios
prevents automatic scale estimation.

Fig. 12 shows the 3D-reconstruction obtained by re-

�ning the results of Section 3.1 using Algorithm 2. At

�rst sight, the 3D-shape depicted in Fig. 12-a seems

hardly di�erent from that of Fig. 7-a, but the com-

parison of histograms in Figs. 8-a and 12-b indicates

that bias has been signi�cantly reduced. This shows the

superiority of direct depth estimation over alternating

normal estimation and integration.

However, the lack of convergence guarantees and the

strong dependency on the initialization remain limiting

bottlenecks. The method discussed in the next section

overcomes both these issues.
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Fig. 12 (a) 3D-reconstruction obtained with Algorithm 2,
using the result from Fig. 7-a as initial guess. (b) Histogram
of point-to-point distances between this 3D-shape and the
ground truth (cf. Fig. 7-c). The median value is 1.2 mm.

4 A New, Provably Convergent Variational Ap-

proach for Photometric Stereo under Point Light

Source Illumination

When it comes to solving photometric stereo under

point light source illumination, there are two main dif-

�culties: the dependency of the lighting vectors on the

depth map (cf. Eq. (3.15)), and the presence of the non-

linear coe�cient ensuring that the normal vectors have

unit-length (cf. Eq. (3.18)).

The alternating strategy from Section 3.1 solves the

former issue by freezing the lighting vectors at each it-

eration, and the latter by simultaneously estimating the

normal vector and the albedo. The objective function

tackled in this approach, which is based on the repro-

jection error, seems to be the most relevant. Indeed, the

�nal result seems to be independent from the initializa-

tion, although convergence is not established.

On the other hand, the di�erential strategy from

Section 3.2 explicitly tackles the nonlinear dependency

of lighting on the depth, and eliminates the other non-

linearity using image ratios. Directly estimating depth

reduces bias, but the objective function derived from

image ratios admits a global solution which is not ac-

ceptable (depth uniformly tending to +∞), albedo is

not estimated and convergence is not established either.

Therefore, an ideal numerical solution should: (i)

build upon a di�erential approach, in order to reduce

bias, (ii) avoid linearization using ratios, in order to

avoid the trivial solution and allow albedo estimation,

and (iii) be provably convergent. The variational ap-

proach presented in this section, initially presented in [57],

satis�es these three criteria.

4.1 Proposed Discrete Variational Framework

The nonlinearity of the PDEs (3.17) with respect to∇z̃,
due to the nonlinear dependency of d(z̃) (see Eq. (3.18)),

is challenging. We could explicitly consider this nonlin-

ear coe�cient within a variational framework [26], but

we rather take inspiration from the way conventional

photometric stereo [64] is linearized and integrate the

nonlinearity inside the albedo variable, as we proposed

recently in [57,58]. Instead of estimating ρ(p) in each

pixel p, we thus rather estimate:

ρ̃(p) =
ρ(p)

d(z̃)(p)
. (4.1)

The system of PDEs (3.17) is then rewritten as

Ii(p) = ρ̃(p)
[
Q(p) ti(z̃)(p)

]
·
[
∇z̃(p)
−1

]
,

i ∈ {1, . . . ,m}, (4.2)

where we use the following notation, ∀p = [u, v]
> ∈ Ω:

Q(p) =

f 0 −u
0 f −v
0 0 1

 . (4.3)

System (4.2) is a system of quasilinear PDEs in

(ρ̃, z̃), because ti(z̃) only depends on z̃, and not on ∇z̃.
Once ρ̃ and z̃ are estimated, it is straightforward to

recover the �real� albedo ρ using (4.1).

Let us now denote j ∈ {1, . . . , n} the indices of the
pixels inside Ω, Iij the gray level of pixel j in image Ii,

ρ̃ ∈ Rn and z̃ ∈ Rn the vectors stacking the unknown

values ρ̃j and z̃j , t
i
j(z̃j) ∈ R3 the vector ti(z̃) at pixel

j, which smoothly (though nonlinearly) depends on z̃j ,

and Qj the matrix de�ned in Eq. (4.3) at pixel j. Then,

the discrete counterpart of System (4.2) is written as

the following system of nonlinear equations in (ρ̃, z̃):

Iij = ρ̃j
[
Qj t

i
j(z̃j)

]
·
[
(∇z̃)j
−1

]
,

i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, (4.4)

where (∇z̃)j ∈ R2 represents a �nite di�erences approx-

imation of the gradient of z̃ at pixel j13.

13 In our experiments, we use the same discretization as in
Section 3.2, for fair comparison.
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Our goal is to jointly estimate ρ̃ ∈ Rn and z̃ ∈ Rn
from the set of nonlinear equations (4.4), as solution of

the following discrete optimization problem:

min
ρ̃,z̃
E(ρ̃, z̃) :=

n∑
j=1

m∑
i=1

φ
(
rij(ρ̃, z̃)

)
, (4.5)

where the residual rij(ρ̃, z̃) depends locally (and lin-

early) on ρ̃, but globally (and nonlinearly) on z̃:

rij(ρ̃, z̃) = ρ̃j
{
ζij(z̃)

}
+
− Iij , (4.6)

with

ζij(z̃) =
[
Qjt

i
j(z̃j)

]
·
[
(∇z̃)j
−1

]
. (4.7)

An advantage of our formulation is to be generic i.e.,

independent from the choice of the operator {· }+ and

of the function φ. For fair comparison with the algo-

rithms in Section 3, one can use {x}+ = x and φ(x) =

φLS(x) = x2. To improve robustness, self-shadows can

be explicitly handled by using {x}+ = max{x, 0}, and
the estimator φ can be chosen as any R → R+ func-

tion which is even, twice continuously di�erentiable,

and monotonically increasing over R+ such that:

φ′(x)

x
≥ φ′′(x), ∀x ∈ R. (4.8)

A typical example is Cauchy's robust M-estimator14:

φCauchy(x) = λ2 log

(
1 +

x2

λ2

)
, (4.9)

where the parameter λ is user-de�ned (we use λ = 0.1).

4.2 Alternating Reweighted Least-Squares for Solving (4.5)

Our goal is to �nd a local minimizer (ρ̃∗, z̃∗) for (4.5),

which must satisfy the following �rst-order conditions15:

∂E
∂ρ̃

(ρ̃∗,z̃∗)=

n∑
j=1

m∑
i=1

φ′(rij(ρ̃
∗, z̃∗))

∂rij
∂ρ̃

(ρ̃∗, z̃∗)=0, (4.10)

∂E
∂z̃

(ρ̃∗,z̃∗)=

n∑
j=1

m∑
i=1

φ′(rij(ρ̃
∗, z̃∗))

∂rij
∂z̃

(ρ̃∗, z̃∗)=0, (4.11)

with:

∂rij
∂ρ̃l

(ρ̃∗, z̃∗) =

{
{ζij(z̃∗)}+ if l = j,

0 if l 6= j,
(4.12)

∂rij
∂z̃

(ρ̃∗, z̃∗) = ρ̃∗j χ(ζ
i
j(z̃
∗)) ∂ζij(z̃

∗). (4.13)

14 See [58] for some discussion and comparison with state-
of-the-art robust methods [31,41,65].
15 We use the notation ∂

∂
to avoid the confusion with the

spatial derivatives denoted by ∇, and neglect the fraction
when the derivation variable is obvious.

In (4.13), χ is the (sub-)derivative of {· }+, which is

a constant function equal to 1 if {x}+ = x, and the

Heaviside function if {x}+ = max{x, 0}.
For this purpose, we derive an alternating reweighted

least-squares (ARLS) scheme. Suggested by its name,

the ARLS scheme alternates Newton-like steps over ρ̃

and z̃, which can be interpreted as iteratively reweighted

least-squares iterations. Similar to the famous itera-

tively reweighted least-squares [63] (IRLS) algorithm,

ARLS solves the original (possibly non-convex) prob-

lem (4.5) iteratively, by recasting it as a series of simpler

quadratic programs.

Given the current estimate (ρ̃(k), z̃(k)) of the solu-

tion, ARLS �rst freezes z̃ and updates ρ̃ by minimizing

the following local quadratic approximation of E(·, z̃(k))
around ρ̃(k)16:

E(·, z̃(k)) ≈
n∑
j=1

m∑
i=1

{
φ
(
rij(ρ̃

(k), z̃(k))
)

+
φ′(rij(ρ̃

(k), z̃(k)))

rij(ρ̃
(k), z̃(k))

rij(·, z̃(k))2 − rij(ρ̃(k), z̃(k))2

2

}
,

(4.14)

where we set
φ′(rij(ρ̃

(k),z̃(k)))

rij(ρ̃
(k),z̃(k))

= 0 if rij(ρ̃
(k), z̃(k)) = 0.

Then, ρ̃ is freezed and z̃ is updated by minimizing

a local quadratic approximation of E(ρ̃(k+1), ·) around
z̃(k), which is in all points similar to (4.14). Iterating

this procedure yields the following alternating sequence

of reweighted least-squares problems:

ρ̃(k+1) = argmin
ρ̃∈Rn

Eρ̃(ρ̃; ρ̃(k), z̃(k)) :=

1

2

n∑
j=1

m∑
i=1

wij(ρ̃
(k), z̃(k)) rij(ρ̃, z̃

(k))2, (4.15)

z̃(k+1) = argmin
z̃∈Rn

Ez̃(z̃; ρ̃(k+1), z̃(k)) :=

1

2

n∑
j=1

m∑
i=1

wij(ρ̃
(k+1), z̃(k)) rij(ρ̃

(k+1), z̃)2. (4.16)

Here, the functions Eρ̃ and Ez̃ are the above local quadratic
approximations minus the constants which play no role

in the optimization, and the following (lagged) weight

variable w is used17:

wij(ρ̃, z̃) =


φ′(rij(ρ̃, z̃))

rij(ρ̃, z̃)
if rij(ρ̃, z̃) 6= 0,

0 otherwise.

(4.17)

16 The right hand side function in Eq. (4.14) is a majorant of
E(·, z̃(k)), and it is easily veri�ed that its value and gradient
are equal to those of E(·, z̃(k)) in ρ̃(k). It is therefore suitable
as approximation.
17 Since φ is supposed even and monotonically increasing
over R+, this variable can be used as weight because, ∀x ∈
R\{0}, φ′(x)/x ≥ 0 and thus wij(ρ̃, z̃) ≥ 0.
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Solution of the ρ̃-subproblem. Problem (4.15) can be

rewritten as the following n independent linear least-

squares problems, j ∈ {1, . . . , n}:

ρ̃
(k+1)
j =argmin

ρ̃j∈R

1

2

m∑
i=1

wij(ρ̃
(k), z̃(k)) rij(ρ̃, z̃

(k))2. (4.18)

Each problem (4.18) almost always admits a unique so-

lution. When it does not, we set ρ̃
(k+1)
j = ρ̃

(k)
j . The

update thus admits the following closed-form solution:

ρ̃
(k+1)
j =



∑m
i=1 w

i
j(ρ̃

(k), z̃(k))
{
ζij(z̃

(k))
}
+
Iij∑m

i=1 w
i
j(ρ̃

(k), z̃(k))
{
ζij(z̃

(k))
}2
+

if
∑m
i=1 w

i
j(ρ̃

(k), z̃(k))
{
ζij(z̃

(k))
}2
+
> 0,

ρ̃
(k)
j if

∑m
i=1 w

i
j(ρ̃

(k), z̃(k))
{
ζij(z̃

(k))
}2
+
= 0.

(4.19)

The second case in (4.19) means that ρ̃(k+1) is set to

be the solution of (4.15) which has minimal (Euclidean)

distance to ρ̃(k).

The update (4.19) can also be obtained by remark-

ing that, since (4.15) is a linear least-squares problem,

the solution of the equation ∂Eρ̃(ρ̃; ρ̃(k), z̃(k)) = 0 is

attained in one step of the Newton method:

ρ̃(k+1)= ρ̃(k)−Hρ̃(ρ̃(k), z̃(k))† ∂Eρ̃(ρ̃(k); ρ̃(k), z̃(k)). (4.20)

In (4.20), the n-by-n matrix Hρ̃(ρ̃
(k), z̃(k)) is the Hes-

sian of Eρ̃(·; ρ̃(k), z̃(k)) at ρ̃(k)18, i.e.:

δρ̃>Hρ̃(ρ̃
(k), z̃(k)) δρ̃ =

n∑
j=1

m∑
i=1

wij(ρ̃
(k), z̃(k))(

δρ̃j{ζij(z̃(k))}+
)2

(4.21)

for any δρ̃ = [δρ̃1, . . . , δρ̃n]
> ∈ Rn. Since the n prob-

lems (4.18) are independent, it is a diagonal matrix with

entry (j, j) equal to ej =

m∑
i=1

wij(ρ̃
(k), z̃(k))

{
ζij(z̃

(k))
}2

+
.

This matrix is singular if one of the entries ej is equal to

zero, but its pseudo-inverse always exists: it is an n-by-

n diagonal matrix whose entry (j, j) is equal to 1/ej as

soon as ej > 0, and to 0 otherwise. The updates (4.19)

and (4.20) are thus strictly equivalent.

Solution of the z̃-subproblem. The depth update (4.16)

is a nonlinear least-squares problem, due to the nonlin-

earity of rij(ρ̃, z̃) with respect to z̃. We therefore in-

troduce an additional linearization step i.e., we follow

18 Lemma 1 shows that it is a positive semi-de�nite approx-

imation of the Hessian ∂2E
∂ρ̃2 (ρ̃

(k), z̃(k)), hence the notation.

a Gauss-Newton strategy. A �rst-order Taylor approxi-

mation of rij(ρ̃
(k+1), ·) around z̃(k) yields, using (4.13):

Ez̃(z̃; ρ̃(k+1), z̃(k)) ≈ E z̃(z̃; ρ̃(k+1), z̃(k)) :=

1

2

n∑
j=1

m∑
i=1

wij(ρ̃
(k+1), z̃(k))

(
rij(ρ̃

(k+1), z̃(k))

+ ρ̃
(k+1)
j χ(ζij(z̃

(k))) (z̃ − z̃(k))>∂ζij(z̃(k))
)2
. (4.22)

Therefore, we replace the update (4.16) by

z̃(k+1) = argmin
z̃∈Rn

E z̃(z̃; ρ̃(k+1), z̃(k)), (4.23)

which is a linear least-squares problem whose solution

is attained in one step of the Newton method19:

z̃(k+1)= z̃(k)−Hz̃(ρ̃(k+1),z̃(k))† ∂E z̃(z̃(k); ρ̃(k+1),z̃(k)),

(4.24)

where the n-by-nmatrixHz̃(ρ̃
(k+1), z̃(k)) is the Hessian

of E z̃(·; ρ̃(k+1), z̃(k)) at z̃(k), i.e.:

δz̃>Hz̃(ρ̃
(k+1), z̃(k))δz̃ =

n∑
j=1

m∑
i=1

wij(ρ̃
(k+1), z̃(k))(

ρ̃
(k+1)
j χ(ζij(z̃

(k)))δz̃>∂ζij(z̃
(k))
)2

(4.25)

for any δz̃ ∈ Rn.
In practice,Hz̃(ρ̃

(k+1), z̃(k))† ∂E z̃(z̃(k); ρ̃(k+1), z̃(k)) in

Eq. (4.24) is computed (inexactly) by preconditioned

conjugate gradient iterations up to a relative tolerance

of 10−4 (less than �fty iterations in our experiments).

Implementation details. The proposed ARLS algorithm

is summarized in Algorithm 3.

Algorithm 3 (alternating reweighted least-squares)

1: Initialize ρ̃(0), z̃(0) ∈ Rn. Set k := 0.

2: loop

3: Compute ρ̃(k+1) by using (4.19).

4: Compute z̃(k+1) by using (4.24).

5: If the stopping criterion is not satis�ed, then set

k := k + 1.

In our experiments, we use constant vectors as ini-

tializations for z̃ and ρ̃ i.e., the surface is initially ap-

proximated by a plane with uniform albedo. Iterations

are stopped when the relative di�erence between two

successive values of the energy E de�ned in (4.5) falls

below a threshold set to 10−3. In our setup using m = 8

HD images and a recent i7 processor at 3.50 GHz with

32 GB of RAM, each depth update (the albedo one has

negligible cost) required a few seconds, and 10 to 50

updates were enough to reach convergence.

19 Similar to the ρ̃-subproblem, z̃(k+1) is taken to be of
minimal distance to z̃(k) whenever non-uniqueness of the so-
lution in (4.23) is encountered. The pseudo-inverse operator
in (4.24) takes care of such cases [19, Theorem 5.5.1].
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4.3 Convergence Analysis

In this subsection, we present a local convergence the-

ory for the proposed ARLS scheme. The proofs are pro-

vided in appendix.

When we write A � B (resp. A � B), this means

that the di�erence matrix A−B is positive semide�nite

(resp. positive de�nite). The spectral radius of a matrix

is denoted by sr(·).

ARLS as Newton iterations. It is easily deduced from

Eqs. (4.10), (4.15) and (4.17) that ∂Eρ̃(ρ̃(k); ρ̃(k), z̃(k)) =
∂E
∂ρ̃ (ρ̃

(k), z̃(k)), and thus (4.20) also writes

ρ̃(k+1)= ρ̃(k)−Hρ̃(ρ̃(k), z̃(k))†
∂E
∂ρ̃

(ρ̃(k), z̃(k)), (4.26)

which is a quasi-Newton step with respect to the ρ̃-

subproblem in (4.5), provided that Hρ̃(ρ̃
(k), z̃(k)) is a

�reasonable� approximation of ∂
2E
∂ρ̃2 (ρ̃

(k), z̃(k)). Lemma 1

will clarify what �reasonable� means here.

Regarding the z̃-update, let us remark that the Gauss-

Newton step (4.23) for (4.16) can also be viewed as an

approximate solution of the z̃-subproblem in (4.5), lin-

earized around z̃(k) as follows:

min
z̃∈Rn

Ẽz̃(z̃; ρ̃(k+1), z̃(k)) :=

n∑
j=1

m∑
i=1

φ
(
rij(ρ̃

(k+1), z̃(k))

+ ρ̃
(k+1)
j χ(ζij(z̃

(k))) (z̃ − z̃(k))>∂ζij(z̃(k))
)
. (4.27)

Since ∂E z̃(z̃(k); ρ̃(k+1), z̃(k)) = ∂Ẽz̃(z̃(k); ρ̃(k+1), z̃(k)) (see

Eqs. (4.17), (4.22) and (4.27)), (4.24) also writes

z̃(k+1)= z̃(k)−Hz̃(ρ̃(k+1), z̃(k))† ∂Ẽz̃(z̃(k); ρ̃(k+1),z̃(k)),

(4.28)

which is a quasi-Newton step for (4.27)20, provided that

matrixHz̃(ρ̃
(k+1), z̃(k)) is a �reasonable� approximation

of the Hessian ∂2Ẽz̃(·, ρ̃(k+1), z̃(k)) at z̃(k). Let us now

explain our meaning of �reasonable�.

A majorization result. The following lemma establishes

the (local) majorization properties of Hρ̃ and Hz̃ over

the Hessian matrices ∂2E
∂ρ̃2 and ∂2Ẽz̃, respectively.

Lemma 1 If the following condition holds at (ρ̃∗, z̃∗):

ζij(z̃
∗) 6= 0, ∀(i, j) ∈ {1, . . . ,m} × {1, . . . , n}, (4.29)

then we have{
Hρ̃(ρ̃, z̃) � ∂2E

∂ρ̃2 (ρ̃, z̃),

Hz̃(ρ̃, z̃) � ∂2Ẽz̃(z̃; ρ̃, z̃),
(4.30)

whenever (ρ̃, z̃) lies in some small neighborhood of (ρ̃∗, z̃∗).

20 And thus a quasi-Newton step with respect to the
z̃-subproblem in (4.5), since ∂Ẽz̃(z̃(k); ρ̃(k+1), z̃(k)) =
∂E
∂z̃

(ρ̃(k+1), z̃(k)).

Convergence proof for ARLS. The next theorem con-

tains the main result of our local convergence analysis.

Theorem 1 Assume that, for some iteration k, the it-

erate (ρ̃(k), z̃(k)) generated by Algorithm 3 is su�ciently

close to some local minimizer (ρ̃∗, z̃∗) where, in addi-

tion to (4.29), the following conditions hold:

∂E
∂ρ̃

(ρ̃∗, z̃∗) = 0,
∂E
∂z̃

(ρ̃∗, z̃∗) = 0, (4.31)
∂2E
∂ρ̃2

(ρ̃∗, z̃∗)
∂2E
∂ρ̃∂z̃

(ρ̃∗, z̃∗)

∂2E
∂ρ̃∂z̃

(ρ̃∗, z̃∗)
∂2E
∂z̃2

(ρ̃∗, z̃∗)

 � O, (4.32)

∂2Ẽz̃(z̃∗; ρ̃∗, z̃∗) � O, (4.33)

sr

(
∂2Ẽz̃(z̃∗; ρ̃∗,z̃∗)−1

(
∂2E
∂z̃2

(ρ̃∗,z̃∗)−∂2Ẽz̃(z̃∗; ρ̃∗,z̃∗)
))

<1.

(4.34)

Then we have limk→∞(ρ̃(k), z̃(k)) = (ρ̃∗, z̃∗).

As a remark, conditions (4.31) and (4.32) assumed

in Theorem 1 are typically referred to as the �rst-order

and the second-order su�cient optimality conditions,

while conditions (4.33) and (4.34) are similar to the lo-

cal convergence criteria for Gauss-Newton method, see

e.g. [21, Theorem 1]. They always seem satis�ed in our

experiments i.e., the convergence of ARLS in form of

Algorithm 3 is always observed. If needed, these condi-

tions may however be explicitly enforced by replacing

{· }+ by its (smooth) proximity operator, and incorpo-

rating a line search step into ARLS, see [57].

4.4 Experimental Validation

For fair comparison with the methods discussed in Sec-

tion 3, we �rst consider least-squares estimation with-

out explicit self-shadows handling i.e., φ(x) = x2 and

{x}+ = x. The results in Figs. 13 and 14 show that, un-

like the previous least-squares di�erential method from

Section 3.2, the new scheme always converges towards

a similar solution for a wide range of initial estimates.

Although the accuracy of the results obtained with

this new scheme is not improved, the in�uence of the

initialization is much reduced and convergence is guar-

anteed. Besides, it is straightforward to improve robust-

ness by simply changing the de�nitions of the function

φ and of the operator {· }+, while ensuring robustness

of the ratio-based approach is not an easy task [41,

60]. Fig. 15 shows the result obtained using Cauchy's

M-estimator ΦCauchy and explicit self-shadows handling

i.e., {x}+ = max{x, 0}.
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Fig. 13 (a) Evolution of the energy E of the proposed approach, de�ned in (4.5), using least-squares estimation, in function of
the iterations, for the data of Fig. 2. As long as the initial scale is not over-estimated too much, the proposed scheme converges
towards similar solutions for di�erent initial estimates (cf. Fig. 14), though with di�erent speeds. (b) 3D-model obtained at
convergence, using z0 = 750 mm. (c) Histogram of point-to-point distances between (b) and the ground truth (cf. Fig. 7-c).
As in the experiment of Fig. 12, the median value is 1.2 mm, yet this result is almost independent from the initialization, and
is obtained using a provably convergent algorithm.

(a) z0 = 500 mm (b) z0 = 650 mm (c) z0 = 700 mm (d) z0 = 750 mm (e) z0 = 900 mm

Fig. 14 3D-reconstructions after 50 iterations of the proposed scheme, taking as initial guess di�erent fronto-parallel planes
z ≡ z0 and using least-squares estimation. Similar results are obtained whatever the initialization, at least as long as the initial
scale is not over-estimated too much.
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Fig. 15 Same as Fig. 13, but using Cauchy's robust M-estimator and explicit self-shadows handling. Despite the non-convexity
of the estimator, convergence is similar to that obtained in the previous experiment. However, the median value of the 3D-
reconstruction error is now 0.91 mm, which is to be compared with the previous value 1.2 mm (cf. Fig. 13).
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5 Estimating Colored 3D-models by Photomet-

ric Stereo

So far, we have considered only gray level images. In this

section, we extend our study to RGB-valued images, in

order to estimate colored 3D-models using photometric

stereo. Similar to Section 2, we will �rst establish the

image formation model and discuss calibration. Then,

we will show how to modify the algorithm from Sec-

tion 4 in order to handle RGB images.

5.1 Spectral Dependency of the Luminous Flux Emit-

ted by a LED

We need to introduce a spectral dependency in Model

(2.7) to extend our study to color. It seems reasonable

to limit this dependency to the intensity (λ denotes the

wavelength):

s(x, λ) = Φ(λ) cosµ θ
xs − x

‖xs − x‖3
. (5.1)

Model (5.1) is more complex than Model (2.7), because

the intensity Φ0 ∈ R+ has been replaced by the emis-

sion spectrum Φ(λ), which is a function (cf. Fig. 16-a).

The calibration of Φ(λ) could be achieved by using a

spectrometer, but we will show how to extend the pro-

cedure from Section 2.2, which requires nothing else

than a camera and two calibration patterns.
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Fig. 16 (a) Emission spectrum Φ(λ) of the LEDs used
(source: http://www.lumileds.com/uploads/28/DS64-pdf).
(b) Camera response functions in the three channels R, G,
B, for the Canon EOS 50D camera [33] (which is similar to
the Canon EOS 7D we use). Our extension to RGB images of
the calibration procedure from Section 2.2 requires nothing
else than a camera and two calibration patterns. Therefore,
we do not need any of these diagrams in practice.

Given a point x of a Lambertian surface with albedo

ρ(x), under the illumination described by the lighting

vector s(x), we get from (2.8), (2.9) and (2.10) the ex-

pression of the illuminance ε(p) of the image plane in

the pixel p conjugate to x:

ε(p) = β cos4 α(p)
ρ(x)

π
{s(x) · n(x)}+ . (5.2)

This expression is easily extended to the case where

s(x) and ρ(x) depend on λ:

ε(p, λ) = β cos4 α(p)
ρ(x, λ)

π
{s(x, λ) · n(x)}+ . (5.3)

The one-to-one correspondence between the points x

and the pixels p allows us to denote ρ(p, λ) and n(p),

in lieu of ρ(x, λ) and n(x). In addition, the light ef-

fectively received by each cell goes through a colored

�lter characterized by its transmission spectrum c?(λ),

? ∈ {R,G,B}, whose maximum lies, respectively, in

the red, green and blue ranges (cf. Fig. 16-b). To de�ne

the color levels I?(p), ? ∈ {R,G,B}, by similarity with

the expression (2.12) of the (corrected) gray level I(p),

we must multiply (5.3) by c?(λ), and integrate over the

entire spectrum:

I?(p)=
γ β

π

{[∫ +∞

λ=0

c?(λ) ρ(p, λ) s(x, λ) dλ

]
· n(p)

}
+

.

(5.4)

Using a Lambertian calibration pattern which is uni-

formly white i.e., such that ρ(p, λ) ≡ ρ0, allows us to

rewrite (5.4) as follows:

I?(p) = γ β
ρ0
π

{[∫ +∞

λ=0

c?(λ) s(x, λ) dλ

]
· n(p)

}
+

, (5.5)

which is indeed an extension of (2.17) to RGB images,

since (5.5) can be rewritten

I?(p) = γ β
ρ0
π
{s?(x) · n(p)}+ , (5.6)

provided that the three colored lighting vectors s?(x)

are de�ned as follows:

s?(x) =

∫ +∞

λ=0

c?(λ) s(x, λ) dλ, ? ∈ {R,G,B}. (5.7)

Replacing the lighting vector s(x, λ) in (5.7) by its ex-

pression (5.1), we obtain the following extension of Model

(2.7) to color:

s?(x) = Φ? cosµ θ
xs − x

‖xs − x‖3
, ? ∈ {R,G,B}, (5.8)

where the colored intensities Φ? are de�ned as follows:

Φ? =

∫ +∞

λ=0

c?(λ)Φ(λ) dλ, ? ∈ {R,G,B}. (5.9)

The spectral dependency of the lighting vector s(x, λ)

expressed in (5.1) is thus partially described by Model

(5.8), which contains nine parameters: three for the

coordinates of xs, two for the unit-length vector ns,

plus the three colored intensities ΦR, ΦG, ΦB , and the

anisotropy parameter µ. Nonetheless, since the de�ni-

tion (5.9) of Φ? depends on c?(λ), it follows that the

parameters ΦR, ΦG and ΦB are not really characteris-

tic of the LED, but of the camera-LED pair.

http://www.lumileds.com/uploads/28/DS64-pdf
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5.2 Spectral Calibration of the Luminous Flux Emitted

by a LED

We use again the Lambertian planar calibration pat-

tern from Section 2.2. Since it is convex, the incident

light comes solely from the LED. We can thus replace

s?(x) by its de�nition (5.8) in the expression (5.6) of

the color level I?(p). Assuming that xs is estimated by

triangulation and that the anisotropy parameter µ is

provided by the manufacturer, we then have to solve,

in each channel ? ∈ {R,G,B}, the following problem,

which is an extension of Problem (2.19) (q is the num-

ber of poses of the Lambertian calibration pattern):

min
ms,?

q∑
j=1

∑
p∈Ωj

[
ms,? ·(xj−xs)−

[
Ij?(p)

‖xs−xj‖3+µ

{(xs−xj) · nj}+

]1
µ

]2
,

(5.10)

where ms,? is de�ned by analogy with ms (cf. (2.18)):

ms,? = Ψ?
1
µ ns, (5.11)

and Ψ? is de�ned by analogy with Ψ (cf. (2.14)):

Ψ? = γ β
ρ0
π
Φ?. (5.12)

Each problem (5.10) allows us to estimate a colored

intensity ΦR, ΦG or ΦB (up to a common factor) and

the principal direction ns, which is thus estimated three

times. Table 1 groups the values obtained for one of the

LEDs of our setup. The three estimates of ns are con-

sistent, but instead of arbitrarily choosing one of them,

we compute the weighted mean of these estimates, us-

ing spherical coordinates.

Red channel Green channel Blue channel

n̂s,R =


0.205

−0.757

0.621

 n̂s,G =


0.194

−0.769

0.608

 n̂s,B =


0.188

−0.844

0.503


Ψ̂R = 3.10× 107 Ψ̂G = 5.49× 107 Ψ̂B = 3.37× 107

Table 1 Parameters of one of the LEDs of our setup, esti-
mated by solving (5.10) in each color channel.

In Table 1, the values of Ψ̂R, Ψ̂G and Ψ̂B are given

without unit because, from the de�nition (5.12) of Ψ?,

only their relative values are meaningful. As it happens,

the value of Ψ̂G is roughly twice as much as those of

Ψ̂R and Ψ̂B , but this does not mean that Φ(λ) is twice

higher in the green range than in the red or in the

blue ranges, since the de�nition (5.9) of a given colored

intensity Φ? also depends on the transmission spectrum

c?(λ) in the considered channel.

Our calibration procedure relies on the assumption

that the calibration pattern is uniformly white i.e., that

ρ(p, λ) ≡ ρ0, which may be inexact, yet in no way

does this question our rationale. Indeed, if we assume

that the color of �white� cells from the Lambertian

checkerboard (cf. Fig. 4) is uniform i.e., ρ(p, λ) = ρ(λ),

∀p ∈ Ωj , and if we denote ρ0 the maximum value

of ρ(λ), Eq. (5.5) is still valid, provided that c?(λ) is

replaced by the function c?(λ) de�ned as follows21:

c?(λ) =
ρ(λ)

ρ0
c?(λ). (5.13)

5.3 Photometric Stereo under Colored Point Light Source

Illumination

If we pretend to extend Model (2.21) to RGB images,

then it must be possible to write the color level at p, in

each channel ? ∈ {R,G,B}, in the following manner:

I?(p)=Ψ?
ρ?(p)

ρ0

[
ns ·(x−xs)
‖x−xs‖

]µ {(xs−x)·n(p)}+
‖xs−x‖3

(5.14)

where the colored albedos ρ?(p) are some extensions

of the albedo ρ(p) to the RGB case. Equating both

expressions of I?(p) given in (5.4) and in (5.14), and

using the de�nition (5.1) of s(x, λ), we obtain:

Ψ?
ρ?(p)

ρ0
=
γβ

π

∫ +∞

λ=0

c?(λ) ρ(p, λ)Φ(λ) dλ. (5.15)

Using the de�nitions (5.12) and (5.9) of Ψ? and Φ?, (5.15)

yields the following expression for the colored albedos:

ρ?(p)=

∫ +∞

λ=0

c?(λ) ρ(p,λ)Φ(λ) dλ∫ +∞

λ=0

c?(λ)Φ(λ) dλ

, ?∈{R,G,B}, (5.16)

which is the mean of ρ(p, λ) over the entire spectrum,

weighted by the product c?(λ)Φ(λ). In addition, al-

though the transmission spectrum c?(λ) depends only

on the camera, the emission spectrum Φ(λ) usually varies

from one LED to another. Thus, generalizing photomet-

ric stereo under point light source illumination to RGB

images requires to superscript the colored albedos by

the LED index i. Hence, it seems that we have to solve,

in each pixel p ∈ Ω, the following problem:

Ii?(p) = Ψ i?
ρi?(p)

ρ0

[
nis ·
(
x−xis

)
‖x−xis‖

]µi {
(xis−x)·n(p)

}
+

‖xis−x‖3
,

i ∈ {1, . . . ,m}, ? ∈ {R,G,B}. (5.17)

21 Since each colored intensity Φ? depends on the trans-
mission spectrum c?(λ) by its de�nition (5.9), (5.13) implies
that Φ? also depends on the color of the paper upon which
the checkerboard is printed. Hence, the color of the paper will
somehow in�uence the estimated color of the observed scene.
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System (5.17) is underdetermined, because it contains

3m equations with 3m+3 unknowns: one colored albedo

ρi?(p) per equation, the depth z(p) of the 3D-point x

conjugate to p (from which we get the coordinates of

x), and the normal n(p). Apart from this numerical

di�culty, the dependency on i of the colored albedos is

puzzling: while it is clear that the albedo is a photomet-

ric characteristic of the surface, independent from the

lighting, it should go the same for the colored albedos.

This shows that the extension to RGB images of pho-

tometric stereo is potentially intractable in the general

case. However, such an extension is known to be possi-

ble in two speci�c cases [56]:

• For a non-colored surface i.e., when ρ(p, λ) = ρ(p),

we deduce from (5.16) that ρR(p) = ρG(p) = ρB(p) =

ρ(p). Problem (5.17) is thus written:

Ii?(p) = Ψ i?
ρ(p)

ρ0

[
nis ·
(
x−xis

)
‖x−xis‖

]µi {
(xis−x)·n(p)

}
+

‖xis−x‖3
,

i ∈ {1, . . . ,m}, ? ∈ {R,G,B}. (5.18)

If the albedo is known, and if a channel dependency

is added to the sources parameters xis, n
i
s and µi,

then System (5.18) has 3 unknowns and 3m inde-

pendent equations: a single RGB image may su�ce

to ensure that the problem is well-determined. This

well-known case, which dates back to the 90's [35],

has been applied to real-time 3D-reconstruction of

a white painted deformable surface [23].

• When the sources are non-colored i.e., when Φi(λ) ≡
Φ0, ∀i ∈ {1, . . . ,m}, (5.16) gives:

ρ?(p)=

∫ +∞

λ=0

c?(λ) ρ(p,λ) dλ∫ +∞

λ=0

c?(λ) dλ

, ? ∈ {R,G,B}. (5.19)

Since this expression is independent from i, Problem

(5.17) is rewritten:

Ii?(p) = Ψ?
ρ?(p)

ρ0

[
nis ·
(
x−xis

)
‖x−xis‖

]µi {
(xis−x)·n(p)

}
+

‖xis−x‖3
,

i ∈ {1, . . . ,m}, ? ∈ {R,G,B}. (5.20)

In (5.20), the parameter Ψ? is independent from i,

but it really depends on the channel ?, although

the sources are supposed to be non-colored, since

in the de�nition (5.12) of Ψ?, the colored inten-

sity Φ? is channel-dependent (cf. Eq. (5.9)). System

(5.20), which has 3m equations and six unknowns,

is overdetermined if m > 3. If m = 2, it is well-

determined but rank-de�cient, since in each point,

the 6 lighting vectors are coplanar. Additional infor-

mation (e.g., a boundary condition) is required [43].

Another case where the colored albedos are indepen-

dent from i is when them LEDs all share the same emis-

sion spectrum, up to multiplicative coe�cients (Φi(λ) =

κi Φ(λ), ∀i ∈ {1, . . . ,m}). Under such an assumption,

the colored albedos ρ?(p) do not have to be indexed

by i, according to their de�nition (5.16). Note however

that the parameters Ψ? still have to be indexed by i, in

this case. Using the notation

ρ?(p) =
ρ?(p)

ρ0
, ? ∈ {R,G,B}, (5.21)

we obtain the following result:

Under the same hypotheses as in Eq. (2.1), if the m

light sources share the same emission spectrum, up to a

multiplicative coe�cient, then the m RGB images can

be modeled as follows:

Ii?(p)=Ψ
i
? ρ?(p)

[
nis ·
(
x− xis

)
‖x− xis‖

]µi{
(xis − x) · n(p)

}
+

‖xis − x‖3
,

i ∈ {1, . . . ,m}, ? ∈ {R,G,B}. (5.22)

where:

• Ii? is the (corrected) color level in channel ?;

• Ψ iR, Ψ iG and Ψ iB are the colored intensities of the i-

th source, multiplied by an unknown factor, which

is common to all the sources and depends on sev-

eral camera parameters and on the albedo ρ0 (cf.

Eqs. (5.9) and (5.12));

• ρ? is the colored albedo in channel ?, relatively to ρ0
(cf. Eq. (5.21)).

For the setup of Fig. 2-a, the m = 8 LEDs probably

do not exactly share the same spectrum, although they

come from the same batch, yet this assumption seems

more realistic than that of �non-colored sources�, and

it allows us to better justify the use of (5.22), which

models both the spectral dependency of the albedo and

that of the luminous �uxes.

The calibration procedure described in Section 5.2

provides us with the values of the parameters xis, n
i
s

and Ψ i?, i ∈ {1, . . . ,m}, and the parameters µi, i ∈
{1, . . . ,m}, are provided by the manufacturer. The un-

knowns of System (5.22) are thus the depth z(p) of x,

the normal n(p) and the three colored albedos ρ?(p),

? ∈ {R,G,B}. Resorting to RGB images allows us to

replace the system (2.1) of m equations with four un-

knowns, by the system (5.22) of 3m equations with six

unknowns, which should yield more accurate results.
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5.4 Solving Colored Photometric Stereo under Point Light

Source Illumination

The alternating strategy from Section 3.1 is not straight-

forward to adapt to the case of RGB-valued images, be-

cause the albedo is channel-dependent, while the nor-

mal vector is not. Principal component analysis could

be employed [5], but we already know from Section 3

that a di�erential approach should be preferred anyway.

A PDE-based approach similar to that of Section 3.2

is advocated in [56]: ratios between color levels can be

computed in each channel ? ∈ {R,G,B}, thus eliminat-

ing the colored albedos ρ?(p) and obtaining a system

of PDEs in z similar to (3.23). The PDEs to solve re-

main quasi-linear, unlike in [30]. Yet, we know that the

solution strongly depends on the initialization.

On the other hand, it is straightforward to adapt

the method recommended in Section 4, by turning the

discrete optimization problem (4.5) into

min
ρ̃R,ρ̃G,ρ̃B ,z̃

∑
?∈{R,G,B}

n∑
j=1

m∑
i=1

φ
(
ri?,j(ρ̃?, z̃)

)
, (5.23)

with the following new de�nitions, which use straight-

forward notations for the channel dependencies:

ri?,j(ρ̃?, z̃) = ρ̃?,j
{
ζi?,j(z̃)

}
+
− Ii?,j , (5.24)

ζi?,j(z̃) =
[
Qjt

i
?,j(z̃j)

]
·
[
(∇z̃)j
−1

]
. (5.25)

The actual solution of (5.23) follows immediately

from the algorithm described in Section 4.2. The depth

update simply uses three times more equations, which

improves its robustness, while the estimation of each

colored albedo is carried out independently in each chan-

nel in exactly the same way as in Section 4.2.

Since the depth estimation now uses more data, the

3D-model of Fig. 17, which uses RGB images, is im-

proved in two ways, in comparison with that of Fig. 15:

it is not only colored, but also more accurate.

6 Conclusion and Perspectives

In this article, we describe a photometric stereo-based

3D-reconstruction setup using LEDs as light sources.

We �rst model the luminous �ux emitted by a LED,

then the resulting photometric stereo problem. We pre-

sent a practical procedure for calibrating photometric

stereo under point light source illumination, and even-

tually, we study several numerical solutions. Existing

methods are based either on alternating estimation of

normals and depth, or on direct depth estimation using

(a)

3D-reconstruction error (mm)
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(b)

Fig. 17 (a) 3D-model estimated from the m = 8 images of
Fig. 2, which are RGB images. (b) Histogram of the distances
between this 3D-shape and the ground truth (cf. Fig. 7-c).
Using RGB images improves the result, in comparison with
the experiment of Fig. 15: the median of the point-to-point
distances to the ground truth is now equal to 0.85 mm.

image ratios. Both these methods have their own advan-

tages, but their convergence is not established. Hence,

we introduce a new, provably convergent solution based

on alternating reweighted least-squares. Finally, we ex-

tend the whole study to RGB images.

The result of Fig. 18 suggests that our goal i.e., the

estimation of colored 3D-models of faces by photometric

stereo, has been reached. Of course, many other types

of 3D-scanners exist, but ours relies only on materi-

als which are easy to obtain: a relatively mainstream

camera, eight LEDs and an Arduino controller to syn-

chronize the LEDs with the shutter release. Another

signi�cant advantage of our 3D-scanner is that it also

estimates the albedo.
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(a) (b) (c)

(d) (e)

Fig. 18 (a-b-c) Three RGB images (out of m = 8) of a face
captured by our setup. (d) Estimated 3D-shape. (e) Colored
3D-model. Since their estimation is relative to the Lambertian
planar calibration pattern, the colored albedos of the 3D-
model may appear di�erent from the colors of the images.

However, there may still be some points where the

shape, and therefore the albedo, are poorly estimated.

In the example of Fig. 19, the area under the nose,

which is dimly lit, is poorly reconstructed (this prob-

lem does not appear in the example of Fig. 18, because

the face is oriented in such a way that it is �well� il-

luminated). Although such artifacts remain con�ned,

thanks to robust estimation, future extensions of our

work could get rid of them by resorting to an additional

regularization term in the variational model.

Besides dealing with these defects, other questions

arise. In particular, could we extend our 3D-scanner to

full 3D-reconstruction, by coupling the proposed method

with multi-view 3D-reconstruction techniques [24]? Aside

from obtaining a more complete 3D-reconstruction, this

would circumvent the di�cult problem of handling pos-

sible discontinuities in a depth map, although Fig. 19

suggests that employing a non-convex estimator already

partly allows the recovery of such sharp structures [14].

(a) (b) (c)

(d) (e)

Fig. 19 (a-b-c) Three images (out of m = 8) of a face.
(d) Estimated 3D-shape. (e) Colored 3D-model. The 3D-
reconstruction is not satisfactory under the nose, which is
a dimly lit area. Robustness of the proposed method to shad-
ows could still be improved.

Eventually, the proposed numerical framework could

be extended in order to automatically re�ne calibration.

Several steps in that direction were already achieved

in [38,44,51,57], but either without convergence anal-

ysis [38,44,51] or in the restricted case where only the

source intensities are re�ned [57]. Providing a provably

convergent method for uncalibrated photometric stereo

under point light source illumination would thus con-

stitute a natural extension of our work.
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A Proof of Lemma 1

Proof First note that, under the condition (4.29), the func-
tion E(·, z̃) (resp. Ẽz̃(·; ρ̃, z̃)) is twice continuously di�eren-
tiable at ρ̃ (resp. z̃), whenever (ρ̃, z̃) is su�ciently close to (ρ̃∗, z̃∗).
The corresponding second-order derivatives are calculated as
follows:

δρ̃>
∂2E
∂ρ̃2

(ρ̃, z̃)δρ̃ =

n∑
j=1

m∑
i=1

φ′′(rij(ρ̃, z̃))
(
δρ̃j{ζij(z̃)}+

)2
,

(A.1)

δz̃>∂2Ẽz̃(z̃; ρ̃, z̃)δz̃

=

n∑
j=1

m∑
i=1

φ′′(rij(ρ̃, z̃))
(
ρ̃j χ(ζ

i
j(z̃)) δz̃

>∂ζij(z̃)
)2
. (A.2)

Comparing the above two formulas with (4.21) and (4.25),
the conclusion follows from condition (4.8). ut



24 Yvain Quéau et al.

B Proof of Theorem 1

Proof First note that condition (4.32) implies that

∂2E
∂ρ̃2

(ρ̃∗, z̃∗) � O, (B.1)

∂2E
∂z̃2

(ρ̃∗, z̃∗)−
∂2E
∂ρ̃∂z̃

(ρ̃∗, z̃∗)
∂2E
∂ρ̃2

(ρ̃∗, z̃∗)−1 ∂2E
∂ρ̃∂z̃

(ρ̃∗, z̃∗) � O.

(B.2)

Utilizing Lemma 1 in conjunction with (B.2) and (4.33), we
obtain

Hρ̃(ρ̃
∗, z̃∗) � O, Hz̃(ρ̃

∗, z̃∗) � O, (B.3)

∂2E
∂z̃2

(ρ̃∗,z̃∗)−
∂2E
∂ρ̃∂z̃

(ρ̃∗,z̃∗)Hρ̃(ρ̃
∗, z̃∗)−1 ∂2E

∂ρ̃∂z̃
(ρ̃∗,z̃∗) � O.

(B.4)

Now consider the iteration

z̃(k+1) = z̃(k) −Hz̃
(
ρ̃(k+1), z̃(k)

)−1 ∂E
∂z̃

(ρ̃(k+1), z̃(k))

= z̃(k)−Hz̃
(
ρ̃(k)−Hρ̃(ρ̃(k),z̃(k))−1 ∂E

∂ρ̃
(ρ̃(k),z̃(k)),z̃(k)

)−1

∂E
∂z̃

(
ρ̃(k)−Hρ̃(ρ̃(k), z̃(k))−1 ∂E

∂ρ̃
(ρ̃(k), z̃(k)), z̃(k)

)
(B.5)

as a map z̃(k) 7→ z̃(k+1). By the Ostrowski theorem [50,
Proposition 10.1.3], the local convergence of {z̃(k)} to z̃∗ fol-
lows if the spectral radius of the Jacobian

∂z̃(k+1)

∂z̃(k)
(ρ̃∗, z̃∗) = id−Hz̃(ρ̃∗, z̃∗)−1 ∂

2E
∂z̃2

(ρ̃∗, z̃∗)

+Hz̃(ρ̃
∗, z̃∗)−1 ∂2E

∂ρ̃∂z̃
(ρ̃∗, z̃∗)Hρ̃(ρ̃

∗, z̃∗)−1

∂2E
∂ρ̃∂z̃

(ρ̃∗, z̃∗) (B.6)

is strictly less than 1. Using the similarity transform with

Hz̃(ρ̃∗, z̃∗)
1

2 , we derive:

sr

(
∂z̃(k+1)

∂z̃k
(ρ̃∗, z̃∗)

)
= sr

(
Hz̃(ρ̃

∗, z̃∗)
1

2
∂z̃(k+1)

∂z̃k
(ρ̃∗, z̃∗)Hz̃(ρ̃

∗, z̃∗)−
1

2

)
(B.7)

= sr

(
id−Hz̃(ρ̃∗, z̃∗)−

1

2
∂2E
∂z̃2

(ρ̃∗, z̃∗)Hz̃(ρ̃
∗, z̃∗)−

1

2

+Hz̃(ρ̃
∗, z̃∗)−

1

2
∂2E
∂ρ̃∂z̃

(ρ̃∗, z̃∗)Hρ̃(ρ̃
∗, z̃∗)−1

∂2E
∂ρ̃∂z̃

(ρ̃∗, z̃∗)Hz̃(ρ̃
∗, z̃∗)−

1

2

)
(B.8)

= sup
‖v‖=1

∣∣∣∣‖v‖2
− v>Hz̃(ρ̃

∗, z̃∗)−
1

2
∂2E
∂z̃2

(ρ̃∗, z̃∗)Hz̃(ρ̃
∗, z̃∗)−

1

2 v

+ v>Hz̃(ρ̃
∗, z̃∗)−

1

2
∂2E
∂ρ̃∂z̃

(ρ̃∗, z̃∗)Hρ̃(ρ̃
∗, z̃∗)−1

∂2E
∂ρ̃∂z̃

(ρ̃∗, z̃∗)Hz̃(ρ̃
∗, z̃∗)−

1

2 v

∣∣∣∣. (B.9)

It follows from condition (4.34) that

∂2E
∂z̃2

(ρ̃∗, z̃∗) ≺ 2∂2Ẽz̃(z̃∗; ρ̃∗, z̃∗) � 2Hz̃(ρ̃
∗, z̃∗), (B.10)

and hence

id−Hz̃(ρ̃∗, z̃∗)−
1

2
∂2E
∂z̃2

(ρ̃∗, z̃∗)Hz̃(ρ̃
∗, z̃∗)−

1

2 � −id. (B.11)

Consequently, there exists ε1 ∈ (0, 1) such that the following
inequality holds for an arbitrary v:

‖v‖2 − v>Hz̃(ρ̃
∗, z̃∗)−

1

2
∂2E
∂z̃2

(ρ̃∗, z̃∗)Hz̃(ρ̃
∗, z̃∗)−

1

2 v

≥ −(1− ε1)‖v‖2. (B.12)

Meanwhile, condition (B.4) implies that, for some ε2 ∈ (0, 1):

v>Hz̃(ρ̃
∗, z̃∗)−

1

2
∂2E
∂z̃2

(ρ̃∗, z̃∗)Hz̃(ρ̃
∗, z̃∗)−

1

2 v

− v>Hz̃(ρ̃
∗, z̃∗)−

1

2
∂2E
∂ρ̃∂z̃

(ρ̃∗, z̃∗)Hρ̃(ρ̃
∗, z̃∗)−1

∂2E
∂ρ̃∂z̃

(ρ̃∗, z̃∗)Hz̃(ρ̃
∗, z̃∗)−

1

2 v

= (Hz̃(ρ̃
∗, z̃∗)−

1

2 v)>(∂2E
∂z̃2

(ρ̃∗, z̃∗)−
∂2E
∂ρ̃∂z̃

(ρ̃∗, z̃∗)Hρ̃(ρ̃
∗, z̃∗)−1 ∂2E

∂ρ̃∂z̃
(ρ̃∗, z̃∗)

)
(
Hz̃(ρ̃

∗, z̃∗)−
1

2 v
)

(B.13)

≥ ε2‖v‖2. (B.14)

Altogether, we conclude

sr

(
∂z̃(k+1)

∂z̃k
(ρ̃∗, z̃∗)

)
≤ 1−min(ε1, ε2), (B.15)

and hence the convergence of {z̃(k)}. The convergence of
{ρ̃(k)} to ρ̃∗ follows from a similar argument. ut
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