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Abstract We conduct a thorough study of photomet-

ric stereo under nearby point light source illumination,

from modeling to numerical solution, through calibra-

tion. In the classical formulation of photometric stereo,

the luminous �uxes are assumed to be directional, which

is very di�cult to achieve in practice. Rather, we use

light-emitting diodes (LEDs) to illuminate the scene

to reconstruct. Such point light sources are very con-

venient to use, yet they yield a more complex photo-

metric stereo model which is arduous to solve. We �rst

derive in a physically sound manner this model, and

show how to calibrate its parameters. Then, we dis-

cuss two state-of-the-art numerical solutions. The �rst
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one alternatingly estimates the albedo and the normals,

and then integrates the normals into a depth map. It

is shown empirically to be independent from the ini-

tialization, but convergence of this sequential approach

is not established. The second one directly recovers the

depth, by formulating photometric stereo as a system of

PDEs which are partially linearized using image ratios.

Although the sequential approach is avoided, initializa-

tion matters a lot and convergence is not established

either. Therefore, we introduce a provably convergent

alternating reweighted least-squares scheme for solving

the original system of PDEs, without resorting to image

ratios for linearization. Finally, we extend this study

to the case of RGB images.

Keywords 3D-reconstruction · Photometric stereo ·
Point light sources · Variational methods · Alternating
reweighted least-squares.

1 Introduction

3D-reconstruction is one of the most important goals

of computer vision. Among the many techniques which

can be used to accomplish this task, shape-from-shading

[27] and photometric stereo [64] are photometric tech-

niques, as they use the relationship between the gray

levels of the image, the shape of the scene, supposedly

opaque, its re�ectance and the luminous �ux that illu-

minates it.

We �rst introduce some notations that will be used

throughout this paper. We describe a point x on the

scene surface by its coordinates [x, y, z]> in a frame

originating from the optical center C of the camera,

such that the plane Cxy is parallel to the image plane

and the Cz axis coincides with the optical axis and

faces the scene (cf. Fig. 1). The coordinates [u, v]> of a
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point p in the image (pixel) are relative to a frame Ouv

whose origin is the principal point O, and whose axes

Ou and Ov are parallel to Cx and Cy, respectively. If f

refers to the focal length, the conjugation relationship

between x and p is written, in perspective projection:
x =

z

f
u,

y =
z

f
v.

(1.1)

xn(x)
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Fig. 1 Schematic representation of the geometric setup. A
point x = [x, y, z]> ∈ R3 on the scene surface and a pixel p =
[u, v]> ∈ R2 in the image plane are conjugated according to
Eq. (1.1). Eq. (2.19) states that, when the scene is illuminated
by a LED located in xs ∈ R3, the gray level I(p) of the
pixel p conjugated to x is a function of the angle between
the lighting vector s(x) and the normal n(x) to the surface
in x (Lambertian re�ectance), of the angle θ between the
principal direction ns of the LED and s(x) (anisotropy), and
of the distance ‖x − xs‖ between the surface point and the
light source location (inverse-of-square fallo�).

3D-reconstruction consists in estimating, in each pixel

p of a part Ω of the image domain, its conjugate point x

in 3D-space. Eq. (1.1) shows that it su�ces to �nd the

depth z to determine x = [x, y, z]
>
from p = [u, v]

>
.

The only unknown of the problem is thus the depth map

z, which is de�ned as follows:

z : Ω ⊂ R2 → R+

p = [u, v]> 7→ z(p).
(1.2)

We are interested in this article in 3D-reconstruction

of Lambertian surfaces by photometric stereo. The re-

�ectance in a point of such a surface is completely char-

acterized by a coe�cient ρ, called albedo, which is 0 if

the point is black and 1 if it is white. Photometric stereo

is nothing else than an extension of shape-from-shading:

instead of a single image, the former uses m > 3 shots

Ii, i ∈ [1,m], taken from the same angle, but under

varying lighting. Considering multiple images allows to

circumvent the di�culties of shape-from-shading: pho-

tometric stereo techniques are able to unambiguously

estimate the shape as well as the albedo i.e., without

any resort to additional prior.

A parallel and uniform illumination can be charac-

terized by a vector s ∈ R3 oriented towards the light

source, whose norm is equal to the luminous �ux den-

sity. We call s the lighting vector. For a Lambertian

surface, the classical modeling of photometric stereo is

written, in each pixel p ∈ Ω, as the following system1:

Ii(p) = ρ(x) si · n(x), i ∈ [1,m], (1.3)

where Ii(p) denotes the gray level of p under a paral-

lel and uniform illumination characterized by the light-

ing vector si, ρ(x) denotes the albedo in the point x

conjugate to p, and n(x) denotes the unit-length out-

going normal to the surface in this point. Since there

is a bijective correspondence between the points x and

the pixels p, we write for convenience ρ(p) and n(p), in

lieu of ρ(x) and n(x). Introducing the notation m(p) =

ρ(p)n(p), (1.3) can be rewritten in matrix form:

I(p) = Sm(p), (1.4)

where vector I(p) ∈ Rm and matrix S ∈ Rm×3 are

de�ned as follows:

I(p) =

 I
1(p)
...

Im(p)

 and S =

 s
1>

...

sm>

 . (1.5)

As soon as m > 3 non-coplanar lighting vectors are

used, matrix S has rank 3. The (unique) least-squares

solution of System (1.4) is then given by

m(p) = S† I(p), (1.6)

where S† is the pseudo-inverse of S. From this solution,

we easily deduce the albedo and the normal:

ρ(p) = ‖m(p)‖ and n(p) =
m(p)

‖m(p)‖
. (1.7)

The normal �eld estimated in such a way must even-

tually be integrated so as to obtain the depth map,

knowing that the boundary conditions, the shape of

domain Ω as well as depth discontinuities signi�cantly

complicate this task [54].

To ensure lighting directionality, as required by Model

(1.3), it is necessary to achieve a complex optical setup [44].

It is much easier to use light-emitting diodes (LEDs)

as light sources, but with this type of light sources,

we should expect signi�cant changes in the modeling,

and therefore in the numerical solution. The aim of our

work is to conduct a comprehensive and detailed study

of photometric stereo under point light source illumi-

nation such as LEDs.

1 Equality (1.3) is in fact a proportionality relationship: see
the expression (2.10) of I(p).
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Related works � Modeling the luminous �ux emitted by

a LED is a well-studied problem, see for instance [45].

One model which is frequently considered in computer

vision is that of nearby point light sources. This model

involves an inverse-of-square law for describing the at-

tenuation of lighting intensity with respect to distance,

which has long been identi�ed as a key feature for solv-

ing shape-from-shading [31] and photometric stereo [12].

Attenuation with respect to the deviation from the prin-

cipal direction of the source (anisotropy) can also be

considered [7].

If the surface to reconstruct lies in the vicinity of a

plane, it is possible to capture a map of these attenua-

tion coe�cients using a white planar reference object.

Conventional photometric stereo [64] can then be ap-

plied to the images compensated by the attenuation

maps [3,39,61]. Otherwise, it is necessary to include

these terms in the photometric stereo model, which

yields a nonlinear inverse problem to be solved.

This is easier to achieve if the parameters of the illu-

mination model have been calibrated beforehand. Lots

of methods exist for estimating a source location [1,4,

11,17,21,53,59,62]. Such methods typically triangulate

this location by resorting to specular spheres, see for

instance the recent work [36]. Calibrating anisotropy

is a more challenging problem, which was tackled re-

cently in [47,67] by using images of a planar surface.

Some photometric stereo methods also circumvent cal-

ibration by (partly or completely) automatically infer-

ring lighting during 3D-reconstruction [35,36,37,43,50,

57].

Still, even in the calibrated case, designing numeri-

cal schemes for solving photometric stereo under nearby

point light sources remains di�cult. When only two im-

ages are considered, the photometric stereo model can

be simpli�ed using image ratios. This yields a quasi-

linear PDE [41,42] which can be solved by provably

convergent front propagation techniques, provided that

a boundary condition is known. To improve robustness,

this strategy has been adapted to the multi-images case

in [37,38,40,55], using variational methods. However,

convergence guarantees are lost. Instead of consider-

ing such a di�erential approach, another class of meth-

ods [2,8,13,28,33,46,50,69] rather modify the classical

photometric stereo framework [64], by alternatingly es-

timating the normals and the albedo, integrating the

normals into a depth map, and updating the lighting

based on the current depth. Yet, no convergence guar-

antee does exist. A method based on mesh deformation

has also been proposed in [68], but convergence is not

established either.

Contributions � In contrast to existing works which fo-

cus either on modeling, calibrating or solving photomet-

ric stereo with near point light sources such as LEDs,

the objective of this article is to propose a comprehen-

sive study of all these aspects of the problem. Building

upon our previous conference papers [55,57,58], we in-

troduce the following innovations:

• We present in Section 2 an accurate model for pho-

tometric stereo under point light source illumina-

tion. As in recent works [37,38,41,42,40,46,47,67],

this model takes into account the nonlinearities due

to distance and to the anisotropy of the LEDs. Yet,

it also clari�es the notions of albedo and of source

intensity, which are shown to be relative to a ref-

erence albedo and to the radiometric parameters of

the camera. This section also introduces a practical

calibration procedure for the location, the orienta-

tion and the relative intensity of a LED.

• Section 3 reviews and improves two state-of-the-

art numerical solutions in several manners. We �rst

modify the alternating method [2,8,13,28,33,46,50,

69], by introducing an estimation of the shape scale,

in order to recover the absolute depth without any

prior. We then study the PDE-based approach which

employs image ratios for eliminating the nonlinear-

ities [37,38,40,55], and empirically show that local

minima can be avoided by employing an augmented

Lagrangian strategy. Nevertheless, neither of these

state-of-the-art methods is provably convergent.

• Therefore, we introduce in Section 4 a new, prov-

ably convergent method, inspired by the one re-

cently proposed in [57]. It is based on a tailored

alternating reweighted least-squares scheme for ap-

proximately solving the non-linearized system of PDEs.

Following [58], we further show that this method

is easily extended in order to address shadows and

specularities.

• In Section 5, we build upon the analysis conducted

in [55] in order to tackle the case of RGB-valued

images, before concluding and suggesting several fu-

ture research directions in Section 6.

2 Photometric Stereo under Point Light Source

Illumination

Conventional photometric stereo [64] assumes that the

primary luminous �uxes are parallel and uniform, which

is di�cult to guarantee. It is much easier to illuminate

a scene with LEDs.
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Keeping this in mind, we have developed a pho-

tometric stereo-based setup for 3D-reconstruction of

faces, which includes m = 8 LEDs2 located at about

30 cm of the scene (see Fig. 2-a). The face is pho-

tographed by a Canon EOS 7D camera with focal length

f = 35mm. Triggering the shutter in burst mode, while

synchronically lighting the LEDs, provides us withm =

8 images such as those of Figs. 2-b, 2-c and 2-d. In this

section, we model the luminous �ux emitted by a LED,

and show how to estimate the parameters involved. We

�nally show how to model photometric stereo under

point light source illumination.

(a)

(b) (c) (d)

Fig. 2 (a) Our photometric stereo-based experimental setup
for 3D-reconstruction of faces using a Canon EOS 7D camera
(highlighted in red) and m = 8 LEDs (highlighted in blue).
The walls are painted in black in order to avoid the re�ections
between the scene and the environment. (b-c-d) Three out of
the m = 8 images obtained by this setup.

2.1 Modeling the Luminous Flux Emitted by a LED

For the LEDs we use, the characteristic illuminating

volume is of the order of one cubic millimeter. There-

fore, in comparison with the scale of a face, each LED

can be seen as a point source located at a point xs ∈ R3.

At any point x ∈ R3, the lighting vector s(x) is nec-

essarily radial i.e., collinear with the unit-length vector

2 We use white LUXEON Rebel LEDs: http://www.

luxeonstar.com/luxeon-rebel-leds.

ur = x−xs
‖x−xs‖ . Using spherical coordinates (r, θ, φ) of x

in a frame having xs as origin, it is written

s(x) = −Φ(θ, φ)
r2

ur, (2.1)

where Φ(θ, φ) > 0 denotes the intensity of the source3,

and the 1/r2 attenuation is a consequence of the conser-

vation of luminous energy in a non-absorbing medium.

Vector s(x) is purposely oriented in the opposite di-

rection from that of the light, in order to simplify the

writing of the Lambertian model.

Model (2.1) is very general. We could project the in-

tensity Φ(θ, φ) on the spherical harmonics basis, which

allowed Basri et al. to model the luminous �ux in the

case of uncalibrated photometric stereo [6]. We could

also sample Φ(θ, φ) in the vicinity of a plane, using a

plane with known re�ectance [3,39,61].

Using the speci�c characteristics of LEDs may lead

to a more accurate model. Indeed, most of the LEDs

emit a luminuous �ux which is invariant by rotation

around a principal direction indicated by a unit-length

vector ns [45]. If θ is de�ned relatively to ns, this means

that Φ(θ, φ) is independent from φ. The lighting vector

in x induced by a LED located in xs is thus written

s(x) =
Φ(θ)

‖xs − x‖2
xs − x

‖xs − x‖
. (2.2)

The dependency on θ of the intensity Φ character-

izes the anisotropy of the LED. The function Φ(θ) is

generally decreasing over [0, π/2] (cf. Fig. 3).

(a) (b)

Fig. 3 Intensity patterns of the LEDs used (source: http:
//www.lumileds.com/uploads/28/DS64-pdf). (a) Anisotropy
function Φ(θ)/Φ0 as a function of θ. (b) Polar representation.
These diagrams show us that θ1/2 = π/3, which corresponds
to µ = 1 according to Eq. (2.4) (Lambertian source).

An anisotropy model satisfying this constraint is

that of �imperfect Lambertian source�:

Φ(θ) = Φ0 cosµ θ, (2.3)

which contains two parameters Φ0 = Φ(0) and µ > 0,

and models both isotropic sources (µ = 0) and Lamber-

tian sources (µ = 1). Model (2.3) is empirical, and more

3 The intensity is expressed in lumen per steradian
(lm.sr−1), or candela (cd).

http://www.luxeonstar.com/luxeon-rebel-leds
http://www.luxeonstar.com/luxeon-rebel-leds
http://www.lumileds.com/uploads/28/DS64-pdf
http://www.lumileds.com/uploads/28/DS64-pdf
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elaborate models are sometimes considered [45], yet it

has already been used in photometric stereo [37,38,40,

41,46,47,57,67], including the case where all the LEDs

are arranged on a plane parallel to the image plane

i.e., when ns = [0, 0, 1]> [42]. This model has proven

itself and, moreover, LEDs manufacturers provide the

angle θ1/2 such that Φ(θ1/2) = Φ0/2, from which we

deduce, using (2.3), the value of µ:

µ = − log(2)

log(cos θ1/2)
. (2.4)

As shown in Fig. 3, the angle θ1/2 is π/3 for the LEDs

we use. From Eq. (2.4), we deduce that µ = 1, which

means that these LEDs are Lambertian. Plugging the

expression (2.3) of Φ(θ) into (2.2), we obtain

s(x) = Φ0 cosµ θ
xs − x

‖xs − x‖3
, (2.5)

where we explicitly keep µ to address the most general

case. Model (2.5) thus includes seven parameters: three

for the coordinates of xs, two for the unit vector ns, plus

Φ0 and µ. Note that ns appears in this model through

the angle θ.

In its uncalibrated version, photometric stereo al-

lows the 3D-reconstruction of a scene without know-

ing the lighting. Uncalibrated photometric stereo has

been widely studied, including the case of nearby point

light sources [28,35,43,50,69], but if this is possible, we

should rather calibrate the lighting4.

2.2 Calibrating the Luminous Flux Emitted by a LED

Most calibration methods for a point light source [1,4,

11,17,21,53,59,62] do not take into account the atten-

uation of the luminous �ux density as a function of the

distance to the source, nor the possible anisotropy of

the source, which may lead to relatively imprecise re-

sults. To our knowledge, there are few calibration pro-

cedures taking into account these phenomena. In [67],

Xie et al. use a single pattern, which is partially bright

and partially Lambertian, to calibrate a LED. We in-

tend to improve this procedure using two patterns, one

bright and the other Lambertian. The brilliant one will

be used to determine the location of the LEDs by tri-

angulation, and the Lambertian one to determine some

other parameters by minimizing the reprojection error,

as recently proposed by Pintus et al. in [52].

4 It is also necessary to calibrate the camera, since the 3D-
frame is attached to it. We assume that this has been made
beforehand.

Specular Spherical Calibration Pattern � The location

xs of a LED can be determined by triangulation. In

[53], Powell et al. advocate the use of a spherical mir-

ror. To estimate the locations of them = 8 LEDs for our

setup, we use a billiard ball. Under perspective projec-

tion, the edge of the silhouette of a sphere is an ellipse,

which we detect using a dedicated algorithm [51]. It is

then easy to determine the 3D-coordinates of any point

on the surface, as well as its normal, since the radius

of the billiard ball is known. For each pose of the bil-

liard ball, detecting the re�ection of the LED allows

us to determine, by re�ecting the line of sight on the

spherical mirror, a line in 3D-space passing through xs.

In theory, two poses of the billiard ball are enough to

estimate xs, even if two lines in 3D-space do not neces-

sarily intersect, but the use of ten poses improves the

robustness of the estimation. A similar procedure has

recently been used in [36].

Lambertian Model � To estimate the principal direction

ns and the intensity Φ0 in Model (2.5), we use a Lam-

bertian calibration pattern. A surface is Lambertian if

the apparent clarity of any point x located on it is inde-

pendent from the viewing angle. The luminance L(x),

which is equal to the luminous �ux emitted per unit

of solid angle and per unit of apparent surface, is in-

dependent from the direction of emission. However, the

luminance is not characteristic of the surface, as it de-

pends on the illuminance E(x) (denoted E from French

�éclairement�), that is to say on the luminous �ux per

unit area received by the surface in x. The relationship

between luminance and illuminance5 is written, for a

Lambertian surface:

L(x) =
ρ(x)

π
E(x), (2.6)

where the albedo ρ(x) ∈ R+ is de�ned as the proportion

of luminous energy which is reemitted i.e., ρ(x) = 1 if

x is white, and ρ(x) = 0 if it is black.

The parameter ρ(x) is enough to characterize the

re�ectance (or BRDF) of a Lambertian surface. In ad-

dition, the illuminance at a point x of a (not necessarily

Lambertian) surface with normal n(x), lit by the light-

ing vector s(x), is written

E(x) = s(x) · n(x). (2.7)

Focusing the camera on a point x of the scene sur-

face, the illuminance ε(p) of the image plane, at pixel

p conjugate to x, is related to the luminance L(x) by

the following �almost linear� relationship [26]:

ε(p) = β cos4 α(p)L(x), (2.8)

5 A luminance is expressed in lm.m−2.sr−1 (or cd.m−2),
an illuminance in lm.m−2, or lux (lx).
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where β is a proportionality coe�cient characterizing

the clarity of the image, which depends on several fac-

tors such as the lens aperture, the magni�cation, etc.

Regarding the factor cos4 α(p), where α(p) is the an-

gle between the line of sight and the optical axis, it is

responsible for darkening at the periphery of the im-

age. This darkening phenomenon should not be con-

fused with vignetting, since it occurs even with ideal

lenses [16].

With current photosensitive receptors, the gray level

J(p) at pixel p is almost proportional6 to its illumi-

nance ε(p), except of course in case of saturation. De-

noting γ this coe�cient of quasi-proportionality, and

combining equalities (2.6), (2.7) and (2.8), we get the

following expression of the gray level in a pixel p con-

jugate to a point x located on a Lambertian surface:

J(p) = γ β cos4 α(p)
ρ(x)

π
s(x) · n(x). (2.9)

We have already mentioned that there is a bijective cor-

respondence between a point x and its conjugate pixel

p, which allows us to denote ρ(p) and n(p) instead of

ρ(x) and n(x). As the factor cos4 α(p) is easy to cal-

culate in each pixel p of the photosensitive receptor,

since cosα(p) = f√
‖p‖2+f2

, we can very easily compen-

sate for this source of darkening and will manipulate

now the �corrected gray level�:

I(p) =
J(p)

cos4 α(p)
= γ β

ρ(p)

π
s(x) · n(p). (2.10)

Lambertian Planar Calibration Pattern � To estimate

the parameters ns and Φ0 in Model (2.6) i.e., to achieve

photometric calibration, we use a second calibration pat-

tern consisting of a checkerboard printed on a white

paper sheet, which is itself stuck on a plane (cf. Fig.

4), with the hope that the unavoidable outliers to the

Lambertian model will not in�uence the accuracy of the

estimates too much.

The use of a convex calibration pattern (plane, in

this case) has a signi�cant advantage: the lighting vec-

tor s(x) at any point x of the surface is purely primary

i.e., it is only due to the light source, without �bounc-

ing� on other parts of the surface of the target, provided

that the walls and surrounding objects are covered in

black (see Fig. 2-a). Thanks to this observation, we can

replace the lighting vector s(x) in Eq. (2.10) by the ex-

pression (2.5) which models the luminous �ux emitted

by a LED. From (2.5) and (2.10), we deduce the gray

6 Using RAW images is necessary to ensure such propor-
tionality.

Fig. 4 Two out of the q poses of the planar Lambertian
calibration pattern used for the photometric calibration of
the LEDs. The parts of the white cells highlighted in red are
used for estimating the principal directions and the intensities
of the LEDs.

level I(p) of the image of a point x located on this

calibration pattern, illuminated by a LED:

I(p) = γ β
ρ(p)

π
Φ0 cosµ θ

(xs − x) · n(p)
‖xs − x‖3

. (2.11)

If q > 3 poses of the checkerboard are used, numer-

ous algorithms exist for unambiguously estimating the

coordinates of the points xj of the pattern, for di�erent

poses j ∈ [1, q]. These algorithms also allow the estima-

tion of the q normals nj (we omit the dependency in

p of nj , since the pattern is planar), and the intrinsic

parameters of the camera7. As for the albedo, if the use

of white paper does not guarantee that ρ(p) ≡ 1, it still

seems reasonable to assume ρ(p) ≡ ρ0 i.e., to assume

a uniform albedo in the white cells. We can group all

the multiplicative coe�cients of the right hand side of

(2.11) into one coe�cient

Ψ = γ β
ρ0
π
Φ0. (2.12)

With this de�nition, and knowing that θ is the angle be-

tween vectors ns and x−xs, Eq. (2.11) can be rewritten,
in a pixel p of the set Ωj containing the white pixels

of the checkerboard in the jth pose (these pixels are

highlighted in red in the images of Fig. 4):

Ij(p) = Ψ

[
ns ·

xj − xs
‖xj − xs‖

]µ
(xs − xj) · nj

‖xs − xj‖3
. (2.13)

Since xs is already estimated, and the value of µ is

(indirectly) provided by the manufacturer, the only un-

knowns in Eq. (2.13) are Ψ and ns. Two cases may

occur:

• If the LED to calibrate is isotropic i.e., if µ = 0, then

it is useless to estimate ns, and Ψ can be estimated

in a least-squares sense, by solving

min
Ψ

q∑
j=1

∑
p∈Ωj

[
Ij(p)− Ψ (xs − xj) · nj

‖xs − xj‖3

]2
, (2.14)

7 To perform these operations, which allow us to perform
the geometric calibration of the camera, we use the Computer

Vision toolbox from Matlab.
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whose solution is given by

Ψ =

q∑
j=1

∑
p∈Ωj

Ij(p)
(xs − xj) · nj

‖xs − xj‖3

q∑
j=1

∑
p∈Ωj

[
(xs − xj) · nj

‖xs − xj‖3

]2 . (2.15)

• In the other case (if µ > 0), Eq. (2.13) can be rewrit-

ten

Ψ1/µ ns︸ ︷︷ ︸
ms

· (xj−xs)=
[
Ij(p)

‖xs − xj‖3+µ

(xs − xj) · nj

]1/µ
. (2.16)

The least-squares estimation of vector ms de�ned

in (2.16) is thus written

min
ms

q∑
j=1

∑
p∈Ωj

[
ms · (xj−xs)−

[
Ij(p)

‖xs−xj‖3+µ

(xs−xj) · nj

]1/µ]2
.

(2.17)

This linear least-squares problem can be solved, for

instance, using the pseudo-inverse. From this es-

timate, we easily deduce those of parameters ns
and Ψ :

ns =
ms

‖ms‖
and Ψ = ‖ms‖µ. (2.18)

In both cases, it is impossible to deduce from the es-

timate of Ψ that of Φ0, because in the de�nition (2.12)

of Ψ , the product γ β ρ0
π is unknown. However, since this

product is the same for all LEDs (deactivating all auto-

matic settings of the camera makes β and γ constant),

this is not a problem for photometric stereo.

Fig. 5 shows two views of a schematic representa-

tion of the experimental setup of Fig. 2, where LEDs

parameters were estimated using our calibration proce-

dure.

2.3 Modeling Photometric Stereo with Point Light

Sources

If the luminous �ux emitted by a LED is described by

Model (2.5), then we obtain from (2.11) and (2.12) the

following equation for the gray level at pixel p:

I(p) = Ψ
ρ(p)

ρ0

[
ns ·

x−xs
‖x−xs‖

]µ
(xs−x) · n(p)
‖xs−x‖3

. (2.19)

Thus, we must solve, in each pixel p ∈ Ω, the following
system of equations, for i ∈ [1,m]:

Ii(p) = Ψ i
ρ(p)

ρ0

[
nis ·

x−xis
‖x−xis‖

]µi
(xis−x) · n(p)
‖xis−x‖3

, (2.20)
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Fig. 5 Two views of a schematic representation of the ex-
perimental setup of Fig. 2-a, where the arrows symbolize the
LEDs (unit mm). The camera center is located in (0, 0, 0). A
black marker characterizes the location xs of each LED, the
orientation of a blue arrow its principal direction ns, and the
length of this arrow its intensity Ψ (up to a common factor).

where the values of parameters xis, nis and Ψ i, i ∈
[1,m], are known, thanks to the calibration procedure

described in Section 2.2. Let us introduce a new def-

inition of the albedo relative to the albedo ρ0 of the

Lambertian calibration pattern:

ρ(p) =
ρ(p)

ρ0
. (2.21)

Since the parameters µi, i ∈ [1,m], are provided by

the manufacturer, the only unknowns in System (2.20)

are the depth z of the 3D-point x conjugate to p, its

(relative) albedo ρ(p) and its normal n(p). To solve

this system, the introduction of the auxiliary variable

m(p) = ρ(p)n(p) may seem relevant, since this vector

is not constrained to have unit-length, but we will see

that this trick loses part of its interest. De�ning the

following m vectors, i ∈ [1,m]:

ti(x) = Ψ i
[
nis ·

x− xis
‖x− xis‖

]µi
xis − x

‖xis − x‖3
, (2.22)

then System (2.20) is rewritten:

Ii(p) = ti(x) ·m(p), i ∈ [1,m], (2.23)

or, in matrix form:

I(p) = T(x)m(p), (2.24)
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where I(p) ∈ Rm has been de�ned in (1.5) and T(x) ∈
Rm×3 is de�ned as follows:

T(x) =

 t
1(x)>

...

tm(x)>

 . (2.25)

Eq. (2.24) is similar to (1.4). Knowing the matrix �eld

T(x) would allow us to estimate its �eld of pseudo-

inverses in order to solve (2.24), just as calculating the

pseudo-inverse of S allows us to solve (1.4). However,

the matrix �eld T(x) depends on x, and thus on the

unknown depth. We will see that this simple di�erence

induces major changes when it comes to the numerical

solution.

The dependency on x of matrix �eld T(x), which

signi�cantly complicates the solution of Problem (2.24),

has yet one advantage: if some gray levels Ii(p) do

not �t the Lambertian model, it is possible to elimi-

nate them, because the number of lines in each matrix

T(x) may vary from one pixel to another. As advo-

cated in [10], we systematically eliminate in Section 3

the highest gray level, which may come from a spec-

ular highlight, as well as the two lowest ones, which

may correspond to shadows. More elaborate methods

for ensuring robustness will be discussed in Section 4.

3 Existing Variational Approaches for Solving

Photometric Stereo under Point Light Source

Illumination

In this section, we study two variational approaches

from the literature for solving photometric stereo under

point light source illumination.

The �rst one inverts the nonlinear image formation

model by recasting it as a sequence of simpler subprob-

lems [2,8,13,28,33,46,50,69]. It consists in estimating

the normals and the albedo, assuming that the depth

map is �xed, then integrating the normals into a new

depth map, and to iterate. We show in Section 3.1 how

to improve this standard method in order to estimate

absolute depth, without resorting to any prior.

The second one �rst linearizes the image forma-

tion model by resorting to image ratios, then directly

estimates the depth by solving the resulting system

of PDEs in an approximate manner [37,38,40,55]. We

show in Section 3.2 that state-of-the-art solutions, which

resort to �xed point iterations, may be trapped in lo-

cal minima. This shortcoming can be avoided by rather

using an augmented Lagrangian algorithm.

Despite such improvements, we will see that these

state-of-the-art methods remain unsatisfactory, because

their convergence is not established.

3.1 Scheme Inspired by the Classical Numerical

Solution of Photometric Stereo

For solving Problem (2.24), it seems quite natural to

adapt the solution (1.6) of the linear model (1.4). To

linearize (2.24), we have to assume that matrix T(x) is

known. If we proceed iteratively, this can be made pos-

sible by replacing, at iteration (k+1), T(x) by T(x(k)).

This very simple idea has led to several numerical so-

lutions [2,8,13,28,33,46,50,69], which all require some

kind of a priori knowledge on the depth. On the con-

trary, the scheme we propose here requires none, which

constitutes a signi�cant improvement. If x(0) denotes an

initial 3D-shape, this new scheme consits in iterating:

1. Solve Problem (2.24) in the least-squares sense in

each p ∈ Ω, replacing T(x) by T(x(k)), which pro-

vides a new estimation of m(p):

m(k+1)(p) = T(x(k))†I(p). (3.1)

2. Deduce a new estimation of the normal n(p):

n(k+1)(p) =
m(k+1)(p)

‖m(k+1)(p)‖
. (3.2)

3. Integrate the new normal �eld n(k+1), into an up-

dated 3D-shape x(k+1), up to a scale factor.

4. Estimate this scale factor by nonlinear optimization.

5. Increment k as long as k ≤ kmax.

For this scheme to be completely speci�ed, we need to

set the initial 3D-shape x(0). We use as initial guess a

fronto-parallel plane at distance z0 from the camera, z0
being a rough estimate of the mean distance from the

camera to the surface.

Integration of Normals � Stages 1 and 2 of the scheme

above are trivial and can be achieved pixelwise, but

Stages 3 and 4 are trickier. From the equalities in (1.1),

it is easy to deduce that the (non-unit-length) vector

n(p) =

 f ∂uz(p)

f ∂vz(p)

−z(p)− p · ∇z(p)

 (3.3)

is normal to the surface (the vector∇z(p) = [∂uz(p), ∂vz(p)]
>

is the gradient of z in p). Expression (3.3) shows that

integrating the (unit-length) normal �eld n allows to

estimate the depth z only up to a scale factor κ ∈ R,
since:

n(p) ∝

 f ∂uz(p)

f ∂vz(p)

−z(p)− p · ∇z(p)

 ∝
 f ∂u(κ z)(p)

f ∂v(κ z)(p)

−(κ z)(p)− p · ∇(κ z)(p)

 .
(3.4)
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The collinearity of n(p) and n(p) = [n1(p), n2(p), n3(p)]
>

leads to the system{
n3(p) f ∂uz(p)+n1(p) [z(p)+p ·∇z(p)] = 0,

n3(p) f ∂vz(p)+n2(p) [z(p)+p ·∇z(p)] = 0,
(3.5)

which is homogeneous in z(p). Introducing the change

of variable z̃ = log(z), which is valid since z > 0, (3.5)

is rewritten{
[f n3(p) + un1(p)] ∂uz̃(p) + v n1(p)∂v z̃(p) = −n1(p),
u n2(p)∂uz̃(p) + [f n3(p) + v n2(p)] ∂v z̃(p) = −n2(p).

(3.6)

The determinant of this system is equal to

f n3(p) [un1(p)+v n2(p)+f n3(p)] = f n3(p) [p · n(p)] ,
(3.7)

if we denote

p = [u, v, f ]>. (3.8)

It is then easy to deduce the solution of (3.6):

∇z̃(p) = − 1

p · n(p)

[
n1(p)

n2(p)

]
. (3.9)

Let us now come back to Stages 3 and 4 of the pro-

posed scheme. The new normal �eld is n(k+1)(p), from

which we can deduce the gradient ∇z̃(k+1)(p) thanks to

Eq. (3.9). By integrating this gradient between a point

p0, chosen arbitrarily inside Ω, and any point p ∈ Ω,
and knowing that z = exp{z̃}, we obtain:

z(k+1)(p)=z(k+1)(p0) exp

{∫ p

p0

∇z̃(k+1)(q) · dq
}
. (3.10)

This integral can be calculated along one single path

inside Ω going from p0 to p, but since the gradient

�eld ∇z̃(k+1)(p) is never rigorously integrable in prac-

tice, this calculus usually depends on the choice of the

path [66]. The most common parry to this well-known

problem consists in resorting to a variational approach,

see for instance [54] for some discussion.

Expression (3.10) con�rms that the depth can only

be calculated, from n(k+1)(p), up to a scale factor equal

to z(k+1)(p0). Let us determine this scale factor by

minimization of the reprojection error of Model (2.24)

over the entire domain Ω. Knowing that, from (1.1)

and (3.8), we get x = z
f p, this comes down to solving

the following nonlinear least-squares problem:

z(k+1)(p0) = argmin
w∈R+

Ealt(w) :=
∑
p∈Ω

∥∥∥I(p)
−T

(w
f
exp

{∫ p

p0

∇z̃(k+1)(q) · dq
}
p
)
m(k+1)(p)

∥∥∥2,
(3.11)

which allows us to eventually write the shape update

(Stages 3 and 4):

x(k+1)=
z(k+1)(p0)

f
exp

{∫ p

p0

∇z̃(k+1)(q) · dq
}
p. (3.12)

Experimental Validation � Despite the lack of theoret-

ical guarantee, convergence of this scheme is empiri-

cally observed, provided that the initial 3D-shape x(0)

is not too distant from the scene surface. For the curves

in Fig. 6, several fronto-parallel planes with equation

z ≡ z0 were tested as initial guess. The mean dis-

tance from the camera to the scene being approximately

700mm, it is not surprising that the fastest convergence

is observed for this value of z0. Besides, this graph also

shows that that the initial scale can be under-estimated

quite a lot, but over-estimating it severly slows down

the process.
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z0 = 750 mm

z0 = 900 mm

Fig. 6 Evolution of the energy Ealt of the alternating ap-
proach, de�ned in (3.11), in function of the iterations, when
the initial shape is a fronto-parallel plane with equation
z ≡ z0. The used data are the m = 8 images of the plaster
statuette of Fig. 2. The proposed scheme consists in alter-
nating normal estimation, normal integration and scale esti-
mation. It converges towards the same solution (at di�erent
speeds), for the �ve tested values of z0.

Fig. 7 allows to compare the shape obtained by

photometric stereo, from sub-images of size 920× 1178

in full resolution (bounding box of the object), which

contain 773794 points, with the ground truth obtained

by laser scanning, which contains 1753010 points. The

points density is thus almost the same on the front of

the statuette, since we did not reconstruct its back.

However, our result is achieved in less than ten seconds

(�ve iterations of a Matlab code on a recent I7 pro-

cessor), instead of several hours for the ground truth,

while we also estimate the albedo.
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Fig. 8 (a) Histogram of point-to-point distances between the alternating 3D-reconstruction and the ground truth. The median
value is 1.3 mm. (b) Spatial distribution of these distances. The histogram peaks is not located in zero. This indicates a bias,
probably due to normal integration, which can be avoided by resorting to a di�erential approach based on PDEs.

(a) (b) (c)

Fig. 7 (a) 3D-reconstruction and (b) albedo obtained with
the proposed alternating scheme. (c) Ground truth shape ob-
tained by laser scanning. Photometric stereo not only pro-
vides a 3D-shape qualitatively similar to the laser scan, but
it also provides the albedo.

Fig. 8-a shows the histogram of point-to-point dis-

tances between our result (Fig. 7-a) and the ground

truth (Fig. 7-c). The median value is 1.3 mm. The spa-

tial distribution of these distances, which is illustrated

in Fig. 8-b, shows that the largest distances are ob-

served on the highest slopes of the surface. This clearly

comes from the fact that, even for a di�use material

such as plaster, the Lambertian model is not valid un-

der skimming lighting.

More realistic re�ectance models, such as the one

proposed by Oren and Nayar in [48], would perhaps im-

prove accuracy of the 3D-reconstruction in these points,

but the problem of steep areas also comes from normal

integration. In the next section, we describe a di�er-

ent formulation of photometric stereo which permits to

avoid integration, by solving a system of PDEs in z.

3.2 Direct Estimation of the Depth Map using Image

Ratios

The scheme proposed in Section 3.1 su�ers from sev-

eral defects. We just mentioned that it requires to inte-

grate the gradient ∇z̃(k+1)(p) at each iteration. This is

not achieved by the naive formulation (3.12), but using

more sophisticated methods which allow to overcome

the problem of non-integrability [14]. Still, bias due to

inaccurate normals estimation should not have to be

corrected during integration. Instead, it seems more

justi�ed to directly estimate the depth map, without

resorting to intermediate normals estimation. This can

be achieved by recasting photometric stereo as a system

of quasilinear PDEs, using image ratios.

Di�erential Reformulation of Problem (2.24) � Recall

that the coordinates of the 3D-point x conjugate to a

pixel p are completely characterized by the depth z(p):

x =
z(p)

f

[
p

f

]
. (3.13)

The vectors ti(x) de�ned in (2.22) thus depend on the

unknown depth values z(p). Using once again the change

of variable z̃ = log z, we consider from now on each ti,

i ∈ [1,m], as a vector �eld depending on the unknown

map z̃:

ti(z̃) : Ω → R3

p 7→ ti(z̃)(p) = Ψ i
[
nis ·

vi(z̃)(p)
‖vi(z̃)(p)‖

]µi
vi(z̃)(p)
‖vi(z̃)(p)‖3 ,

(3.14)
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where we recall that the source intensity Ψ i and its

orientation nis can be calibrated beforehand (see Sec-

tion 2), and where each �eld ti(z̃) depends in a nonlin-

ear way on the unknown (log-) depth map z̃, through

the vector �eld vi(z̃) : Ω → R3, which goes from each

surface point x ∈ R3 (cf. Eq. (3.13)) towards the (also

calibrated) i-th light source location xis:

vi(z̃) : Ω → R3

p 7→ vi(z̃)(p) = xis −
exp(z̃(p))

f

[
p

f

]
. (3.15)

Knowing that the (non-unit-length) vector n(p) de�ned

in (3.3), divided by z(p), is normal to the surface, we

can rewrite System (2.20), in each pixel p ∈ Ω:

Ii(p) =
ρ(p)

d(z̃)(p)
ti(z̃)(p) ·

[
f∇z̃(p)

−1− p· ∇z̃(p)

]
, i ∈ [1,m],

(3.16)

with

d(z̃)(p) =

√
f2 ‖∇z̃(p)‖2 + (−1− p· ∇z̃(p))2. (3.17)

System (3.16) can be written in the even more compact

following manner:

Ii(p) =
ρ(p)

d(z̃)(p)

[
Q(p) ti(z̃)(p)

]
·
[
∇z̃(p)
−1

]
, i ∈ [1,m],

(3.18)

by further introducing the following de�nition, ∀p =

[u, v]
> ∈ Ω:

Q(p) =

f 0 −u
0 f −v
0 0 1

 . (3.19)

Partial Linearization of (3.18) using Image Ratios � In

comparison with Eqs. (2.20), the PDEs (3.18) explicitly

depend on the unknown map z̃, and thus remove the

need for alternating normals estimation and integra-

tion. However, these equations contain two di�culties:

they are nonlinear and cannot be solved locally. We can

eliminate the nonlinearity due to the coe�cient of nor-

malization d(z̃)(p). Indeed, neither the relative albedo

ρ(p), nor this coe�cient, depend on the index i of the

LED. We deduce from any pair (i, j) ∈ [1,m]2, i < j,

of equations forming (3.18), the following equalities:

ρ(p)

d(z̃)(p)
=

Ii(p)

ai(z̃)(p) · ∇z̃(p)− bi(z̃)(p)

=
Ij(p)

aj(z̃)(p) · ∇z̃(p)− bj(z̃)(p)
, (3.20)

with the following de�nitions of ai(z̃)(p) and bi(z̃)(p)

(and similar de�nitions of aj(z̃)(p) and bj(z̃)(p)), de-

noting ti(z̃)(p) = [ti1(z̃)(p), t
i
2(z̃)(p), t

i
3(z̃)(p)]

>:

ai(z̃)(p) = f

[
ti1(z̃)(p)

ti2(z̃)(p)

]
− ti3(z̃)(p)p, (3.21)

bi(z̃)(p) = ti3(z̃)(p). (3.22)

From the equalities (3.20), we obtain the following

PDE in z:[
Ii(p)aj(z̃)(p)− Ij(p)ai(z̃)(p)

]︸ ︷︷ ︸
ai,j(z̃)(p)

· ∇z̃(p)

=
[
Ii(p) bj(z̃)(p)− Ij(p) bi(z̃)(p)

]︸ ︷︷ ︸
bi,j(z̃)(p)

. (3.23)

The �elds ai,j(z̃) and bi,j(z̃) de�ned in (3.23) de-

pend on z̃ but not on ∇z̃: Eq. (3.23) is thus a quasi-

linear PDE. It could be solved by the characteristic

strips expansion method [41,42] if we were dealing with

m = 2 images only, but using a larger number of images

is necessary in order to design a robust 3D-reconstruction

method. Since we are provided with m > 2 images, we

follow [19,37,38,40,55,60] and write
(
m
2

)
PDEs such as

(3.23) formed by the
(
m
2

)
pairs (i, j) ∈ [1,m]2, i < j.

Forming the matrix �eld A(z̃) : Ω → R(
m
2 )×2 by con-

catenation of the row vectors ai,j(z̃)(p)>, and the vec-

tor �eld b(z̃) : Ω → R(
m
2 ) by concatenation of the

scalar values bi,j(z̃)(p), the system of PDEs to solve is

written:

A(z̃)∇z̃ = b(z̃) over Ω. (3.24)

This new di�erential formulation of photometric stereo

seems simpler than the original di�erential formulation

(3.18), since the main source of nonlinearity, due to

the denominator d(z̃), has been eliminated. However,

it presents two di�culties. First, the PDEs (3.24) are

generally incompatible and hence do not admit an ex-

act solution. It is thus necessary to estimate an approx-

imate one, by resorting to a variational approach. Sec-

ond, they do not allow to estimate the scale of the scene.

Indeed, when all the depth values simultaneously tend

to in�nity, then both members of (3.24) tend to zero

(because the coordinates of ti do so, cf. (3.14)). Thus, a

large, distant shape will always �better� �t these PDEs

than a small, nearby one (cf. Figs. 11 and 10). A �locally

optimal� solution close to a very good initial estimate

should thus be sought. Assuming that each of the
(
m
2

)
equalities in System (3.24) is satis�ed up to an additive,

zero-mean, Gaussian noise8, one should estimate such

8 In fact, any noise assumption should be formulated on
the images, and not on Model (3.24), which was obtained by
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a solution by solving the following variational problem:

min
z̃:Ω→R

Erat(z̃) := ‖A(z̃)∇z̃ − b(z̃)‖2L2(Ω). (3.25)

Fixed Point Iterations for Solving (3.25) � Overall, we

are looking for a solution of (3.24) which must �stay

close� to some reasonable initial estimate, in order to

avoid the trivial solution. It has been proposed in [37,

38,40,55] to iteratively estimate this solution, by un-

coupling the (linear) estimation of z̃ from the (nonlin-

ear) estimation of A(z̃) and b(z̃). This can be achieved

by rewriting (3.25) as the following constrained opti-

mization problem:

min
z̃:Ω→R

‖A∇z̃ − b‖2L2(Ω)

s.t.

[
A

b

]
=

[
A(z̃)

b(z̃)

]
,

(3.26)

and resorting to a �xed point iterative scheme:

z̃(k+1) = argmin
z̃:Ω→R

‖A(k)∇z̃ − b(k)‖2L2(Ω), (3.27)[
A(k+1)

b(k+1)

]
=

[
A(z̃(k+1))

b(z̃(k+1))

]
. (3.28)

The linear least-squares variational problem (3.27)

can be solved by discretizing the gradient operator ∇
by �nite di�erences (we use forward, �rst-order �nite

di�erences, with a Neumann boundary condition). The

discrete optimization problem obtained this way admits

as necessary optimality condition the normal equations,

which form a linear system whose matrix is symmet-

ric, positive semi-de�nite. This matrix is usually too

larged to be inverted directly. Therefore, iterative meth-

ods such as the conjugate gradient algorithm should be

preferred.

ADMM Iterations for Solving (3.25) � Fig. 9 shows

that the previous �xed point scheme does not always

decrease the energy after each iteration. We suspect

that this is due to the choice of �freezing� the nonlin-

earities of the variational problem (3.25). Instead, z̃ can

be estimated not only from the linearized parts, but also

from the nonlinear ones, in the spirit of the ADMM al-

gorithm, a standard procedure which dates back to the

70's [15,18], but has been revisited recently [9].

considering ratios of gray levels: if the noise on gray levels
is Gaussian, then that on ratios is Cauchy-distributed [24].
Hence, the least-squares solution (3.25) is the best linear un-
biased estimator, but it is not the optimal solution, which
would require non-convex estimators [14]. We leave this, how-
ever, as future work.
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E
ra
t

 

 

Fixed point scheme
ADMM scheme

Fig. 9 Evolution of the energy Erat of the ratios-based ap-
proach, de�ned in (3.25), in function of the iterations, for the
data of Fig. 2 (the initial shape is a fronto-parallel plane with
equation z ≡ 700 mm). With the �xed point scheme, the en-
ergy is not always decreased after each iteration, contrarily
to the ADMM scheme we are going to introduce.

In this view, we introduce an auxiliary variable z

and reformulate Problem (3.25) as follows:

min
z,z̃
‖A(z)∇z̃ − b(z)‖2L2(Ω)

s.t. z̃ = z.
(3.29)

In order to solve the constrained optimization prob-

lem (3.29), let us introduce a dual variable w and a de-

scent step ν. A local solution of (3.29) is then obtained

at convergence of the following iterative scheme:

1. Update z̃ by using the linear part, �while keeping z̃

close to z(k)�:

z̃(k+1) = argmin
z̃

∥∥∥A(z(k))∇z̃ − b(z(k))
∥∥∥2
L2(Ω)

+
1

2 ν

∥∥∥z̃ − z(k) + w(k)
∥∥∥2
L2(Ω)

. (3.30)

2. Update z by using the nonlinear part, �while keeping
z close to z̃(k+1)�:

z(k+1) = argmin
z

∥∥∥A(z)∇z̃(k+1) − b(z)
∥∥∥2
L2(Ω)

+
1

2 ν

∥∥∥z̃(k+1)−z+w(k)
∥∥∥2
L2(Ω)

. (3.31)

3. Update the dual variable w:

w(k+1) = w(k) + z̃(k+1) − z(k+1). (3.32)

The �rst stage (3.30) is a linear least-squares prob-

lem which can be solved in the same way as for the pre-

vious scheme, using the normal equations of its discrete

formulation. Note that the presence of the regulariza-

tion term now guarantees the positive de�niteness of

the matrix of the system, and therefore convergence for

the conjugate gradient algorithm.
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z0 = 500 mm z0 = 650 mm z0 = 700 mm z0 = 750 mm z0 = 900 mm

Fig. 10 3D-reconstructions after 10 iterations of the ADMM scheme, taking as initial guess di�erent fronto-parallel planes
z ≡ z0. The median of the distances to ground truth is, from left to right: 3.05mm, 2.88mm, 1.68mm, 2.08mm and 5.86mm.
When the initial guess is too close to the camera, the 3D-reconstruction is �attened, while the scale is overestimated when
starting too far away from the camera (although this yields a lower energy, see Fig. 11).

Thanks to the auxiliary variable z, which decouples

∇z̃ and z̃ in Problem (3.29), the second stage (3.31)

is a local nonlinear least-squares problem: in fact, ∇z
is not involved in this problem, which can be solved

pixelwise. Problem (3.31) thus reduces to a nonlinear

least-squares estimation problem of one real variable,

which can be solved by a standard method such as the

Levenberg-Marquardt algorithm.

Because of the nonlinearity of Problem (3.31), it is

unfortunately impossible to guarantee convergence for

this ADMM scheme, which depends on the initialization

and on the descent parameter ν [9]. A reasonable initial-

ization strategy consists in using the solution provided

by the scheme of Section 3.1. As for the descent step ν,

we iteratively calculate its optimal value according to

the Penalty Varying Parameter procedure described in

[9]. Finally, the iteration stops when the relative vari-

ation of the criterion of Problem (3.31) falls under a

threshold equal to 10−4. Fig. 9 shows that with such

choices, Problem (3.25) is solved more e�ciently than

with the �xed point scheme.

Fig. 11 shows that whatever the initial guess, this

ADMM scheme always decreases the energy after each

iteration. Yet, the �nal solution strongly depends on

the initial guess, as con�rmed by Fig. 10.

Fig. 12 shows the 3D-reconstruction obtained by

re�ning the results of Section 3.1 using the ADMM

scheme. At �rst sight, the shape depicted in Fig. 12-

a seems hardly di�erent from that of Fig. 7-a, but the

comparison of histograms in Figs. 8-a and 12-b indicates

that bias has been signi�cantly reduced. This shows the

superiority of direct depth estimation over alternating
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10
−6

10
−5

Iterations

E
r
a
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z0 = 500 mm

z0 = 650 mm

z0 = 700 mm

z0 = 750 mm

z0 = 900 mm

Fig. 11 Evolution of the energy Erat de�ned in (3.25), in
function of the iterations, for the data of Fig. 2. Using as
initialization z̃ ≡ log(z0), the ADMM scheme always con-
verges towards a local minimum, yet this minimum strongly
depends on the value of z0. Besides, a lower �nal energy does
not necessarily means a better 3D-reconstruction, as shown in
Fig. 10. A careful initial guess is thus of primary importance.

normal estimation and integration. Nevertheless, the

lack of convergence guarantees and the need for appro-

priate initialization remain limiting bottlenecks. The

method discussed in the next section overcomes both

these issues.
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Fig. 12 (a) 3D-reconstruction obtained with the ADMM scheme, using the result from Fig. 7-a as initial guess. (b) Histogram
of point-to-point distances between this shape and the ground truth (cf. Fig. 7-c). The median value is 1.2 mm. The bias
observed in the histogram of Fig. 8-a has been signi�cantly reduced.

4 A Provably Convergent Scheme for

Photometric Stereo under Point Light Source

Illumination

When it comes to solving photometric stereo under

point light source illumination, there are two main sources

of di�culties: the quasilinear dependency of the light-

ing vectors on the depth map, and the presence of the

nonlinear coe�cient ensuring that the normal vectors

have unit-length.

The alternating strategy from Section 3.1 solves the

former issue by freezing the lighting vectors at each it-

eration, and the latter by simultaneously estimating the

normal vector and the albedo. The objective function

tackled in this approach, which is based on the repro-

jection error, seems to be the most relevant. Indeed,

the �nal result is empirically found to be independent

from the initialization, although convergence is not es-

tablished.

On the other hand, the di�erential strategy from

Section 3.2 explicitly tackles the nonlinear dependency

of lighting on the depth, and eliminates the other non-

linearity using image ratios. Directly estimating depth

reduces bias, but the objective function derived from

image ratios admits local minima and convergence is

still not established.

Therefore, an ideal numerical solution should: i) build

upon a di�erential approach, in order to reduce bias,

ii) avoid linearization using ratios, in order not to get

trapped in local minima, and iii) be provably conver-

gent. The variational approach presented in this sec-

tion, initially presented in [57], satis�es these three cri-

teria.

4.1 Proposed Discrete Variational Framework

Each PDE (3.18) is nonlinear, because d(z̃) depends in a

nonlinear way on ∇z̃ (see Eq. (3.17)). In Section 3.2, we
have shown that this nonlinear coe�cient can be elimi-

nated using image ratios, yet this leads to local minima.

On the other hand, explicitly considering this nonlin-

ear coe�cient within a variational framework is not an

easy task [25]. Instead, we take inspiration from the way

conventional photometric stereo [64] is linearized and

integrate the nonlinearity inside the albedo variable, as

we proposed recently in [57,58]. To this end, instead of

estimating in each pixel p the unknown value ρ(p), we

rather estimate the following one:

ρ̃(p) =
ρ(p)

d(z̃)(p)
. (4.1)

The system of nonlinear PDEs (3.18) is then rewritten

as

Ii(p) = ρ̃(p)
[
Q(p) ti(z̃)(p)

]
·
[
∇z̃(p)
−1

]
, i ∈ [1,m],

(4.2)

which is a system of quasilinear PDEs in (ρ̃, z̃), because

ti(z̃) only depends on z̃, and not on ∇z̃. Once ρ̃ and z̃

are estimated, it is straightforward to recover the �real�

albedo ρ using (4.1).

Let us now denote j = 1 . . . n the indices of the pix-

els inside Ω, Iij the gray level of pixel j in image Ii,

ρ̃ ∈ Rn and z̃ ∈ Rn the vectors stacking the values ρ̃j
and z̃j , t

i
j(z̃j) ∈ R3 the vector ti(z̃) at pixel j, which

smoothly (though nonlinearly) depends on z̃j , and Qj

the matrix de�ned in Eq. (3.19) at pixel j. Then, the
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discrete counterpart of Eq. (4.2) is written as the fol-

lowing system of nonlinear equations in (ρ̃, z̃):

Iij = ρ̃j
[
Qj t

i
j(z̃j)

]
·
[
(∇z̃)j
−1

]
, i ∈ [1,m], j ∈ [1, n],

(4.3)

where (∇z̃)j ∈ R2 represents a �nite di�erences approx-

imation of the gradient of z̃ at pixel j9.

Our goal is to jointly estimate the albedo values

ρ̃ ∈ Rn and the depth values z̃ ∈ Rn from the set of

nonlinear equations (4.3), as solution of the following

discrete optimization problem:

min
ρ̃,z̃
E(ρ̃, z̃) :=

n∑
j=1

m∑
i=1

φ
(
rij(ρ̃, z̃)

)
, (4.4)

where the residual rij(ρ̃, z̃) depends locally on ρ̃, but

globally on z̃:

rij(ρ̃, z̃) = ρ̃j
{
ζij(z̃)

}
+
− Iij , (4.5)

where:

ζij(z̃) = tij(z̃j)
>Q>j

[
(∇z̃)j
−1

]
. (4.6)

For fair comparison with the algorithms in Section 3,

one can use {x}+ = x and φ(x) = φLS(x) = x2. To

improve robustness, self-shadows can be explicitly han-

dled by using {x}+ = max{x, 0}, and the estimator φ

can be chosen as any function which is non-negative,

even, twice continuously di�erentiable, and monotoni-

cally increasing over R+ such that, for all x ∈ R:

φ′(x)

x
≥ φ′′(x). (4.7)

A typical example is Cauchy's robust M-estimator10:

φCauchy(x) = λ2 log(1 + x2/λ2), (4.8)

where the parameter λ is user-de�ned (we always use

the value λ = 0.1). We refer the reader to [58] for

an in-depth discussion on the choice of robust esti-

mators for photometric stereo, as well as for empir-

ical evidences that this robust variational framework

outperforms other state-of-the-art approaches such as

low-rank factorization techniques [65], per-pixel robust

estimation of the normal vector [30], or L1 norm-based

di�erential ratios [40].

9 In our experiments, we use the same discretization as in
Section 3.2, for fair comparison.
10 An advantage of our formulation is to be generic i.e., inde-
pendent from the choice of the function φ and of the operator
{· }+.

4.2 Numerical Solution of (4.4)

Our goal is to �nd a local minimizer (ρ̃∗, z̃∗) for (4.4),

which must satisfy the following �rst-order conditions:

∂E
∂ρ̃

(ρ̃∗,z̃∗)=

n∑
j=1

m∑
i=1

φ′(rij(ρ̃
∗, z̃∗))

∂rij
∂ρ̃j

(ρ̃∗, z̃∗)=0, (4.9)

∂E
∂z̃

(ρ̃∗,z̃∗)=

n∑
j=1

m∑
i=1

φ′(rij(ρ̃
∗, z̃∗))

∂rij
∂z̃j

(ρ̃∗, z̃∗)=0, (4.10)

with:

∂rij
∂ρ̃j

(ρ̃∗, z̃∗) = {ζij(z̃∗)}+, (4.11)

∂rij
∂z̃j

(ρ̃∗, z̃∗) = ρ̃∗jχ(ζ
i
j(z̃
∗))(ζij)

′(z̃∗), (4.12)

where χ is the (sub-)derivative of {· }+, which is a con-

stant function equal to 1 if {x}+ = x, and the Heaviside

function if {x}+ = max{x, 0}.
For this purpose, we derive an alternating reweighted

least-squares (ARLS) scheme. Suggested by its name,

the ARLS scheme alternates Newton-like steps over ρ̃

and z̃, which can be interpreted as iteratively reweighted

least-squares iterations.

Algorithm 1 (alternating reweighted least-squares)

1: Initialize ρ̃(0), z̃(0) ∈ Rn. Set k := 0.

2: loop

3: Generate ∂E
∂ρ̃ (ρ̃

(k), z̃(k)) according to (4.9), and a

positive semi-de�nite regularization Hρ(ρ̃
(k), z̃(k))

of the Hessian ∂2E
∂ρ̃2 (ρ̃

(k), z̃(k)) according to (4.21).

4: Compute the Newton step ρ̃(k+1) = ρ̃(k) + δρ̃(k),

where δρ̃(k) is the minimal-norm solution of the

linear system

Hρ(ρ̃
(k), z̃(k))δρ̃(k) = −∂E

∂ρ̃
(ρ̃(k), z̃(k)), (4.13)

which admits the closed-form solution (4.19).

5: Generate ∂E
∂z̃ (ρ̃

(k+1), z̃(k)) according to (4.10), and

a positive semi-de�nite regularization Hz(ρ̃
(k+1), z̃(k))

of the Hessian ∂2E
∂z̃2 (ρ̃

(k+1), z̃(k)), according to (4.25).

6: Compute the Newton step z̃(k+1) = z̃(k) + δz̃(k),

where δz̃(k) is the minimal-norm solution of the

linear system

Hz(ρ̃
(k+1),z̃(k))δz̃(k)=−∂E

∂z̃
(ρ̃(k+1),z̃(k)), (4.14)

which can be achieved by conjugate gradient iter-

ations.

7: If the stopping criterion is not satis�ed, then set

k := k + 1.
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The proposed algorithm only requires an initial shape

estimate z̃(0), an initial albedo estimate ρ̃(0) and a stop-

ping criterion. In our experiments, we use constant vec-

tors as initializations for z̃ and ρ̃ i.e., the surface is

initially approximated by a plane with uniform albedo.

We experimentally found out that the albedo initial-

ization has no real impact on the process, while that

of the depth mostly changes the speed of convergence.

Iterations are stopped when the relative di�erence be-

tween two successive values of the energy E falls below

a threshold set to 10−3.

We now describe in more care the updates (4.13)

and (4.14). Similar to the famous iteratively reweighted

least-squares (IRLS) algorithm, ARLS solves the origi-

nal (possibly non-convex) problem (4.4) iteratively, by

recasting it as a series of simpler quadratic programs.

Given a current estimate of the solution, IRLS opti-

mizes a local quadratic approximation of the objective

function around this estimate, and iterates. We refer

the reader to [63] for an overview of this algorithm.

In case of two unknowns ρ̃ and z̃, we alternate opti-

mization over each variable, keeping the other �xed and

solving the local quadratic model. This yields the fol-

lowing sequence of reweighted least-squares problems:

ρ̃(k+1) = argmin
ρ̃∈Rn

E(k)ρ̃ (ρ̃) :=

n∑
j=1

m∑
i=1

wij(ρ̃
(k), z̃(k))

(
rij(ρ̃, z̃

(k))
)2
, (4.15)

z̃(k+1) = argmin
z̃∈Rn

E(k)z̃ (z̃) :=

n∑
j=1

m∑
i=1

wij(ρ̃
(k+1), z̃(k))

(
rij(ρ̃

(k+1), z̃)
)2
. (4.16)

Here the following (lagged) weight variable w is used11:

wij(ρ̃, z̃) =

{
φ′(rij(ρ̃, z̃))/r

i
j(ρ̃, z̃) if rij(ρ̃, z̃) 6= 0,

0 otherwise,

(4.17)

and the functions E(k)ρ̃ and E(k)z̃ are local quadratic ap-

proximations of E around, respectively, (ρ̃(k), z̃(k)) and

(ρ̃(k+1), z̃(k)).

Problem (4.15) can be rewritten as the following n

independent linear least-squares problems, j ∈ [1, n]:

ρ̃
(k+1)
j =argmin

ρ̃j∈R

m∑
i=1

wij(ρ̃
(k), z̃(k))

(
rij(ρ̃, z̃

(k))
)2

(4.18)

11 This variable can be used as weight since, ∀x ∈ R,
φ′(x)/x ≥ 0 and thus wij(ρ̃, z̃) ≥ 0.

Each problem (4.18) almost always admits a unique so-

lution. When it does not, we set ρ̃
(k+1)
j = ρ̃

(k)
j . The

update thus admits the following closed-form solution,

for every pixel j ∈ [1, n]:

ρ̃
(k+1)
j =



∑m
i=1 w

i
j(ρ̃

(k), z̃(k))
{
ζij(z̃

(k))
}
+
Iij∑m

i=1 w
i
j(ρ̃

(k), z̃(k))
{
ζij(z̃

(k))
}
+

2

if
∑m
i=1 w

i
j(ρ̃

(k), z̃(k))
{
ζij(z̃

(k))
}
+

2
> 0,

ρ̃
(k)
j otherwise.

(4.19)

This means that ρ̃(k+1) is set to be the solution of (4.15)

which has minimal (Euclidean) distance to ρ̃(k). In terms

of the pseudo-inverse of a matrix, this can be rephrased

as12

ρ̃(k+1) = ρ̃(k) −Hρ(ρ̃
(k), z̃(k))†∂E(k)ρ̃ (ρ̃(k)), (4.20)

where the n-by-n matrix Hρ(ρ̃
(k), z̃(k)) is de�ned, for

an arbitrary δρ̃ ∈ Rn, by

δρ̃>Hρ(ρ̃
(k), z̃(k))δρ̃ =

n∑
j=1

m∑
i=1

wij(ρ̃
(k), z̃(k))

(
δρ̃j{ζij(z̃(k))}+

)2
. (4.21)

Since ∂E(k)ρ̃ (ρ̃(k)) = ∂E
∂ρ̃ (ρ̃

(k), z̃(k)), Eq. (4.20) exactly

yields the Newton step (4.13).

The depth update (4.16) is a nonlinear least-squares

problem which is trickier to solve, due to the nonlinear-

ity of rij(ρ̃, z̃) with respect to z̃. We therefore follow

a Gauss-Newton strategy. A �rst-order Taylor approx-

imation around z̃(k) yields, using (4.12), the following

approximation of (4.16):

z̃(k+1) = argmin
z̃∈Rn

n∑
j=1

m∑
i=1

wij(ρ̃
(k+1), z̃(k))

(
rij(ρ̃

(k+1), z̃(k))

+ ρ̃
(k+1)
j χ(ζij(z̃

(k)))(z̃ − z̃(k))>(ζij)′(z̃(k))
)2
, (4.22)

which can also be interpreted as an approximate solu-

tion of the z̃-subproblem in (4.4), linearized around z̃(k)

as follows:

min
z̃∈Rn

Ẽ(z̃; ρ̃(k+1), z̃(k)) :=

n∑
j=1

m∑
i=1

φ
(
rij(ρ̃

(k+1), z̃(k))

+ ρ̃
(k+1)
j χ(ζij(z̃

(k)))(z̃ − z̃(k))>(ζij)′(z̃(k))
)
. (4.23)

Note that ∂Ẽ(·; ρ̃, z̃)(z̃) = ∂E
∂z̃ (ρ̃, z̃) for all (ρ̃, z̃).

12 We use ∂ as continuous gradient operator, since ∇ is used
for the discrete gradient one.
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Similar to the ρ̃-subproblem, z̃(k+1) is taken to be of

minimal distance to z̃(k) whenever the non-uniqueness

of the solution in (4.22) is encountered. Hence, the z̃-

update can be equivalently expressed as

z̃(k+1) = z̃(k) −Hz(ρ̃
(k+1), z̃(k))†∂E(k)z̃ (z̃(k)), (4.24)

where the n-by-n matrix Hz(ρ̃
(k+1), z̃(k)) is de�ned, for

an arbitrary δz̃ ∈ Rn, by

δz̃>Hz(ρ̃
(k+1), z̃(k))δz̃ =

n∑
j=1

m∑
i=1

wij(ρ̃
(k+1), z̃(k))

(
ρ̃
(k+1)
j χ(ζij(z̃

(k)))δz̃>(ζij)
′(z̃(k))

)2
. (4.25)

Since ∂E(k)z̃ (z̃(k)) = ∂E
∂z̃ (ρ̃

(k+1), z̃(k)), the update (4.24)

is equivalent to the Newton step (4.14).

In practice,Hz(ρ̃
(k+1), z̃(k))†∂E(k)z̃ (z̃(k)) in Eq. (4.24)

is computed (inexactly) by preconditioned conjugate

gradient iterations up to a relative tolerance of 10−4. In

our experiments, less than �fty iterations were enough

to reach this stopping criterion. In our setup using m =

8megapixel images and a recent i7 processor at 3.50GHz

with 32 GB of RAM, each depth update (the albedo

one has negligible cost) required a few seconds, and 10

to 50 (depending on the initial estimate) updates were

enough to reach convergence.

4.3 Convergence Analysis

In this subsection, we present two local convergence re-

sults of the proposed ARLS scheme. The proofs are pro-

vided in appendix.

When we write A � B (resp. A � B), this means

that the di�erence matrix A−B is positive semide�nite

(resp. positive de�nite). The spectral radius of a matrix

is denoted by sr(·). The following lemma establishes the

(local) majorization properties of Hρ and Hz over the

Hessian matrices ∂2E
∂ρ̃2 and ∂2Ẽ , respectively.

Lemma 1 If the following condition holds at (ρ̃∗, z̃∗):

ζij(z̃
∗) 6= 0 ∀(i, j) ∈ [1,m]× [1, n], (4.26)

Then we have

Hρ(ρ̃, z̃) �
∂2E
∂ρ̃2

(ρ̃, z̃), Hz(ρ̃, z̃) � ∂2Ẽ(·; ρ̃, z̃)(z̃),

(4.27)

whenever (ρ̃, z̃) lies in some small neighborhood of (ρ̃∗, z̃∗).

The next theorem contains the main result of our

local convergence analysis.

Theorem 1 Assume that, for some k, the iterate (ρ̃(k), z̃(k))

generated by Algorithm 1 is su�ciently close to some lo-

cal minimizer (ρ̃∗, z̃∗) where, in addition to (4.26), the

following conditions hold:

∂E
∂ρ̃

(ρ̃∗, z̃∗) = 0,
∂E
∂z̃

(ρ̃∗, z̃∗) = 0, (4.28)


∂2E
∂ρ̃2

(ρ̃∗, z̃∗)
∂2E
∂ρ̃∂z̃

(ρ̃∗, z̃∗)

∂2E
∂ρ̃∂z̃

(ρ̃∗, z̃∗)
∂2E
∂z̃2

(ρ̃∗, z̃∗)

 � O, (4.29)

∂2Ẽ(·; ρ̃∗, z̃∗)(z̃∗) � O, (4.30)

sr

(
∂2Ẽ(·; ρ̃∗,z̃∗)(z̃∗)−1

(
∂2E
∂z̃2

(ρ̃∗,z̃∗)−∂2Ẽ(·; ρ̃∗,z̃∗)(z̃∗)
))

<1.

(4.31)

Then we have limk→∞(ρ̃(k), z̃(k)) = (ρ̃∗, z̃∗).

As a remark, conditions (4.28) and (4.29) assumed

in Theorem 1 are typically referred to as the second-

order su�cient optimality conditions, while conditions

(4.30) and (4.31) are similar to the local convergence

criteria for Gauss-Newton method, see e.g. [20, The-

orem 1]. We empirically found that they always seem

satis�ed i.e., the convergence of ARLS in form of Algo-

rithm 1 is observed in all our experiments. If needed,

these conditions may however be explicitly enforced by

replacing {· }+ by its (smooth) proximity operator, and

incorporating a line search step into ARLS, see [57].

4.4 Experimental Validation

For fair comparison with the methods discussed in Sec-

tion 3, we �rst consider least-squares estimation with-

out explicit self-shadows handling i.e., φ(x) = x2 and

{x}+ = x. The results in Figs. 13 and 14 show that, un-

like the previous least-squares di�erential method from

Section 3.2, the new scheme always converges towards

a similar solution for a wide range of initial estimates.

Although the accuracy of the results obtained with

this new scheme if not improved, convergence is guar-

anteed and the in�uence of the initialization is much re-

duced. Besides, it is straightforward to improve robust-

ness by simply changing the de�nitions of the function

φ and of the operator {· }+, while ensuring robustness

of the ratio-based approach is not an easy task [40,60].

Fig. 15 shows the result obtained using explicit self-

shadows handling and Cauchy's M-estimator.
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Fig. 13 (a) Evolution of the energy E of the proposed approach, de�ned in (4.4), using least-squares estimation, in function
of the iterations, for the data of Fig. 2. As long as the initial scale is not over-estimated too much, the proposed scheme
converges towards similar solutions for di�erent initial estimates (cf. Fig. 14), though with di�erent speeds. (b) 3D-model
obtained at convergence, using z0 = 750 mm. (c) Histogram of point-to-point distances between (b) and the ground truth. As
in the experiment of Fig. 12, the median value is 1.2 mm, yet this result is almost independent from the initialization, and is
obtained using a provably convergent algorithm.

z0 = 500 mm z0 = 650 mm z0 = 700 mm z0 = 750 mm z0 = 900 mm

Fig. 14 3D-reconstructions after 50 iterations of the proposed scheme, taking as initial guess di�erent fronto-parallel planes
z ≡ z0 and using least-squares estimation. Similar results are obtained whatever the initialization, at least as long as the initial
scale is not over-estimated too much.
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Fig. 15 Same as Fig. 13, but using explicit self-shadows handling and Cauchy's robust M-estimator. Despite the non-convexity
of the estimator, convergence is similar to that obtained using least-squares. However, the median value of the 3D-reconstruction
error is now 0.91 mm, which is to be compared with the value 1.2 mm obtained using least-squares (cf. Fig. 13).
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5 Estimating Colored 3D-models by

Photometric Stereo

So far, we have considered gray level images. In this

section, we extend our study to RGB-valued images, in

order to estimate colored 3D-models using photometric

stereo.

5.1 Spectral Dependency of the Luminous Flux

Emitted by a LED

We need to introduce a spectral dependency in Model

(2.5) to extend our study to color. It seems reasonable

to limit this dependency to the intensity Φ (λ denotes

the wavelength):

s(x, λ) = Φ(λ) cosµ θ
xs − x

‖xs − x‖3
. (5.1)

Model (5.1) is more complex than Model (2.5), because

the intensity Φ0, which is a real parameter, has been

replaced by the emission spectrum Φ(λ), which is a

function (cf. Fig. 16-a). The calibration of Φ(λ) could

be achieved by using a spectrometer, but we will show

how to extend the procedure from Section 2.2, which re-

quires nothing else than a camera and two calibration

patterns.
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Fig. 16 (a) Emission spectrum Φ(λ) of the LEDs used
(source: http://www.lumileds.com/uploads/28/DS64-pdf).
(b) Camera response functions in the three channels R, G,
B, for the Canon EOS 50D camera [32] (which is similar to
the Canon EOS 7D we use). Our extension to RGB images
of the calibration procedure from Section 2.2 requires noth-
ing else than a camera and two calibration patterns. We need
therefore none of these diagrams in practice.

In a point x of a Lambertian surface with albedo

ρ(x), under the illumination described by the lighting

vector s(x), we get from (2.6), (2.7) and (2.8) the ex-

pression of the illuminance ε(p) of the image plane in

the pixel p conjugate to x:

ε(p) = β cos4 α(p)
ρ(x)

π
s(x) · n(x). (5.2)

This expression is easily extended to the case where

s(x) and ρ(x) depend on λ:

ε(p, λ) = β cos4 α(p)
ρ(x, λ)

π
s(x, λ) · n(x). (5.3)

The bijective correspondence between the points x and

the pixels p allows us to denote ρ(p, λ) and n(p), in

lieu of ρ(x, λ) and n(x). In addition, the light e�ec-

tively received by each cell goes through a colored �l-

ter characterized by its transmission spectrum c?(λ),

? ∈ {R,G,B}, whose maximum lies, respectively, in

the red, green and blue ranges (cf. Fig. 16-b). To de�ne

the color levels I?(p), ? ∈ {R,G,B}, by similarity with

the expression (2.10) of the (corrected) gray level I(p),

we must multiply (5.3) by c?(λ), and integrate over the

entire spectrum:

I?(p)=
γ β

π

[∫ +∞

λ=0

c?(λ) ρ(p, λ) s(x, λ) dλ

]
· n(p). (5.4)

Using a Lambertian calibration pattern which is uni-

formly white i.e., such that ρ(p, λ) ≡ ρ0, allows us to

rewrite (5.4) as follows:

I?(p) = γ β
ρ0
π

[∫ +∞

λ=0

c?(λ) s(x, λ) dλ

]
· n(p), (5.5)

which is indeed an extension of (2.10) to RGB images,

since (5.5) can be rewritten

I?(p) = γ β
ρ0
π

s?(x) · n(p), (5.6)

provided that the three colored lighting vectors s?(x)

are de�ned as follows:

s?(x) =

∫ +∞

λ=0

c?(λ) s(x, λ) dλ, ? ∈ {R,G,B}. (5.7)

Plugging (5.1) into (5.7), we obtain an extension of

Model (2.5) to RGB images:

s?(x) = Φ? cosµ θ
xs − x

‖xs − x‖3
, ? ∈ {R,G,B}, (5.8)

where the three colored intensities Φ? are de�ned as

follows:

Φ? =

∫ +∞

λ=0

c?(λ)Φ(λ) dλ, ? ∈ {R,G,B}. (5.9)

The spectral dependency of the lighting vector s(x, λ)

expressed in (5.1) is thus partially described by Model

(5.8), which contains nine parameters: three for the

coordinates of xs, two for the unit-length vector ns,

plus the three colored intensities ΦR, ΦG, ΦB , and the

anisotropy parameter µ. Nonetheless, since the de�ni-

tion (5.9) of Φ? depends on c?(λ), it follows that the

parameters ΦR, ΦG and ΦB are not really characteris-

tic of the LED, but of the couple camera-LED.

http://www.lumileds.com/uploads/28/DS64-pdf
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5.2 Spectral Calibration of the Luminous Flux

Emitted by a LED

We use again the planar Lambertian calibration pat-

tern from Section 2.2. Since it is convex, the incident

light comes solely from the LED. We can thus replace

s?(x) by its de�nition (5.8) in the expression (5.6) of

the color level I?(p). Assuming that xs is estimated by

triangulation and that the anisotropy parameter µ is

provided by the manufacturer, we then have to solve,

for each channel ? ∈ {R,G,B}, the following problem,

which is an extension of Problem (2.17) (q is the num-

ber of poses of the Lambertian calibration pattern):

min
ms,?

q∑
j=1

∑
p∈Ωj

[
ms,? ·(xj−xs)−

[
Ij?(p)

‖xs−xj‖3+µ

(xs−xj) · nj

]1/µ]2
,

(5.10)

where ms,? is de�ned by analogy with ms (cf. (2.16)):

ms,? = Ψ?
1/µ ns, (5.11)

and Ψ? is de�ned by analogy with Ψ (cf. (2.12)):

Ψ? = γ β
ρ0
π
Φ?. (5.12)

Each problem (5.10) allows us to estimate a colored

intensity ΦR, ΦG or ΦB (up to a common factor) and

the principal direction ns, which is thus estimated three

times. Table 1 groups the values obtained for one of the

LEDs of our setup. The three estimates of ns are con-

sistent, but instead of arbitrarily choosing one of them,

we compute the weighted mean of these estimates, us-

ing spherical coordinates to ensure that the unit-length

constraint is preserved.

Red channel Green channel Blue channel

n̂s,R =


0.205

−0.757

0.621

 n̂s,G =


0.194

−0.769

0.608

 n̂s,B =


0.188

−0.844

0.503


Ψ̂R = 3.10× 107 Ψ̂G = 5.49× 107 Ψ̂B = 3.37× 107

Table 1 Parameters of one of the LEDs of our setup, esti-
mated by solving (4.10) with respect to each color channel.

In Table 1, the values of Ψ̂R, Ψ̂G and Ψ̂B are given

without units because, from the de�nition (5.12) of Ψ?,

only their relative values are meaningful. As it happens,

the value of Ψ̂G is roughly twice as much as those of

Ψ̂R and Ψ̂B , but this does not mean that Φ(λ) is twice

higher in the green range than in the red or in the blue

ranges, since the de�nition (5.9) of a given colored in-

tensity Φ? depends on the transmission spectrum c?(λ)

in the considered channel.

Our calibration procedure relies on the assumption

that the calibration pattern is uniformly white i.e., that

ρ(p, λ) ≡ ρ0, which may be inexact, yet in no way does

this question our rationale. Indeed, if we assume that

the color of �white� cells from the Lambertian checker-

board is uniform i.e., ρ(p, λ) = ρ(λ), ∀p ∈ Ωj , and if we
denote ρ0 the maximum value of ρ(λ), Eq. (5.5) is still

valid, provided that c?(λ) is replaced by the function

c′?(λ) de�ned as follows:

c′?(λ) =
ρ(λ)

ρ0
c?(λ). (5.13)

Of course, similar arguments can be used for the rest

of the rationale, but we must remember that each col-

ored intensity Φ?, which depends on the transmission

spectrum c?(λ) by its de�nition (5.9), also depends on

the color of the paper upon which the checkerboard is

printed. We are now able to extend to RGB images our

photometric stereo model from Section 2.3, but we can

already predict that the color of the paper will have

some in�uence on the estimated color and on the esti-

mated shape of the observed scene.

5.3 Photometric Stereo under Colored Point Light

Source Illumination

If we pretend to extend Model (2.10) to RGB images,

then it must be possible to write the color level at p, in

each channel ? ∈ {R,G,B}, in the following manner:

I?(p) = γ β
ρ?(p)

π
s?(x) · n(p), (5.14)

where the colored albedos ρ?(p) are de�ned by exten-

sion to RGB images of the albedo ρ(p). Equating both

expressions of I?(p) given in (5.4) and in (5.14), and us-

ing the de�nition (5.7) of s?(x), we obtain the following

equality:

ρ?(p)

∫ +∞

λ=0

c?(λ) s(x, λ) dλ=

∫ +∞

λ=0

c?(λ) ρ(p, λ) s(x, λ) dλ.

(5.15)

When the surface is illuminated by a LED, we can

replace s(x, λ) in (5.15) by Model (5.1). This gives us

the following expression for the colored albedos:

ρ?(p)=

∫ +∞

λ=0

c?(λ) ρ(p,λ)Φ(λ) dλ∫ +∞

λ=0

c?(λ)Φ(λ) dλ

, ?∈{R,G,B}, (5.16)

which is the mean of ρ(p, λ) over the entire spectrum,

weighted by the product c?(λ)Φ(λ). In addition, al-

though the transmission spectrum c?(λ) depends only
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on the camera, the emission spectrum Φ(λ) usually varies

from one LED to another. Thus, generalizing photomet-

ric stereo under point light source illumination to RGB

images requires to superscript the colored albedos by

the LED index i. Hence, it seems that we have to solve,

in each pixel p ∈ Ω, the following problem:

Ii?(p) = γ β
ρi?(p)

π
si?(x)·n(p), i ∈ [1,m], ? ∈ {R,G,B}.

(5.17)

System (5.17) is underdetermined, because it contains

3m equations with 3m+3 unknowns: one colored albedo

ρi?(p) per equation, the depth z(p) of the 3D-point x

conjugate to p (from which we get the coordinates of

x), and the normal n(p). Apart from this numerical

di�culty, the dependency on i of the colored albedos is

puzzling: while it is clear that the albedo is a photomet-

ric characteristic of the surface, independent from the

lighting, it should go the same for the colored albedos.

This shows that the extension to RGB images of pho-

tometric stereo is potentially intractable in the general

case. However, such an extension is known to be possi-

ble in two speci�c cases [55]:

• For a white surface i.e., when ρ(p, λ) = ρ(p), we

deduce from (5.16) that ρR(p) = ρG(p) = ρB(p) =

ρ(p). Problem (5.17) is thus written:

Ii?(p) = γ β
ρ(p)

π
si?(x)·n(p), i ∈ [1,m], ? ∈ {R,G,B}.

(5.18)

The case where lighting is directional i.e., indepen-

dent from x, is very interesting, because the number

of unknowns of this linear system is then equal to

three: a single RGB image is thus enough to en-

sure that the problem is well-posed, as soon as sR,

sG and sB are non-coplanar. This well-known case,

which dates back to the 90's [34], has been applied

by Hernandez et al. to real-time 3D-reconstruction

of a deformable (white) surface [22].

• When the sources are white i.e., when Φ(λ) ≡ Φ0,

(5.16) gives:

ρ?(p)=

∫ +∞

λ=0

c?(λ) ρ(p,λ) dλ∫ +∞

λ=0

c?(λ) dλ

, ? ∈ {R,G,B}. (5.19)

Since this expression is independent from i, Problem

(5.17) is rewritten:

Ii?(p)=γ β
ρ?(p)

π
si?(x)·n(p), i ∈ [1,m], ? ∈ {R,G,B}.

(5.20)

In (5.20), the lighting vector si?(x) really depends

on the channel ?, although Φ(λ) ≡ Φ0 since the

de�nition (5.9) of Φ? depends on the transmission

spectrum c?(λ) and the same holds true for the def-

inition (5.8) of s?(x). System (5.20), which has 3m

equations and six unknowns, is well-posed if m > 3

(the case where m = 2 is ill-posed under directional

lighting [56], but this remains unclear in the case of

nearby point light sources).

Another case where the colored albedos are inde-

pendent from i is when the m LEDs all share the same

emission spectrum Φ(λ). For the setup of Fig. 2-a, the

m = 8 LEDs probably do not satisfy exactly this con-

straint, although they come from the same batch, yet

this assumption seems more realistic than that of �white

sources�, and it allows us to better justify the use of

Model (5.20) in photometric stereo. Using Model (5.8)

for the three colored lighting vectors s?(x), ? ∈ {R,G,B},
induced by a LED, Problem (5.20) is thus rewritten in

the following way:

Ii?(p)=Ψ
i
?

ρ?(p)

ρ0

[
nis ·

x− xis
‖x− xis‖

]µi
(xis − x) · n(p)
‖xis − x‖3

,

i ∈ [1,m], ? ∈ {R,G,B}. (5.21)

which is an extension to RGB images of the photometric

stereo model (2.20). In our experiments, we use (5.21)

to model both the spectral dependency of the albedo

and that of the luminous �uxes, although we must keep

in mind that this writing is perfectly justi�ed only if the

sources share the same spectrum.

The calibration procedure described in Section 5.2

provides us with the values of the parameters xis, n
i
s and

Ψ i?, i ∈ [1,m], and the parameters µi, i ∈ [1,m], are pro-

vided by the manufacturer. The unknowns of System

(5.21) are thus the depth z(p) of x, the normal n(p) and

the three colored albedos ρ?(p), ? ∈ {R,G,B}. Hence,
resorting to RGB images allows us to replace the sys-

tem (2.20) of m equations with four unknowns, by the

system (5.21) of 3m equations with six unknowns. We

can thus expect more accurate results.

5.4 Solving Colored Photometric Stereo under Point

Light Source Illumination

The alternating strategy from Section 3.1 is not straight-

forward to adapt to the case of RGB-valued images, be-

cause the albedo is channel-dependent, while the nor-

mal vector is not. Principal component analysis could

be employed [5], but we already know from Section 3
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Fig. 17 (a) 3D-model estimated from the m = 8 images of Fig. 2, which are RGB images. (b) Histogram of the distances
between this 3D- shape and the ground truth. Using RGB images improves the result, in comparison with the experiment of
Fig. 15: the median of the point-to-point distances to the ground truth is now equal to 0.85 mm.

that a di�erential approach should be preferred any-

ways. A PDE-based approach similar to that of Sec-

tion 3.2 is advocated in [55]: ratios between color levels

can be computed in each channel ? ∈ {R,G,B}, thus
eliminating the colored albedos ρ?(p) and obtaining a

system of PDEs in z similar to (3.24). With this ap-

proach, the PDEs to solve remain quasi-linear, unlike

in [29]. Yet, we know that the solution strongly depends

on the initialization.

On the other hand, it is straightforward to adapt

the method recommended in Section 4, by turning the

discrete optimization problem (4.4) into

min
ρ̃R,ρ̃G,ρ̃B ,z̃

∑
?∈{R,G,B}

n∑
j=1

m∑
i=1

φ
(
ri?,j(ρ̃?, z̃)

)
, (5.22)

with the following new de�nition of the residual, which

uses straightforward notations for the channel depen-

dencies:

ri?,j(ρ̃?, z̃) = ρ̃?,j
{
ζi?,j(z̃)

}
+
− Ii?,j , (5.23)

ζi?,j(z̃) = ti?,j(zj)
>Q>j

[
(∇z̃)j
−1

]
. (5.24)

The actual solution of (5.22) follows immediately

from the algorithm described in Section 4.2. The depth

update simply uses three times more equations, which

improves its robustness, while the estimation of each

vector ρ̃?, ? ∈ {R,G,B}, is carried out independently

in each channel in exactly the same way as in Sec-

tion 4.2. Eventually, the �real� albedos are recovered

using (4.1).

Since the depth estimation now uses more data, the

3D-model of Fig. 17, which uses RGB images, is im-

proved in two ways, in comparison with that of Fig. 15:

it is not only colored, but also more accurate.

6 Conclusion and Perspectives

In this article, we describe a photometric stereo-based

3D-reconstruction setup using LEDs as light sources.

We �rst model the luminous �ux emitted by a LED,

then the resulting photometric stereo problem. We present

a practical procedure for calibrating photometric stereo

under point light source illumination, and eventually,

we study several numerical solutions. Existing methods

are based either on alternating estimation of normals

and depth, or on direct depth estimation using image

ratios. Both these methods have their own advantages,

but their convergence is not established. Hence, we in-

troduce a new solution based on alternating reweighted

least-squares, which is provably convergent. Finally, we

extend the whole study to RGB images.

The result of Fig. 18 suggests that our goal i.e., the

estimation of colored 3D-models of faces by photometric

stereo, has been reached. Of course, many other types

of 3D-scanners exist, but ours relies only on materi-

als which are easy to obtain: a relatively mainstream

camera, eight LEDs and an Arduino controller to syn-

chronize the LEDs with the shutter release. Another

signi�cant advantage of our 3D-scanner is that it also

estimates the albedo.
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(a) (b) (c)

(d) (e)

Fig. 18 (a-b-c) Three RGB images (out of m = 8) of a face
captured by our setup. (d) Estimated 3D-shape. (e) Colored
3D-model. Since their estimation is relative to the calibra-
tion object, the colored albedos of the 3D-model may appear
di�erent from the colors of the images.

However, there may still be some points where the

shape, and therefore the albedo, are poorly estimated.

In the example of Fig. 19, the area under the nose,

which is dimly lit, is poorly reconstructed (this prob-

lem does not appear in the example of Fig. 18, because

the face is oriented in such a way that it is �well� il-

luminated). Although such artifacts remain con�ned,

thanks to the robust estimation, future extensions of

our work could get rid of them by resorting to an addi-

tional regularization term in the variational model.

Besides dealing with these defects, other questions

arise. In particular, could we extend our 3D-scanner to

full 3D-reconstruction, by coupling the proposed method

with multi-view 3D-reconstruction techniques [23]? Aside

from obtaining a more complete 3D-reconstruction, this

would circumvent the di�ult problem of handling pos-

sible discontinuities in a depth map, although Fig. 19

suggests that employing a non-convex estimator already

partly allows the recovery of such sharp structures [14].

(a) (b) (c)

(d) (e)

Fig. 19 (a-b-c) Three images (out of m = 8) of a face.
(d) Estimated 3D-shape. (e) Colored 3D-model. The 3D-
reconstruction is not satisfactory under the nose, which is
a dimly lit area. Robustness of the proposed method to shad-
ows could still be improved.

Eventually, the proposed numerical framework could

be extended in order to automatically re�ne calibration.

Several steps in that direction were already achieved

in [37,43,50,57], but either without convergence anal-

ysis [37,43,50] or in the restricted case where only the

source intensities are re�ned [57]. Providing a provably

convergent method for uncalibrated photometric stereo

under point light source illumination would thus con-

stitute a natural extension of our work.

A Proof of Lemma 1

Proof First note that, under the condition (4.26), the func-
tion E(·, z̃) (resp. Ẽ(·; ρ̃, z̃)) is twice continuously di�eren-
tiable at ρ̃ (resp. z̃), whenever (ρ̃, z̃) is su�ciently close to (ρ̃∗, z̃∗).
The corresponding second-order derivatives are calculated as
follows:

δρ̃>
∂2E
∂ρ̃2

(ρ̃, z̃)δρ̃

=

n∑
j=1

m∑
i=1

φ′′(rij(ρ̃, z̃))
(
δρ̃j{ζij(z̃)}+

)2
, (A.1)

δz̃>∂2Ẽ(·; ρ̃, z̃)(z̃)δz̃

=

n∑
j=1

m∑
i=1

φ′′(rij(ρ̃, z̃))
(
ρ̃jχ(ζ

i
j(z̃))δz̃

>(ζij)
′(z̃)

)2
. (A.2)

Comparing the above two formulas with (4.21) and (4.25),
the conclusion follows from condition (4.7). ut
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B Proof of Theorem 1

Proof First note that condition (4.29) implies that

∂2E
∂ρ̃2

(ρ̃∗, z̃∗) � O, (B.1)

∂2E
∂z̃2

(ρ̃∗, z̃∗)−
∂2E
∂ρ̃∂z̃

(ρ̃∗, z̃∗)
∂2E
∂ρ̃2

(ρ̃∗, z̃∗)−1 ∂2E
∂ρ̃∂z̃

(ρ̃∗, z̃∗) � O.

(B.2)

Utilizing Lemma 1 in conjunction with (B.2) and (4.30), we
obtain

Hρ(ρ̃
∗, z̃∗) � O, Hz(ρ̃

∗, z̃∗) � O, (B.3)

∂2E
∂z̃2

(ρ̃∗, z̃∗)−
∂2E
∂ρ̃∂z̃

(ρ̃∗, z̃∗)Hρ(ρ̃
∗, z̃∗)−1 ∂2E

∂ρ̃∂z̃
(ρ̃∗, z̃∗) � O.

(B.4)

Now consider the iteration

z̃k+1 = z̃k −Hz(ρ̃k+1, z̃k)−1 ∂E
∂z̃

(ρ̃k+1, z̃k)

= z̃k −Hz
(
ρ̃k −Hρ(ρ̃k, z̃k)−1 ∂E

∂ρ̃
(ρ̃k, z̃k), z̃k

)−1

∂E
∂z̃

(ρ̃k −Hρ(ρ̃k, z̃k)−1 ∂E
∂ρ̃

(ρ̃k, z̃k), z̃k) (B.5)

as a map z̃k 7→ z̃k+1. By the Ostrowski theorem [49, Propo-
sition 10.1.3], the local convergence of {z̃k} to z̃∗ follows if
the spectral radius of the Jacobian

∂z̃k+1

∂z̃k
(ρ̃∗, z̃∗) = id−Hz(ρ̃∗, z̃∗)−1 ∂

2E
∂z̃2

(ρ̃∗, z̃∗)

+Hz(ρ̃
∗, z̃∗)−1 ∂2E

∂ρ̃∂z̃
(ρ̃∗, z̃∗)Hρ(ρ̃

∗, z̃∗)−1 ∂2E
∂ρ̃∂z̃

(ρ̃∗, z̃∗)

(B.6)

is strictly less than 1. Using the similarity transform with

Hz(ρ̃∗, z̃∗)
1

2 , we derive:

sr

(
∂z̃k+1

∂z̃k
(ρ̃∗, z̃∗)

)
= sr

(
Hz(ρ̃

∗, z̃∗)
1

2
∂z̃k+1

∂z̃k
(ρ̃∗, z̃∗)Hz(ρ̃

∗, z̃∗)−
1

2

)
(B.7)

= sr

(
id−Hz(ρ̃∗, z̃∗)−

1

2
∂2E
∂z̃2

(ρ̃∗, z̃∗)Hz(ρ̃
∗, z̃∗)−

1

2

+Hz(ρ̃
∗, z̃∗)−

1

2
∂2E
∂ρ̃∂z̃

(ρ̃∗, z̃∗)Hρ(ρ̃
∗, z̃∗)−1

∂2E
∂ρ̃∂z̃

(ρ̃∗, z̃∗)Hz(ρ̃
∗, z̃∗)−

1

2

)
(B.8)

= sup
‖v‖=1

∣∣∣∣‖v‖2
− v>Hz(ρ̃

∗, z̃∗)−
1

2
∂2E
∂z̃2

(ρ̃∗, z̃∗)Hz(ρ̃
∗, z̃∗)−

1

2 v

+ v>Hz(ρ̃
∗, z̃∗)−

1

2
∂2E
∂ρ̃∂z̃

(ρ̃∗, z̃∗)Hρ(ρ̃
∗, z̃∗)−1

∂2E
∂ρ̃∂z̃

(ρ̃∗, z̃∗)Hz(ρ̃
∗, z̃∗)−

1

2 v

∣∣∣∣. (B.9)

It follows from condition (4.31) that

∂2E
∂z̃2

(ρ̃∗, z̃∗) ≺ 2∂2Ẽ(·; ρ̃∗, z̃∗)(z̃∗) � 2Hz(ρ̃
∗, z̃∗), (B.10)

and hence

id−Hz(ρ̃∗, z̃∗)−
1

2
∂2E
∂z̃2

(ρ̃∗, z̃∗)Hz(ρ̃
∗, z̃∗)−

1

2 � −id. (B.11)

Consequently, there exists ε1 ∈ (0, 1) such that the following
inequality holds for an arbitrary v:

‖v‖2 − v>Hz(ρ̃
∗, z̃∗)−

1

2
∂2E
∂z̃2

(ρ̃∗, z̃∗)Hz(ρ̃
∗, z̃∗)−

1

2 v

≥ −(1− ε1)‖v‖2. (B.12)

Meanwhile, condition (B.4) implies that, for some ε2 ∈ (0, 1):

v>Hz(ρ̃
∗, z̃∗)−

1

2
∂2E
∂z̃2

(ρ̃∗, z̃∗)Hz(ρ̃
∗, z̃∗)−

1

2 v

− v>Hz(ρ̃
∗, z̃∗)−

1

2
∂2E
∂ρ̃∂z̃

(ρ̃∗, z̃∗)Hρ(ρ̃
∗, z̃∗)−1

∂2E
∂ρ̃∂z̃

(ρ̃∗, z̃∗)Hz(ρ̃
∗, z̃∗)−

1

2 v (B.13)

= (Hz(ρ̃
∗, z̃∗)−

1

2 v)>(∂2E
∂z̃2

(ρ̃∗, z̃∗)−
∂2E
∂ρ̃∂z̃

(ρ̃∗, z̃∗)Hρ(ρ̃
∗, z̃∗)−1 ∂2E

∂ρ̃∂z̃
(ρ̃∗, z̃∗)

)
(Hz(ρ̃

∗, z̃∗)−
1

2 v) (B.14)

≥ ε2‖v‖2. (B.15)

Altogether, we conclude

sr

(
∂z̃k+1

∂z̃k
(ρ̃∗, z̃∗)

)
≤ 1−min(ε1, ε2), (B.16)

and hence the convergence of {z̃k}. The convergence of {ρ̃k}
to ρ̃∗ follows from a similar argument. ut
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