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1 Introduction

3D-reconstruction is one of the most important goals of computer vision. Among
the many techniques which can be used to accomplish this task, shape-from-
shading [22] and photometric stereo [41] are photometric techniques, as they use
the relationship between the gray levels of the image, the shape of the scene,
supposedly opaque, its reflectance and the luminous flux that illuminates it.

We first introduce some notations that will be use throughout this paper. We
describe a point x in 3D-space by its coordinates [x, y, z]⊤ in a frame originating
from the optical center C of the camera, such that the plane Cxy is parallel to the
image plane and the Cz axis coincides with the optical axis and faces the scene.
The coordinates [u, v]⊤ of a point p in the image (pixel) are relative to a frame Ouv
whose origin is the principal point O, and whose axes Ou and Ov are parallel to
Cx and Cy. If f refers to the focal length, the relationship of conjugation between
x and p is written, in perspective projection:




x =

z

f
u

y =
z

f
v

(1)

3D-reconstruction consists in estimating, in each pixel p of a part Ω of the
image, its conjugate point x in 3D-space. Relations (1) show that it suffices to find
the depth z to determine x from p. The only unknown of the problem is thus the
depth map z, which is defined as follows:

z : Ω ⊂ R
2 → R

p = [u, v]⊤ 7→ z(p)
(2)

We are interested in this article in 3D-reconstruction of Lambertian surfaces
by photometric stereo. The reflectance in a point of such a surface is completely
characterized by a coefficient ρ, called albedo, which is 0 if the point is black and 1
if it is white. Photometric stereo is nothing else than an extension of shape-from-
shading: instead of a single image, the former uses m > 3 shots I1, . . . , Im taken
from the same angle, but under varying lighting. It allows to estimate not only
the shape, but also the albedo, which is not the case for other computer vision
techniques.

A parallel and uniform illumination can be characterized by a vector s ∈ R
3

oriented towards the light source, whose norm is proportional to the light flux
density. For a Lambertian surface, the classical modeling of photometric stereo is
written, in each pixel p ∈ Ω, as the following system of equations1:

Ii(p) = ρ(x) si · n(x), i ∈ [1,m] (3)

where Ii(p) denotes the gray level of p under lighting si, ρ(x) denotes the albedo
in the point x conjugate of p and n(x) denotes the unit-length, outgoing normal
to the surface in this point. Since there is a bijective correspondence between a
point x and a pixel p, we write for convenience ρ(p) and n(p) in lieu of ρ(x) and

1 Equality (3) is in fact a proportionality relationship: see the expression (17) of I(p).
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n(x). Introducing the notation m(p) = ρ(p)n(p), System (3) can be rewritten in
matrix form:

I(p) = Sm(p) (4)

where vector I(p) ∈ R
m and matrix S ∈ R

m×3 are defined as follows:

I(p) =



I1(p)

...
Im(p)


 and S =



s1⊤

...

sm⊤


 (5)

As soon as m > 3 non-coplanar lighting vectors are used, matrix S has rank 3.
The unique least-squares solution of System (4) is then given by:

m(p) = S
+
I(p) (6)

where S+ is the pseudo-inverse of S. From this solution, we easily deduce the
albedo and the normal:

ρ(p) = ‖m(p)‖ and n(p) =
m(p)

‖m(p)‖
(7)

The normal field estimated in such a way must eventually be integrated so as
to obtain the depth map, knowing that the boundary conditions, the shape of
domain Ω as well as depth discontinuities significantly complicate this task [12].

To ensure the directionality of lighting, which is required by Model (3), it
is necessary to achieve a complex optical device [29]. It is much easier to use
light-emitting diodes (LEDs) as light sources, but with this type of light sources,
we should expect significant changes in the modeling [30], and therefore in the
resolution. Indeed, vectors si in Model (3) then depend on the 3D-coordinates of
the point x of the surface, which are precisely the unknowns of the problem. The
auxiliary variable m(p) = ρ(p)n(p), whose introduction allows to linearize the
equations when the lighting is directional, since m(p) is not constrained to have
unit-length, loses part of its interest in that situation.

In several articles dealing with photometric stereo under non-directional light-
ing [7,23,33], it is proposed to use the auxiliary variable m(p), although the prob-
lem to solve is no longer linear. The aim of our work is to conduct a comprehensive
and detailed study of this problem, from the modeling to the resolution, through
calibration. In particular, we will show the interest of a new differential modeling
allowing to no longer use the auxiliary variable m(p). Our main contributions are
as follows:

• Modeling photometric stereo under point light source illumination.
• New (geometric and photometric) calibration procedure of a LED.
• Improved classical resolution method for estimating the absolute depth without

a priori knowledge on the shape of the scene.
• Writing of two new numerical schemes aiming at solving the differential for-

mulation of photometric stereo.

In Section 2, we show how to modify Model (4) when the scene is illuminated
by LEDs. In Section 3, which is the core of our work, we describe three resolution
schemes for this problem and propose an optimal combination of two of them.
In Section 4, we extend this study to the case of RGB images. Eventually, we
conclude and suggest several future research directions in Section 5.
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2 Photometric Stereo under Point Light Source Illumination

Most works on photometric stereo assume that the primary luminous flux is par-
allel and uniform, but the directional nature of lighting is difficult to guarantee.
It is much easier to illuminate a scene with LEDs. With this in mind, we have de-
veloped a photometric stereo-based device for 3D-reconstruction of human faces,
which includes m = 8 LEDs located at about 30 cm of the scene (see Figure
1-a). The face is photographed by a Canon EOS 7D camera with focal length
f = 35 mm. Triggering the shutter in burst mode, while sinchronizing the lighting
of the LEDs, provides us with m = 8 images such as those of Figures 1-b, 1-c
and 1-d. In this section, we model the luminous flux emitted by a LED, then we
show how to estimate the parameters of this model. We then show how to model
photometric stereo under m point light sources.

(a)

(b) (c) (d)

Fig. 1 (a) Our photometric stereo-based experimental device for 3D-reconstruction of human
faces using m = 8 LEDs. Walls were painted in black in order to avoid reflections between the
scene and the environment. (b-c-d) Three out of the m = 8 images obtained by this device.



An Operational 3D-reconstruction Device using Photometric Stereo and LEDs 5

2.1 Modeling the Luminous Flux Emitted by a LED

For the LEDs we use, the characteristic dimension of the illuminating volume is
of the order of a millimeter. Therefore, in comparison with the scale of a human
face, each LED can be seen as a point source located at a point xs ∈ R

3. At any
point x ∈ R

3, the luminous flux emitted by such a source is necessarily radial, that
is to say collinear with the unit vector ur = x−xs

‖x−xs‖
. Using spherical coordinates

(r, θ, φ) of x in a frame having xs as origin, this flow is thus written:

s(x) = −
Φ(θ, φ)

r2
ur (8)

where Φ(θ, φ) > 0 denotes the intensity of the source, and where the 1/r2 attenu-
ation is a consequence of the conservation of luminous energy in a non-absorbing
medium. Vector s(x) is purposely oriented in the opposite direction from that of
the light, in order to simplify the writing of the Lambertian model.

Model (8), which is very general, could be described by a small number of
parameters, for instance by projecting Φ(θ, φ) on the spherical harmonics basis.
This allowed Basri et al. to model the luminous flux in the case of uncalibrated
photometric stereo [5]. The intensity Φ(θ, φ) can also be sampled in the vicinity
of a plane using a plane with known reflectance: the classical photometric stereo
approach with directional lighting can then be used, provided that the images of
the surface to reconstruct are compensated by this sampling [2,26,39]. Of course,
this is only justified if the surface is close enough to a plane, which greatly limits
potential applications. In addition, using the specific characteristics of LEDs may
lead to a more accurate model. Indeed, most of the LEDs emit a luminuous flux
which is invariant by rotation around a main direction indicated by a unit vector
ns. If θ is defined relatively to ns, this means that Φ(θ, φ) is independent from φ.
The luminous flux in x coming from a LED located in xs is thus written:

s(x) =
Φ(θ)

‖x− xs‖2
xs − x

‖xs − x‖
(9)

The dependency on θ of the intensity Φ characterizes the anisotropy of the
LED. The function Φ(θ) is generally decreasing on [0, π/2]. An anisotropy model
satisfying this constraint is that of “imperfect Lambertian sources” [6]:

Φ(θ) = Φ0 cosµ θ (10)

which contains two parameters Φ0 = Φ(0) and µ > 0, and models both isotropic
sources (µ = 0) and Lambertian sources (µ = 1). Model (10) is empirical, yet it
has already been used in photometric stereo [27,43], including when all the LEDs
are arranged on a plane parallel to the image plane i.e., when ns = [0, 0, 1]⊤ [28].
This model has proven itself and, moreover, LED manufacturers provide the angle
θ1/2 such that Φ(θ1/2) = Φ0/2, from which we deduce the value of µ by using (10):

µ = −
log(2)

log(cos θ1/2)
(11)

For the LEDs we use, the angle θ1/2 is π/3. From (11), we deduce that µ = 1 i.e.,
that our LEDs are Lambertian. Plugging the expression (10) of Φ(θ) into (9), one
obtains:

s(x) = Φ0 cosµ θ
xs − x

‖xs − x‖3
(12)
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where we explicitly keep the parameter µ to address the most general case. Model
(12) thus includes seven parameters: three for the coordinates of xs, two for the
unit vector ns, plus the parameters Φ0 and µ. Note that ns appears in this model
through the angle θ.

In its uncalibrated version, photometric stereo allows 3D-reconstruction of a
scene without knowing the lighting. This case has been widely studied, including
in the case of nearby point light sources [23,33,45], but if we can, we should rather
calibrate the lighting2.

2.2 Calibrating the Luminous Flux Emitted by a LED

Most calibration methods for point light sources [1,3,9,14,17,35,37,40] do not
take into account the attenuation of the light flux as a function of the distance to
the source, nor the possible anisotropy of the source, which may lead to relatively
imprecise results. To our knowledge, there are few calibration procedures taking
into account these phenomena. Xie et al. use in [43] a single partially bright and
partially Lambertian surface to calibrate a LED. We intend to improve this pro-
cedure using two patterns, one bright and one Lambertian. The brilliant one will
be used to determine the position of the LEDs by triangulation, and the Lamber-
tian one to determine other parameters by minimizing the reprojection error, as
recently proposed by Pintus et al. in [34].

Specular Spherical Calibration Pattern – Position xs of a LED can be determined
by triangulation. In [35], Powell et al. advocate the use of a spherical mirror. To
estimate the positions of the m = 8 LEDs for our device, we use a billiard ball.
Under perspective projection, the edge of the silhouette of a sphere is an ellipse,
which we detect using a dedicated algorithm. It is then easy to determine the 3D-
position and normal for any point on the surface, since the radius of the billiard
ball is known. For each position of the billiard ball, detecting the reflection of the
LED allows us to determine, by reflecting the line of sight on the spherical mirror,
a line in 3D-space passing through xs. In theory, two poses of the billiard ball are
enough to estimate xs, but the use of ten poses improves the robustness of the
estimation.

Lambertian Model – To estimate the main direction ns and the intensity Φ0 in
Model (12), we use a Lambertian calibration pattern. A surface is Lambertian if
the apparent clarity of any point x is independent from the angle under which
it is observed. The luminance L(x), which is equal to the luminous flux emitted
per unit of solid angle and per unit of apparent surface, is independent from the
direction of emission. However, the luminance is not characteristic of the surface,
as it depends on the irradiance E(x), that is to say on the luminous flux received
in x per unit of surface. The relationship between luminance and irradiance is
written, for a Lambertian surface:

L(x) =
ρ(x)

π
E(x) (13)

2 It is also necessary to calibrate the camera, since the 3D-frame is attached to it. We assume
that this has previously been made.
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where the albedo ρ(x) ∈ R, which locally characterizes the surface, is equal to the
proportion of reemitted luminous energy: ρ(x) is equal to 1 if x is white, and to 0
if it is black.

The parameter ρ(x) characterizes itself the reflectance (or BRDF) of a Lam-
bertian surface. In addition, the irradiance at a point x of any surface (Lambertian
or not) with normal n(x), lit by a luminous flux s(x), is written:

E(x) = s(x) · n(x) (14)

After focusing the camera on a point x of the 3D-scene, the irradiance ǫ(p) of
the image plane, at pixel p conjugate to x, is related to the luminance L(x) by
the following “almost linear” relationship [22]:

ǫ(p) = β cos4 α(p)L(x) (15)

where β is a proportionality coefficient characterizing the clarity of the image,
which depends on several factors such as the lens aperture, the exposure time, the
magnification, etc. Regarding factor cos4 α(p), where α(p) is the angle between
the line of sight and the optical axis, it is responsible for darkening at the periphery
of the image that should not be confused with vignetting.

With current photosensitive receptors, the gray level J(p) at pixel p is almost
proportional3 to its irradiance ǫ(p), except of course in case of saturation. Denot-
ing γ this coefficient of quasi-proportionality, and combining equalities (13), (14)
and (15), we get the following expression of the gray level in a pixel p conjugate
to a point x located on a Lambertian surface:

J(p) = γ β cos4 α(p)
ρ(x)

π
s(x) · n(x) (16)

We have already mentioned that there was a bijective correspondence between a
point x and its conjugate p, which allows us to denote ρ(p) and n(p) instead of
ρ(x) and n(x). As the factor cos4 α(p) is easy to calculate in each pixel p of the
photosensitive receptor, we can very easily compensate for this source of darkening
and will manipulate now the “corrected gray level”:

I(p) =
J(p)

cos4 α(p)
= γ β

ρ(p)

π
s(x) · n(p) (17)

Lambertian Planar Calibration Pattern – To estimate the parameters ns and Φ0

in Model (13), that is to say to achieve photometric calibration, we use a second
calibration pattern consisting of a checkerboard printed on a white paper sheet,
which is itself stuck on a plane (cf. Figure 2), with the hope that the unavoidable
outliers to the Lambertian model will not influence the accuracy of the estimates
too much.

The use of a convex calibration pattern (plane, in this case) has a significant
advantage: the luminous flux s(x) at any point x of the surface is purely primary,
that is to say, it comes only from the light source, without “bouncing” on other
parts of the surface of the target, whereupon the walls and surrounding objects
are covered in black (see Figure 1-a). With this observation, we can replace the

3 It is said in [7] that using RAW images is a necessary condition to achieve this propor-
tionality relationship.
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Fig. 2 Two out of the q poses of the planar Lambertian calibration pattern used for photo-
metric calibration of the LEDs. The parts of the white cells that are used for estimation are
indicated in red.

light flux s(x) of Equation (16) by the expression (12) of the flux emitted by a
LED. From (12) and (16), we deduce the gray level I(p) of the image of a point x

located on this calibration pattern, illuminated by a LED:

I(p) = γ β
ρ(p)

π
Φ0 cosµ θ

(xs − x) · n(p)

‖xs − x‖3
(18)

If q > 3 poses of the checkerboard are used, numerous algorithms exist for
estimating unambiguously the coordinates of the points xj of the pattern, for
different poses j ∈ [1, q]. These algorithms also allow the estimation of the q
normals nj (we omit the dependency on p of the normals, since the pattern is
flat), and the intrinsic parameters of the camera4. As for the albedo, if the use of
white paper does not guarantee that ρ(p) ≡ 1, it still seems reasonable to assume
ρ(p) ≡ ρ0, that is to say, the albedo is uniform in the white cells. We can group
all the multiplier coefficients of the right hand side of (18) into one coefficient:

Ψ = γ β
ρ0
π

Φ0 (19)

With this definition, and knowing that θ is the angle between vectors ns and
x− xs, Equation (18) can be rewritten, in a pixel p of the set Ωj containing the
white pixels of the checkerboard in the jth pose (these pixels are indicated in red
in the images of Figure 2):

Ij(p) = Ψ

[
ns ·

xj − xs

‖xj − xs‖

]µ
(xs − xj) · nj

‖xs − xj‖3
(20)

Since xs has already been estimated, and since the value of µ is provided (indi-
rectly) by the manufacturer, the only unknowns in this equation are Ψ and ns.
Two cases may occur:

• If the LED to calibrate is isotropic, that is to say if µ = 0, then it is useless to
estimate ns and Ψ can be estimated in a least-squares sense, by solving:

min
Ψ

q∑

j=1

∑

p∈Ωj

[
Ij(p)− Ψ

(xs − xj) · nj

‖xs − xj‖3

]2
(21)

4 To perform these operations, which allow us to perform the geometric calibration of the
camera, we used the Computer Vision toolbox from Matlab.



An Operational 3D-reconstruction Device using Photometric Stereo and LEDs 9

whose solution is given by:

Ψ =

q∑

j=1

∑

p∈Ωj

Ij(p)
(xs − xj) · nj

‖xs − xj‖3

q∑

j=1

∑

p∈Ωj

[
(xs − xj) · nj

‖xs − xj‖3

]2 (22)

• In the other case (if µ > 0), Equation (20) can be rewritten:

Ψ1/µ
ns︸ ︷︷ ︸

ms

· (xj − xs) =

[
Ij(p)

‖xs − xj‖3+µ

(xs − xj) · nj

]1/µ
(23)

The least-squares estimation of vector ms is thus written:

min
ms

q∑

j=1

∑

p∈Ωj

[
ms · (x

j − xs)−

[
Ij(p)

‖xs − xj‖3+µ

(xs − xj) · nj

]1/µ]2

(24)

This linear least-squares problem can be solved, for instance, using the pseudo-
inverse. From this estimate, we easily deduce those of parameters Ψ and ns:

ns =
ms

‖ms‖
et Ψ = ‖ms‖

µ (25)

In both cases, it is impossible to deduce from the estimate of Ψ that of Φ0,
because in the definition (19) of Ψ , the product γ β ρ0

π is unknown. However, since
this product is the same for all LEDs (desactivating all automatic settings of the
camera makes β and γ constant), this is not a problem for photometric stereo.

Figure 3 shows two views of a schematic representation of the experimental
device of Figure 1, where LEDs parameters were estimated by following the cali-
bration procedure as described above.

Fig. 3 Two views of a schematic representation of the experimental device of Figure 1-a, in
which the arrows symbolize the LEDs (unit: millimeter). The direction of an arrow characterizes
the main direction ns of a LED, while its length characterizes its intensity Ψ (up to a constant
factor). The plane in blue indicates the average position of the face, located about 70 cm away
from the camera, or 30 cm from the LEDs.
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2.3 Modeling Photometric Stereo with Point Light Sources

If the luminous flux emitted by a LED is described by (12), then we obtain from
(18) and (19) the following equation for the gray level at pixel p:

I(p) = Ψ
ρ(p)

ρ0

[
ns ·

x− xs

‖x− xs‖

]µ
(xs − x) · n(p)

‖xs − x‖3
(26)

Thus, we must solve, in each pixel p ∈ Ω, the following system of equations:

Ii(p) = Ψ i ρ(p)

ρ0

[
n
i
s ·

x− xi
s

‖x− xi
s‖

]µi

(xi
s − x) · n(p)

‖xi
s − x‖3

, i ∈ [1,m] (27)

where the values of parameters xi
s, ni

s and Ψ i, i ∈ [1,m] are known, thanks to
the calibration procedure described in Section 2.2. Let us also introduce a new
definition of the albedo, relatively to the albedo ρ0 of the Lambertian calibration
pattern:

ρ(p) =
ρ(p)

ρ0
(28)

Since parameters µi, i ∈ [1,m], are provided by the manufacturer, the only
unknowns in System (27) are the position x of the 3D-point conjugate to p, its
albedo ρ(p) and its normal n(p). To solve this system, the introduction of the
auxiliary variable m(p) = ρ(p)n(p) may seem relevant, since this vector is not
constrained to have unit-length, but we will see that this trick loses part of its
interest. Defining the following m vectors, i ∈ [1,m]:

t
i(x) = Ψ i

[
n
i
s ·

x− xi
s

‖x− xi
s‖

]µi

xi
s − x

‖xi
s − x‖3

(29)

System (27) is rewritten:

Ii(p) = t
i(x) ·m(p), i ∈ [1,m] (30)

or, in matrix form:
I(p) = T(x)m(p) (31)

where I(p) ∈ R
m has been defined in (5) and T(x) ∈ R

m×3 is defined as follows:

T(x) =



t1(x)⊤

...

tm(x)⊤


 (32)

Equation (31) is similar to (4), and knowledge of the matrix field T(x) would allow
us to estimate its field of pseudo-inverses in order to solve (31), just as calculating
the pseudo-inverse of S allows us to solve (4) when the lighting is directional.
However, matrix field T(x) depends on x, and thus on the unknown depth. We
will see that this difference induces major changes when it comes to the resolution.

The dependency on x of the matrix field T(x), which significantly complicates
the resolution of Problem (31), has yet one advantage: if some gray levels Ii(p) do
not fit the Lambertian model, it is possible to eliminate them, because the number
of lines in each matrix T(x) may vary from one pixel to another. As advocated
in [7], we systematically eliminate the highest gray level, which may come from
a specular highlight, as well as both lowest gray levels, which may correspond to
shadows.
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3 Solving Photometric Stereo under Point Light Source Illumination

This section is our main contribution. We propose three resolution schemes for
photometric stereo under point light source illumination.

3.1 Scheme Inspired by the Classical Resolution of the Linear Model (4)

It seems quite natural to take inspiration from the resolution (6) of the linear
model (4). To linearize Problem (31), it is enough to assume that matrix T(x)
is known. If we proceed iteratively, this can be made possible by replacing, at
iteration (k+1), T(x) by T(x(k)). This very simple idea has led to several methods
of resolution [7,10,23,33,45], which all require some kind of a priori knowledge on
the depth. On the contrary, the scheme we propose here requires none, which
constitutes a significant improvement. If k = 0 and if x(0) the initial shape, this
new scheme consits in iterating:

1. Solve Problem (31) in the least-squares sense at each p ∈ Ω, by replacing T(x)
by T(x(k)), which provides a new estimation of m(p):

m
(k+1)(p) = argmin

q∈R3

‖I(p)−T(x(k))q‖2 (33)

2. Deduce a new estimation of the normal n(p) at each p ∈ Ω:

n
(k+1)(p) =

m(k+1)(p)

‖m(k+1)(p)‖
(34)

3. Integrate the new normal field n(k+1)(p), in order to obtain an updated shape
x(k+1), up to a scale factor.

4. Estimate this scale factor by nonlinear optimization.
5. Increment k.

For this scheme to be complete, we need to specify an initial shape x(0) and a
stopping criterion. Studying convergence of this scheme towards a solution of the
system of PDEs (27), which is nonlinear, is beyond the scope of this article. In this
view, let us only state for now that we could observe divergence in some specific
situations where the initial shape x(0) is very far away from the real shape, or
when the surface presents too many specularities.

Integration of Normals – Although Stages 1 and 2 of the scheme above are trivial
and can be achieved pixelwise, that is to say in each pixel p ∈ Ω independently
from its neighbors, this is not the case of Stages 3 and 4. From the equalities in (1),
it is easy to deduce that the (non-unit-length) vector:

n(p) =




f ∂uz(p)
f ∂vz(p)

−z(p)− p · ∇z(p)


 (35)
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is normal to the surface (∇z(p) = [∂uz(p), ∂vz(p)]
⊤ refers to the gradient of z

at p). Expression (35) shows that integrating the (unit-length) normal field n(p)
allows to estimate the depth z only up to a scale factor α ∈ R, since:

n(p) ∝




f ∂uz(p)
f ∂vz(p)

−z(p)− p · ∇z(p)


 ∝




f ∂u(α z)(p)
f ∂v(α z)(p)

−(α z)(p)− p · ∇(α z)(p)


 (36)

The collinearity of n(p) and n(p) = [n1(p), n2(p), n3(p)]
⊤ leads to the system:

{
n3(p) f ∂uz(p) + n1(p) [z(p) + p · ∇z(p)] = 0

n3(p) f ∂vz(p) + n2(p) [z(p) + p · ∇z(p)] = 0
(37)

which is homogeneous in z(p). Introducing the variable z̃ = log(z), and denoting:

p = [u, v, f ]⊤ (38)

it is easy to deduce from (37) the gradient of z̃(p):

∇z̃(p) = −
1

p · n(p)

[
n1(p)
n2(p)

]
(39)

Let us now come back to Stages 3 and 4 of the proposed resolution scheme. The
current normal field is n(k+1)(p), from which we deduce the gradient ∇z̃(k+1)(p)
thanks to (39). By integrating this gradient between a point p0, chosen arbitrarily
inside Ω, and point p, and knowing that z = exp{z̃}, we obtain:

z(k+1)(p) = z(k+1)(p0) exp

{∫ p

p0

∇z̃(k+1)(q) · dq

}
(40)

This integral can be calculated along one single path going from p0 to p, but
since the gradient field ∇z̃(k+1)(p) is never rigorously integrable, this calculus
usually depends on the choice of the path [42]. The most common parade to this
well-known problem consists in using a variational approach [12].

Expression (40) confirms that the depth can be calculated from n(k+1)(p) only
up to a scale factor z(k+1)(p0). Let us determine this scale factor by minimization
of the reprojection error of Model (31) over the entire domain Ω. Knowing that,
from (1) and (38), we get x = z

f p, this comes down to solving the following
nonlinear least squares problem:

z(k+1)(p0)=argmin
w∈R+

∑

p∈Ω

‖I(p)−T
(w
f
exp

{∫ p

p0

∇z̃(k+1)(q) · dq

}
p
)
m

(k+1)(p)‖2

︸ ︷︷ ︸
E1

(41)
which allows us to eventually write the shape update (Stages 3 and 4):

x
(k+1) =

z(k+1)(p0)

f
exp

{∫ p

p0

∇z̃(k+1)(q) · dq

}
p (42)



An Operational 3D-reconstruction Device using Photometric Stereo and LEDs 13

Experimental Validation – Although studying the convergence of this scheme is
out of the scope of this article, we empirically found that it always converges,
provided that the surface is Lambertian and the initial shape is not too far away
from the mean distance from the camera to the scene. For the curves in Figure 4,
several fronto-parallel planes with equation z ≡ z0 were used as initial guess. The
mean distance to the scene being approximately 700 mm, it is not surprising that
the fastest convergence is observed for this value of z0.

0 20 40 60 80 100

10
1

10
2

Iterations

E
1

 

 

z
(0)

≡ 500 mm

z
(0)

≡ 650 mm

z
(0)

≡ 700 mm

z
(0)

≡ 750 mm

z
(0)

≡ 900 mm

Fig. 4 Evolution of the energy E1 defined in (41), in function of the iterations, when the initial
shape is a fronto-parallel plane with equation z = z0. The used data are the m = 8 images
of the plaster statuette of Figure 1. The proposed scheme always converges towards the same
solution (at different speeds), for the five tested values of z0.

Figure 5 allows to compare the shape obtained by photometric stereo, from sub-
images of size 920× 1178 in full resolution (corresponding to the bounding box of
the object), which contains 773794 points, with the ground truth obtained by laser
scanning, which contains 1753010 points. The points density is thus almost the
same on the front of the statuette, since we do not reconstruct its back. However,
our result is achieved in less than ten seconds (five iterations of a Matlab code on
a recent I7 processor), instead of several hours for the ground truth, while we also
estimate the albedo.

Figure 6-a shows the histogram of point-to-point distances between our result
(Figure 5-a) and the ground truth (Figure 5-c). The median value is worth 1.3 mm.
The spatial distribution of these distances, which is illustrated in Figure 6-b, shows
that the largest distances are observed on the highest slopes of the surface. This
clearly comes from the fact that, even for a diffuse material such as plaster, the
Lambertian model is not valid under skimming lighting.

More realistic reflectance models, such as the one proposed by Oren and Nayar
in [32], would perhaps improve the accuracy of the reconstruction in these points,
but the problem of steep areas also comes from normal integration. In the next
section, we describe a different formulation of photometric stereo which permits
to avoid integration, by solving a system of PDEs in z.
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(a) (b) (c)

Fig. 5 (a-b) Shape and albedo of the statuette obtained with the proposed resolution scheme.
(c) Ground truth shape obtained by laser scanning (which does not provide the albedo).

(a) (b)

Fig. 6 (a) Histogram of point-to-point distances between our 3D-reconstruction and the
ground truth. The median value is worth 1.3 mm. (b) Spatial distribution of these distances.

3.2 Fixed Point Resolution Scheme

Apart from the fact that we did not study its convergence, the scheme proposed in
Section 3.1 suffers from several defects. We just mentioned that it requires to inte-
grate the gradient ∇z̃(k+1)(p) at each iteration. This must not be accomplished by
the naive formulation (42), but rather by using more sophisticated methods which
would allow to overcome the problem of non-integrability [11]. Also, photometric
stereo indeed allows to estimate the albedo (cf. Figure 5-b), but this first scheme
implicitely calculates the albedo at each iteration, since ρ(k+1)(p) = ‖m(k+1)(p)‖.
It is possible to avoid such useless computations by a posteriori estimating the
albedo, once the shape is estimated.

This observation leads us to question the usefulness of the variable m(p), which
mixes the normal n(p) and the relative albedo ρ(p), that is to stay a geometric
concept and a photometric one. We will show how to avoid this by a reformula-
tion of photometric stereo which allows: to directly estimate the depth, and thus
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to avoid integration; to eliminate the albedo from the unknowns, which will be a
posteriori estimated, once the shape is estimated, thus avoiding useless computa-
tions. Let us note that the method proposed by Xie et al. [44] is inspired by the
same ideas, yet it follows a different track: the depth is iteratively estimated by
deforming a mesh representing the surface.

Differential Reformulation of Problem (31) – Let us recall that the 3D-position of
the point x conjugate to a pixel p is completely characterized by the depth z(p),
since:

x =
z(p)

f

[
p

f

]
(43)

The vectors ti(x) defined in (29) can thus be denoted tiz(p). Knowing that the
(non-unit-length) vector n(p) defined in (35) is normal to the surface, we can
rewrite System (27) in p ∈ Ω in the following manner:

Ii(p) =
ρ(p)

‖n(p)‖
t
i
z(p) ·

[
f ∇z(p)

−z(p)− p · ∇z(p)

]
, i ∈ [1,m] (44)

where the norm of n(p) depends in a nonlinear way on z(p) and on its gradient
∇z(p):

‖n(p)‖ =

√
f2‖∇z(p)‖2 + [z(p) + p · ∇z(p)]2 (45)

In comparison with Equations (27), the PDEs (44) explicitely depend on the
depth z, but contain two difficulties: they are nonlinear and cannot be solved
locally. We can eliminate the nonlinearity due to the normalization term ‖n(p)‖.
Indeed, neither the relative albedo ρ(p), nor the norm ‖n(p)‖, depend on the
index i of the LED. We can thus deduce from a pair of equations such as (44),
that is to say for (i, j) ∈ [1,m]2, i < j, the following equalities:

ρ(p)

‖n(p)‖
=

Ii(p)

ai
z(p) · ∇z(p)− biz(p) z(p)

=
Ij(p)

a
j
z(p) · ∇z(p)− bjz(p) z(p)

(46)

where ai
z(p) and biz(p) are defined as follows:

a
i
z(p) = f

[
tiz,1(p)

tiz,2(p)

]
− tiz,3(p)p and biz(p) = tiz,3(p) (47)

where we denote tiz(p) = [tiz,1(p), t
i
z,2(p), t

i
z,3(p)]

⊤.
From Equations (46), we obtain the following PDE in z:

[
Ii(p)aj

z(p)− Ij(p)ai
z(p)

]
︸ ︷︷ ︸

a
i,j
z (p)

· ∇z(p) =
[
Ii(p) bjz(p)− Ij(p) biz(p)

]

︸ ︷︷ ︸
bi,jz (p)

z(p) (48)

The fields ai,j
z (p) and bi,jz (p) defined in (48) depend on z but not on ∇z.

The PDE (48) is thus quasi-linear. It could be solved by the characteristic strips
expansion method [28] if we were dealing with m = 2 images only, but using a
larger number of images is necessary in order to design a robust 3D-reconstruction
method.
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Since we are provided with m = 8 images, we follow the idea from [16,27,36,38].
This consists in writing

(
m
2

)
PDEs such as (48), which correspond to the

(
m
2

)
pairs

(i, j) ∈ [1,m]2, i < j. Moreover, we resort to robust estimation techniques. Forming

the matrix field Az : Ω ⊂ R
2 → R

(m2 )×2 by concatenation of the row vectors

ai,j
z (p)⊤, and forming the vector field bz : Ω ⊂ R

2 → R
(m2 ) by concatenation of

the scalar values bi,jz (p), the system of PDEs to solve is written:

Az(p)∇z(p) = bz(p) z(p) (49)

This new differential formulation of photometric stereo seems simpler than the
original differential formulation (44), since the main source of nonlinearity, due to
the denominator ‖n(p)‖, has been eliminated. However, it admits more solutions
than (44): it is easy to check that the system of PDEs (49) admits both trivial
solutions z ≡ 0 and z ≡ +∞, which are not solutions of (44). Moreover, we can
predict that the solution which we are looking for will be approximate because of
the redundancy of the PDEs system (49), while z ≡ 0 and z ≡ +∞ may be trivial,
yet they are exact solutions.

Since several solutions do exist, it is necessary to look for an approximate,
locally optimal, solution of (49). It has been proposed in [27,36] to iteratively
estimate this solution by resorting to a fixed point scheme. In order to avoid any
drift towards the trivial solution z ≡ 0, this approach involves a regularization
term penalizing the difference between z and a prior z0 on the depth. Yet, it is
not only not so frequent to have such a prior, but it is also difficult to correctly
tune the relative importance of the regularization term.

We will see that one can avoid resorting to this regularization term thanks to
the change of variable z̃ = log(z), which is valid since z > 0. Dividing both sides
of Equation (49) by z(p), we get:

Aexp{z̃}(p)∇z̃(p) = bexp{z̃}(p) (50)

whose approximate solution can be estimated by resorting to a variational ap-
proach.

Variational Resolution of System (50) – Exact resolution of System (50) is neither
desirable, because of outliers to the Lambertian model such as noise and shadows,
nor even possible, because these

(
m
2

)
PDEs are usually incompatible, precisely

because of these outliers.

We prefer to turn the resolution of this system into a variational problem whose
formalism allows to take into account both the redundancy of the data and the
outliers to the model. We assume that each of the

(
m
2

)
equalities in System (50) is

satisfied up to an additive noise. If we assume that this noise is Gaussian and has
zero-mean5, the optimal solution (in the maximum likelihood sense) is obtained

5 In fact, any noise assumption should be formulated on the images, and not on Model (49),
which was obtained by considering ratios of gray levels, cf. (50): if the noise on gray levels is
Gaussian, then that on ratios is Cauchy-distributed [20]. Hence, the least-squares solution (51)
is the best linear unbiased estimator, but it is not the optimal solution, which would require
non-convex estimators [11]. Yet, we leave this as future work.
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by minimizing the sum of the square residuals over the entire reconstruction do-
main Ω:

min
z̃:Ω→R

‖Aexp{z̃} ∇z̃ − bexp{z̃}‖
2
L2(Ω)︸ ︷︷ ︸

E2

(51)

The nonlinearity of the least-squares problem (51) comes from the dependency
on z̃ of the fields Aexp{z̃} and bexp{z̃}. It thus seems relevant to uncouple the
(linear) estimation of z̃ from the (nonlinear) estimation of Aexp{z̃} and bexp{z̃},
by rewriting (51) as the following constrained optimization problem:

min
z̃:Ω→R

‖A∇z̃ − b‖2L2(Ω)

s.c.

[
A

b

]
=

[
Aexp{z̃}

bexp{z̃}

]
(52)

which we can solve by resorting to a fixed point iterative scheme:

z̃(k+1) = argmin
z̃:Ω→R

‖A(k) ∇z̃ − b
(k)‖2L2(Ω) (53)

[
A(k+1)

b(k+1)

]
=

[
Aexp{z̃(k+1)}

bexp{z̃(k+1)}

]
(54)

The linear least-squares variational problem (53) can be solved by discretizing
the gradient operator ∇ by finite differences (we used forward, first-order finite
differences, with a Neumann boundary condition). The discrete optimization prob-
lem that we obtain this way admits as necessary optimality condition the following
linear system:

(
A

(k)
D
)⊤

A
(k)

D
︸ ︷︷ ︸

A
(k)

z̃ =
(
A

(k)
D
)⊤

b
(k)

(55)

where A
(k)

, b
(k)

and D denote the discretizations of A(k), b(k) and ∇, and where
the unknown vector z̃ admits as coordinates the values of the function z̃ in pixels
p ∈ Ω.

Matrix A
(k)

in (55) is symmetric, positive semi-definite. Its kernel has dimen-
sion 1. This rank deficiency, which comes from the fact that A(k) ∇z̃ − b(k) =
A(k) ∇(z̃ +K) − b(k), for any K ∈ R, would not occur with the nonlinear least-
squares problem (51), because Aexp{z̃} and bexp{z̃} are not invariant by translation
of z̃. However, in practice, we found that conjugate gradient algorithms converge
rapidly towards a solution of (55), provided that solution z̃(k) is used as initial-
ization at iteration (k + 1).

Experimental Validation – It is empirically shown in [27,36] that fixed point
schemes provide reasonable results, yet the question of convergence is overlooked.
Yet, Figure 7 shows that, although the scheme indeed converges rapidly, its so-
lution is not optimal in the sense of the energy E2 defined in (51). We will now
introduce an ADMM algorithm allowing to avoid this issue.
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Fig. 7 Evolution of the energy E2 defined in (51), in function of the iterations, for the data
of Figure 1 (the initial shape is a fronto-parallel plane with equation z ≡ 700 mm). The fixed
point scheme converges towards a non-optimal solution, contrarily to the ADMM scheme we
are going to introduce.

3.3 ADMM Resolution Scheme

Because of the nonlinear dependency in z̃ of Aexp{z̃} and bexp{z̃}, it is difficult to
guarantee good convergence properties for the fixed point scheme of the previous
section. Instead of “freezing” the nonlinearities of the variational problem (51), we
propose to estimate z̃ not only from the linearized parts, but also from the non-
linear ones. In this view, we introduce an auxiliary variable z and we reformulate
Problem (51) in the following manner:

min
z,z̃

∥∥Aexp{z} ∇z̃ − bexp{z}

∥∥2
L2(Ω)

s.c. z̃ = z
(56)

In order to solve the constrained optimization problem (56), we use an aug-
mented Lagrangian approach with alternating descent direction (ADMM).This
standard procedure, which dates back to the 70s [13,15], has recently been revis-
ited [8]. By introducing a dual variable w and a descent step ν, a local solution
of (56) is obtained at convergence of the following iterative scheme:

1. Update z̃ by using the linear part, “while staying close to z”:

z̃(k+1) = argmin
z̃

∥∥∥Aexp{z(k)}∇z̃ − bexp{z(k)}

∥∥∥
2

L2(Ω)
+

1

2 ν

∥∥∥z̃ − z(k) + w(k)
∥∥∥
2

L2(Ω)

(57)
2. Update z by using the nonlinear part, “while keeping close to z̃”:

z(k+1) = argmin
z

∥∥∥Aexp{z} ∇z̃(k+1) − bexp{z}

∥∥∥
2

L2(Ω)
+

1

2 ν

∥∥∥z̃(k+1)−z+w(k)
∥∥∥
2

L2(Ω)

(58)
3. Update the dual variable, in order to guarantee that the constraint z̃ = z is

satisfied:

w(k+1) = w(k) + z̃(k+1) − z(k+1) (59)
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The first stage (57) is a linear least-squares problem which can be solved in the
same way as in the previous scheme, using the normal equations. Note that the
presence of the regularization term guarantees this time the positive definiteness of
the matrix of the system, and therefore the convergence of the conjugate gradient
algorithm for its resolution.

With the introduction of the auxiliary variable z, which decouples the terms in
∇z̃ and z̃, the second stage (58) is a local nonlinear least-squares problem: in fact,
the gradient of z is not involved in this problem, which can be resolved pixelwise.
Problem (58) thus reduces to a nonlinear least-squares estimation problem of one
real variable, which can be solved by a standard method such as the Levenberg-
Marquardt algorithm.

Because of the nonlinearity of Problem (58), it is unfortunately impossible to
guarantee convergence of the proposed ADMM scheme, which depends on the ini-
tialization and on the descent parameter ν [8]. A reasonable initialization strategy
consists in using the solution provided by the scheme of Section 3.1. As for the de-
scent parameter, we iteratively calculate its optimal value according to the Penalty

Varying Parameter procedure described in [8]. Finally, the iteration stops when
the relative variation of the criterion of Problem (58) falls under a threshold equal
to 10−4.

Despite this theoretical difficulty, the proposed ADMM scheme allows quite
simply to separate the difficulties, namely the global nature of the problem (pres-
ence of the gradient term) and its nonlinearity. Although this scheme should be
considered as a local optimization method, “The hope is that it will possibly have

better convergence properties than other local optimization methods, where better
convergence can mean faster convergence or convergence to a point with better ob-

jective value” [8]. In practice, it allows to solve Problem (51) more efficiently than
the fixed point scheme.

Experimental Validation – Figure 8 shows that this ADMM scheme guarantees
better convergence properties than the fixed point scheme used in the literature.
Yet, let us recall that it is a local optimisation method: il would be futile to seek
the global minimum of energy E2, since we already know that it admits several
minima. This is confirmed by Figure 8: even in the vicinity of the sought solution,
several other local minima may exist.

The choice of an appropriate initial shape is therefore very important. The it-
erative scheme of Section 3.1 is a natural choice. Indeed, we have seen that, despite
some flaws, it can estimate the relief unambiguously, whatever the initialization.
In conclusion, the method that we recommend, and which is illustrated by the
results in Figure 9, involves the following two stages:

1. Approximate estimation of shape by the iterative scheme of Section 3.1.
2. Refinement of this estimation by the above ADMM scheme.

To quantitatively evaluate the improvement due to the ADMM scheme, we
tested the full method on the data of Figure 1. At first sight, the shape depicted in
Figure 10-a seems hardly different from that of Figure 5-a, but the comparison of
histograms in Figures 6-a and 10-b shows that bias has been significantly reduced.

In the next section, we will show that another advantage of the proposed
method is that it can very easily be extended to RGB-valued images.
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Fig. 8 Evolution of the energy E2 defined in (51), in function of the iterations, for the data
of Figure 1. Using as initialization z̃ ≡ log(z0), the ADMM scheme always converges towards
a local minimum, yet this minimum strongly depends on the value of z0.

(a) (b) (c)

(d) (e)

Fig. 9 (a-b-c) Three images (out of m = 8) of a plastic mask. (d) 3D-reconstruction obtained
with the iterative scheme of Section 3.1. Artifacts appear where the estimated normal field is
not integrable. (e) Refinement by the ADMM scheme from Section 3.3.
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(a) (b)

Fig. 10 (a) 3D-reconstruction obtained with the ADMM scheme. (b) Histogram of point-to-
point distances between this shape and the ground truth (cf. Figure 5-c). The median value is
worth 1.2 mm. The bias one can observe in the histogram of Figure 6 has significantly been
reduced.

4 Estimating Colored 3D-models by Photometric Stereo

4.1 Spectral Dependency of the Luminous Flux Emitted by a LED

To extend our study to color, we need to introduce a spectral dependency in the
luminous flux model (12). It seems reasonable to limit this dependency to the
intensity Φ (λ denotes the wavelength):

s(x, λ) = Φ(λ) cosµ θ
xs − x

‖xs − x‖3
(60)

Model (60) is more complex than Model (12), because the intensity Φ0, which is
a real parameter, has been replaced by the emission spectrum Φ(λ), which is a
function. Calibration of Φ(λ) could be achieved by using a spectrometer, but we
would prefer to extend the procedure from Section 2.2, which requires nothing else
than a camera and calibration patterns.

For a point x of a Lambertian surface with albedo ρ(x), illuminated by a
luminous flux s(x), we get from (13), (14) and (15) the expression of the irradiance
ǫ(p) of the image plane at pixel p conjugate to x:

ǫ(p) = β cos4 α(p)
ρ(x)

π
s(x) · n(x) (61)

It is easy to extend this expression to the more general case where the luminous
flux s(x) and the albedo ρ(x) present spectral dependencies:

ǫ(p, λ) = β cos4 α(p)
ρ(x, λ)

π
s(x, λ) · n(x) (62)

In addition, the light effectively received by each cell goes through a colored filter
characterized by its transmission spectrum c⋆(λ), ⋆ ∈ {R,G,B}, whose maximum
lies, respectively, in the red, green and blue ranges.
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Thanks to the bijective correspondance between a point x and a pixel p, we
denote ρ(p, λ) in lieu of ρ(x, λ), and n(p) in lieu of n(x). Let us define the color

level I⋆(p), ⋆ ∈ {R,G,B}, similarly to the expression (17) of the gray level I(p),
by integrating (62) over the entire spectrum:

I⋆(p) =
γ β

π

[∫ +∞

λ=0

c⋆(λ) ρ(p, λ) s(x, λ) dλ

]
· n(p) (63)

Using a Lambertian calibration pattern which is uniformly white, that is to say
such that ρ(p, λ) ≡ ρ0, allows us to rewrite (63) as follows:

I⋆(p) = γ β
ρ0
π

[∫ +∞

λ=0

c⋆(λ) s(x, λ) dλ

]
· n(p) (64)

This expression of I⋆(p) is an extension of (17) to RGB images. Indeed, it can be
rewritten:

I⋆(p) = γ β
ρ0
π

s⋆(x) · n(p) (65)

if s⋆(x), ⋆ ∈ {R,G,B}, is defined as follows:

s⋆(x) =

∫ +∞

λ=0

c⋆(λ) s(x, λ) dλ (66)

Plugging the expression (60) of s(x, λ) into (66), we obtain the extension to RGB
images of the model (12) of the luminous flux emitted by a LED:

s⋆(x) = Φ⋆ cosµ θ
xs − x

‖xs − x‖3
(67)

where the colored intensity Φ⋆, ⋆ ∈ {R,G,B} is defined as follows:

Φ⋆ =

∫ +∞

λ=0

c⋆(λ)Φ(λ) dλ (68)

The spectral dependency of the luminous flux emitted by a LED is thus described
by the model (67), which contains nine parameters: three for the coordinates of
xs, two for the unit-length vector ns, plus the three colored intensities ΦR, ΦG

and ΦB and the anisotropy parameter µ. Since the definition (68) depends on
function c⋆(λ), which depends on the sensor, the intensities ΦR, ΦG and ΦB are
not intrinsic parameters of the LED, because they depend on the LED-camera
system. Yet, we cannot obtain any other information on the function Φ(λ) than
these three colored intensities if we use a three channel camera.

To achieve a more accurate calibration, we would need more colored filters, that
is to say we should resort to multi-, or hyper-spectral imagery. Using monochro-

matic filters would even allow us to sample the function Φ(λ). Indeed, if the trans-
mission spectrum of a colored filter can be written cλ0

(λ) = Kλ0
δλ0

(λ), Kλ0

being a constant and δλ0
(λ) the Dirac function centered in λ0, then the colored

intensity (68) becomes:

Φλ0
=

∫ +∞

λ=0

cλ0
(λ)Φ(λ) dλ = Kλ0

Φ(λ0) (69)

but, even in this case, Φλ0
depends on the sensor through Kλ0

.
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4.2 Spectral Calibration of the Luminous Flux Emitted by a LED

If we use again the planar Lambertian calibration pattern from Section 2.2, which is
convex, the incident luminous flux comes solely from the LED. We can thus replace
s⋆(x) by its definition (67) in the expression (65) of the color level I⋆(p). If we
assume that xs is estimated by triangulation and that the anisotropy parameter µ
is provided by the manufacturer, we then have to solve, for each channel ⋆ ∈
{R,G,B}, the following problem (q is the number of poses of the calibration
pattern):

min
ms,⋆

q∑

j=1

∑

p∈Ωj

[
ms,⋆ · (xj − xs)−

[
Ij⋆(p)

‖xs − xj‖3+µ

(xs − xj) · nj

]1/µ]2

(70)

where ms,⋆ is defined by analogy with ms:

ms,⋆ = Ψ⋆
1/µ

ns (71)

and Ψ⋆ is defined by analogy with Ψ :

Ψ⋆ = γ β
ρ0
π

Φ⋆ (72)

Each problem (70) allows us to estimate a colored intensity ΦR, ΦG or ΦB (up to a
constant) and the main direction ns, which is thus estimated three times. Table 1
groups the values obtained for one of the LEDs of our device. The three estimates
of ns are consistent, but instead of arbitrarily choosing one of them, we compute
their weighted mean:

n̂s =
πR n̂s,R + πG n̂s,G + πB n̂s,B

πG + πG + πB
(73)

where the weights πR, πG and πB are defined as follows:

π⋆ =

q∑

j=1

∑

p∈Ωj

Ij⋆(p), ⋆ ∈ {R,G,B} (74)

then we normalize the expression (73) of n̂s to ensure that it has unit-length.

Red channel Green channel Blue channel

n̂s,R =





0, 205

−0, 757

0, 621



 n̂s,G =





0, 194

−0, 769

0, 608



 n̂s,B =





0, 188

−0, 844

0, 503





Ψ̂R = 3, 10× 107 Ψ̂G = 5, 49× 107 Ψ̂B = 3, 37× 107

Table 1 Parameters of one of the LEDs of our device, estimated by resolution of Problem (70)
with respect to each color channel.

In this table, the values of Ψ̂R, Ψ̂G and Ψ̂B are given without units because, from
the definition (72) of Ψ , only their relative values are meaningful. As it happens,
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the value of Ψ̂G is roughly twice as much as that of Ψ̂R and Ψ̂B , but this does not
mean that the value of Φ(λ) is twice larger in the green range than in the red or
in the blue ranges, since the definition (68) of the colored intensity Φ⋆ depends on
the transmission spectrum c⋆(λ) in the considered channel.

Our calibration procedure relies on the assumption that ρ(p, λ) ≡ ρ0, which
is probably not true, yet in no way does this question our rationale. Indeed, if
we assume that the color of “white” cells from the Lambertian checkerboard is
uniform, that is to say ρ(p, λ) = ρ(λ), and if we denote ρ0 the maximum value
of ρ(λ), Equation (64) is still valid, provided that c⋆(λ) is replaced by the function
c′⋆(λ) defined as follows:

c′⋆(λ) =
ρ(λ)

ρ0
c⋆(λ) (75)

Of course, similar arguments can be used for the rest of the rationale, but we
must remember that the colored intensity Φ⋆, which depends on the transmission
spectrum c⋆(λ) by its definition (68), also depends on the color of the paper upon
which the checkerboard is printed. We are now able to extend to RGB images our
photometric stereo model under point light source illumination from Section 2.3,
but we can already predict that the color of the paper will have some influence on
the estimated color of the observed scene.

4.3 Extension to RGB Images of Photometric Stereo under Point Light Source
Illumination

If we pretend to extend the model (17) of gray level to RGB images, then it must be
possible to write the color level at p in the channel ⋆ ∈ {R,G,B} in the following
manner:

I⋆(p) = γ β
ρ⋆(p)

π
s⋆(x) · n(p) (76)

where the colored albedo ρ⋆(p) is an extension of the albedo ρ(p) to color. Com-
paring this expression of the color level I⋆(p) with its other expression (63), and
using the definition (66) of s⋆(x), we obtain the following equality:

ρ⋆(p)

∫ +∞

λ=0

c⋆(λ) s(x, λ) dλ =

∫ +∞

λ=0

c⋆(λ) ρ(p, λ) s(x, λ) dλ (77)

When the surface is illuminated by a LED, we can replace s(x, λ) in (77) by
the luminous flux model (60), which provides us with the following expression for
the colored albedo:

ρ⋆(p) =

∫ +∞

λ=0

c⋆(λ) ρ(p, λ)φ(λ) dλ

∫ +∞

λ=0

c⋆(λ)φ(λ) dλ

, ⋆ ∈ {R,G,B} (78)

which is the mean of ρ(p, λ) over the entire spectrum, weighted by the product
c⋆(λ)φ(λ). In addition, although the transmission spectrum c⋆(λ) depends only on
the camera, the emission spectrum φ(λ) usually varies from one LED to another.
Thus, generalizing photometric stereo under point light source illumination to
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RGB images requires to subscript the colored albedo by the number of the LED.
It thus seems that we have to solve, in each pixel p ∈ Ω, the following problem:

Ii⋆(p) = γ β
ρi⋆(p)

π
s
i
⋆(x) · n(p), i ∈ [1,m], ⋆ ∈ {R,G,B} (79)

System (79) is ill-posed, because it contains 3m equations with 3m+5 unknowns:
a colored albedo ρi⋆(p) per equation, the three coordinates of x and two values for
the normal n(p). Apart from this numerical problem, the dependency on i of the
colored albedo is puzzling: while it is clear that the albedo is a photometric char-
acteristic of the surface, independent from the lighting, it should go the same for
the colored albedo. This shows that the extension to RGB images of photometric
stereo is potentially complex.

Photometric stereo can thus not be extended to RGB images in the general
case, but this is still possible in two specific cases [36]:

• For a white surface, that is to say when ρ(p, λ) = ρ(p), we deduce from (78)
that ρR(p) = ρG(p) = ρB(p) = ρ(p). Problem (79) is thus written:

Ii⋆(p) = γ β
ρ(p)

π
s
i
⋆(x) · n(p), i ∈ [1,m], ⋆ ∈ {R,G,B} (80)

The case where lighting is directional, that is to say independent from x, is very
interesting, because the number of unknowns is then equal to three: a single
RGB image is thus enough to ensure that the problem is well-posed. This well-
known case, which dates back to the 90’s [25], has been applied by Hernandez
et al. to real-time 3D-reconstruction of a deformable (white) surface [18].

• When the sources are white, that is to say when φ(λ) ≡ φ0, (78) gives:

ρ⋆(p) =

∫ +∞

λ=0

c⋆(λ) ρ(p, λ) dλ

∫ +∞

λ=0

c⋆(λ) dλ

, ⋆ ∈ {R,G,B} (81)

Since this expression is independent from i, Problem (79) is rewritten:

Ii⋆(p) = γ β
ρ⋆(p)

π
s
i
⋆(x) · n(p), i ∈ [1,m], ⋆ ∈ {R,G,B} (82)

In (82), the luminous flux si⋆(x) indeed depends on the channel ⋆, although the
spectrum φ(λ) is assumed to be independent from λ since, according to the
definition (66), the transmission spectrum c⋆(λ) depends on ⋆. System (82),
which contains 3m equations and eight unknowns, is well-posed as soon as
m > 3.

Another situation where the colored albedo is independent from i is when the
m LEDs all share the same emission spectrum φ(λ). In the case of our device
(cf. Figure 1-a), the m = 8 LEDs probably do not satisfy exactly this constraint,
although they come from the same batch, yet this assumption seems more realistic
than that of “white sources”, and it allows us to better justify the use of the
model (82) in photometric stereo.
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By using the model (67) for the colored luminous flux s⋆(x) emitted by a LED,
Problem (82) is rewritten in the following way:

Ii⋆(p) = Ψ i
⋆
ρ⋆(p)

ρ0

[
n
i
s ·

x− xi
s

‖x− xi
s‖

]µi

(xi
s − x) · n(p)

‖xi
s − x‖3

, i ∈ [1,m], ⋆ ∈ {R,G,B}

(83)
which is an extension to RGB images of the photometric stereo model (27). In
our experiments, we use the model (83) to model both the spectral dependency of
the albedo and that of the luminous fluxes, although we must keep in mind that
this writing is abusive (let us recall that it is perfectly justified only if the sources
share the same spectrum).

The calibration procedure described in Section 4.2 provides us with the values
of the parameters xi

s, n
i
s and Ψ i

⋆, i ∈ [1,m], and the parameters µi, i ∈ [1,m], are
provided by the manufacturer. The unknowns of System (83) are the position x of
the 3D-point conjugate to p, its three colored albedos ρ⋆(p), ⋆ ∈ {R,G,B}, and its
normal n(p). Resorting to RGB images thus allows us to replace the system (27)
of m equations with six unknowns, by the system (83) of 3m equations with eight
unknowns. We can thus expect more accurate results.

4.4 Resolution of Colored Photometric Stereo under Point Light Source
Illumination

To solve Problem (83), we follow an approach similar to that of Section 3.2: we
compute the ratios between color levels in each channel ⋆ ∈ {R,G,B}, thus elim-
inating the colored albedos ρ⋆(p) and obtaining a system of PDEs in z similar
to (49). We believe that this method for separating the estimation of shape from
that of the albedos is better justified than that advocated in [4], where principal
component analysis is used. In addition, the PDEs to solve are quasi-linear, while
simultaneous estimation of shape and reflectance is a nonlinear problem [24].

Since the new system of PDEs contains 3
(
m
2

)
equations, in lieu of 3m equations

for (49), its resolution by the ADMM scheme should improve the results. Indeed,
the median of the distances between the shape of Figure 11-a and the ground truth
is equal to 1.1 mm when using RGB images, in lieu of 1.2 mm for gray level images
(cf. Figure 10-a). As for the colored albedos, they are a posteriori estimated by
plugging the estimated values of x and n(p) into (83).

The result of Figure 12 is improved in two ways, in comparison with that of
Figure 9: colored albedos are estimated; similarly to the example of Figure 11,
using RGB images should probably improve the accuracy of shape estimation,
although we do not have any ground truth to support this claim.

However, the ADMM scheme has one weakness which was already mentioned
in Section 3.3: it may converge slowly if the initial shape is far away from the
solution. To speed up the calculations, we proceed in three stages:

1. Estimation of shape by the iterative scheme from Section 3.1 (cf. Figure 9-d),
by using the gray level images.

2. Refinement of this result by the ADMM scheme, by using the RGB images.
3. Estimation of colored albedos from this second estimation of shape.
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(a) (b)

Fig. 11 (a) 3D-model estimated from the m = 8 images (cf. Figure 1). (b) Histogram of the
distances between this shape and the ground truth. Using RGB images allows to improve the
result of Figure 11: the median of the distances to the ground truth is now equal to 1.1 mm.

To obtain the 3D-model depicted in Figure 12, which contains 1095396 points, the
total computation time is of the order of one minute.

Fig. 12 Relighting of the 3D-model obtained from m = 8 RGB images (cf. Figure 9).

The result of Figure 13 shows that our initial goal i.e., the estimation of col-
ored 3D-models of human faces by photometric stereo, has been reached. The
beard shape is clearly visible in Figure 13-d, which demonstrates the high level of
accuracy of the estimation.
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(a) (b) (c)

(d) (e)

Fig. 13 (a-b-c) Three RGB images (out of m = 8) of a human face obtained by the device of
Figure 1-a. (d) Estimated shape. (e) Estimated 3D-model.

5 Conclusion and Perspectives

In this article, we have presented a photometric stereo-based 3D-reconstruction
device using LEDs as light sources. We have first modeled the luminous flux emit-
ted by a LED, then the resulting photometric stereo problem. The calculation of
ratios between gray levels makes the problem quasi-linear, which makes its res-
olution easier. The resolution is performed in two stages: using a fast iterative
algorithm provides a visually satisfactory shape; this shape is used as initializa-
tion of an ADMM scheme, which allows to refine it. Finally, we have extended the
whole study to RGB images.

The result of Figure 13 suggests that our goal has been reached. Of course,
many other types of 3D-scanners exist, but ours relies only on materials which are
easy to obtain: a relatively mainstream camera, LEDs, a bright spherical calibra-
tion pattern, a planar Lambertian calibration pattern, and eventually an Arduino
controller to synchronize the LEDs with the shutter release. Another significant
advantage of our 3D-scanner is that it also estimates the albedo.

There are two types of points where the shape, and therefore the albedo, are
poorly estimated. The object visible in Figure 14 is a dental plaster cast. The
estimated albedo should be uniform, since the material is homogeneous, which
contradicts the result of Figure 14-e. The bias on the estimation of the albedo,
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which corresponds to the concave areas, is clearly due to shadows, although we
have taken care of eliminating, in each pixel, the two images with lower luminance.
The same observation can be made about the example in Figure 15: the area under
the nose, which is dimly lit, is poorly reconstructed (this problem does not appear
in the example of Figure 13, because the face is oriented in such a way that it is
“well” lighted).

(a) (b)

(c) (d) (e)

Fig. 14 (a-b) Two images (out of m = 8) of a dental plaster cast. (c-d) Estimated shape, seen
from two angles. (e) Estimated albedo.

The example of Figure 16 shows that the estimation is incorrect when the
albedo is uniformly null, that is to say, when ρ(p, λ) ≡ 0, because the color levels
at these points do not provide useful information. The photographed object is a
comic book. While shading effects are clearly visible in the images (Figures 16-a
and 16-b), the albedo appears correctly estimated (see Figure 16-d). However, the
shape is badly estimated along the edges of the boxes, which are black inked (see
Figure 16-c). To overcome this problem, the depth could be regularized at the
points with null albedo, which are easy to detect.

Other future prospects than dealing with these defects arise. In particular,
our 3D-scanner only provides 2.5D-models, which limits interest, for instance for
augmented reality applications. For a complete 3D-model, it might be useful to
couple the proposed method with multi-view 3D-reconstruction techniques [19].

In this article, we have shown that the differential formulation of photometric
stereo is preferable to its non-differential one, but also that the reprojection error
E1 is a more relevant criterion than the error E2 on image ratios, which leads to
several local minima. We conclude that it would be preferable to minimize E1
through the differential formulation. Of course, this would be difficult because of
the non-convexity due to the normalization term. Proximal methods designed for
non-convex optimization could be used [31]. The extension to point light sources
of the method proposed in [21] would probably allow us to achieve even greater
accuracy.
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(a) (b) (c)

(d) (e)

Fig. 15 (a-b-c) Three images (out of m = 8) of a face. (d-e) Estimated shape and 3D-model.

(a) (b)

(c) (d)

Fig. 16 (a-b) Two images (out of m = 8) of a comic book. (c) Estimated shape: artifacts
appear around black inked points. (d) Estimated albedo.
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