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Abstract. In this paper, we consider the multi-bit Differential Power
Analysis (DPA) in the Hamming weight model. In this regard, we revisit
the definition of Transparency Order (TO) from the work of Prouff (FSE
2005) and find that the definition has certain limitations. Although this
work has been quite well referred in the literature, surprisingly, these
limitations remained unexplored for almost a decade. We analyse the
definition from scratch, modify it and finally provide a definition with
better insight that can theoretically capture DPA in Hamming weight
model for hardware implementation with precharge logic. At the end,
we confront the notion of (revised) transparency order with attack sim-
ulations in order to study to what extent the low transparency order
of an s-box impacts the efficiency of a side channel attack against its
processing. To the best of our knowledge, this is the first time that such
a critical analysis is conducted (even considering the original notion of
Prouff). It practically confirms that the transparency order is indeed re-
lated to the resistance of the s-box against side-channel attacks, but it
also shows that it is not sufficient alone to directly achieve a satisfying
level of security. Regarding this point, our conclusion is that the (revised)
transparency order is a valuable criterion to consider when designing a
cryptographic algorithm, and even if it does not preclude to also use
classical countermeasures like masking or shuffling, it enables to improve
their effectiveness.
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1 Introduction

Differential Power Analysis (DPA) is one of the strongest forms of side-channel
attacks in which the information about the secret key is leaked through power
traces while the encryption is being executed on a cryptographic platform. The
efficiency of these attacks is naturally much higher than linear or differential
cryptanalysis due to the information related to the power traces. To resist such
attacks, algorithmic countermeasures like masking [8] and leakage resistant logic
[29] exist, that may lead to increased footprint on the implementation platforms
in terms of area and power consumptions. Because of phenomenon like glitches, it
should be noted that in practical scenarios even masked circuits can be subjected
to DPA. With this backdrop, it is evident that the s-boxes in block ciphers would
be the prime target of DPA. From the designers point of view, the s-boxes should
be chosen carefully such that they should have high DPA resilience in addition to
the resistance to other classical cryptanalytic attacks like linear and differential
cryptanalysis.

In [15], the theoretical resistance of AES and DES s-boxes to linear cryptanaly-
sis vis a vis DPA attacks in terms of signal-to-noise ratio (SNR) was investigated.
Then, an attempt to quantify the DPA resilience of the s-boxes was made in [24],
where the parameter Transparency Order (TO) was introduced. This was an im-
portant attempt in defining a metric for the DPA resilience of S-boxes for almost
a decade ago. Based on a side-channel efficiency metric close to the standard
score measure involved in [15, 30], the paper [24] tried to explain that s-boxes
with smaller TO have higher DPA resilience. The TO, as defined in [24] was found
to depend on the propagation characteristics (PC) of the co-ordinate functions
of the s-boxes. The bent functions that satisfy the PC for all orders have been
found to have worst TO value (though we show in this paper that by the defini-
tion of [24], TO cannot be measured for a bent function), while the linear s-boxes
have the best DPA resilience. However, the linear s-boxes are not acceptable as a
secure cryptographic primitive. Further analyses of TO, as defined in [24], have
been followed in e.g., [5, 11, 18, 22].

In this paper, we exhibit several inconsistencies in the original definition
given in [24] and we provide an improved definition of the transparency order
that appears to be a better metric for quantifying the resistance the resistance
of an s-box to DPA attacks. Eventually, its soundness to quantify the resistance
of an s-box against side-channel attacks is investigated thanks to several at-
tack simulations. We also provide Appendices A, B, C and D for some detailed
calculations, bounds, examples and comparisons with other related works.

Before presenting these contributions, we hereafter start by introducing some
useful basics on Boolean functions and DPA attacks which are subsequently used
to present our analyses in a formal way.



2 Preliminaries

2.1 Basics of Boolean functions

Let Fn2 be the vector space that contains all the n-bit binary vectors. For a
vector u ∈ Fn2 , we denote by H(u) the number of 1’s in its binary representation
(it is usually referred to as the Hamming weight of u). A (single output) Boolean
function on n variables may be viewed as a mapping from Fn2 into F2. We will
denote the set of n-variable Boolean functions as Bn. It is easy to note that
|Bn| = 22

n

.
The support of a Boolean function f is defined as Supp(f) = {x ∈ Fn2 |f(x) =

1}. When we use a Boolean function as a cryptographic primitive, we generally
consider the functions which output 0 and 1 with equal probability. Thus, we
generally consider functions in Bn for which the cardinality of the support is
2n−1. These are known as balanced functions.

Let x = (x1, . . . , xn) and ω = (ω1, . . . , ωn) both belong to Fn2 and the inner
product x · ω = x1ω1 ⊕ · · · ⊕ xnωn. The Walsh transform of f(x) is an integer
valued function over Fn2 which is defined as Wf (ω) =

∑
x∈Fn

2
(−1)f(x)⊕x·ω. The

autocorrelation transform of f(x) is again an integer valued function over Fn2
which is defined as Af (ω) =

∑
x∈Fn

2
(−1)f(x)⊕f(x⊕ω). The Walsh and autocorre-

lation spectra are important properties in designing Boolean functions that may
be used as cryptographic primitives. In general, it is expected that the maxi-
mum absolute value in any of these spectra should be low for better resistance
against cryptanalysis (see e.g., [6]). In this paper, we also use the notion of
cross-correlation spectrum between two Boolean functions; for f1, f2 ∈ Bn, it is
defined for every ω ∈ Fn2 as the value Cf1,f2(ω) =

∑
x∈Fn

2
(−1)f1(x)⊕f2(x⊕ω) (note

that we have Cf,f (ω) = Af (ω)).
An n ×m s-box F can be seen as a multi-output Boolean function, namely

a function from Fn2 into Fm2 with m ≤ n. Let u ∈ Fm2 be a vector whose binary
coordinates are all zero except one which is assumed to be at index j. The jth
component function of the s-box F is the single output Boolean function u · F .
If F = (F1, . . . , Fm), then one may note that u · F = Fj . By abuse of notation,
we may also denote this component function as Fu. That is, the notations Fu
and Fj are used interchangeably for a component function in this paper. The set
of linear (resp. affine) functions from Fn2 into itself will be denoted by Ln (resp.
An).

2.2 Basics on DPA attacks

Differential Power Analysis (DPA) is one kind of side channel attack that exploits
the difference between the power consumed by a single gate when its output
changes from zero to one or vice versa. Initial results in this direction have
been presented by Kocher et al [16]. It consists in observing the processing of
a cryptographic algorithm (e.g., a block cipher) and in measuring a sample of
power consumption traces T x related to a sufficiently large number of plaintexts



x and a constant secret parameter. These traces (which may be viewed as real-
valued vectors) actually give the information about the power consumed by each
gate when output changes. Next, based on these power traces, the actual attack
can be mounted off-line.

In a single-bit DPA attack against a block cipher, a particular bit of the in-
termediate state during the processing is considered and the attacker builds a
distinguisher by partitioning the power traces in two bins by predicting whether
the bit value is zero or one, corresponding to the key guessed. Let j denote the
index of the targeted bit and let K̇ denote a secret sub-part that statistically
depends on this bit (assuming that the block cipher is iterative, K̇ may corre-
spond to the secret parameter of an s-box and is typically 4, 6 or 8 bit long).
The attacker makes a guess K on K̇ and then the traces are assigned in either of
the two bins, say S0 and S1, according to hypotheses on the targeted bit which
are deduced from K and the plaintexts x. To discriminate the good guess from
the wrong ones, [16] proposes to compute the differential trace DK,j defined by
DK,j = 1

|S1|
∑

T x∈S1
T x− 1

|S0|
∑

T x∈S0
T x. The quantity DK,j works as a distin-

guisher in the single-bit power attack model. According to the theory proposed
in [16] the vector DK,j should show a peak for the correct key K = K̇.

In single-bit DPA attack, the sets S0 and S1 are constructed on the basis of a
fixed bit coordinate j. To improve the efficiency of the attack and to better dis-
criminate the wrong key-hypotheses, a natural idea is to simultaneously consider
several bit indices j. This kind of DPA attack, initially introduced by Messerges
in [20], is called multi-bit DPA. It works as follows; for each of the guessed key
K, the quantity DK,j is computed for several j (e.g., j ∈ [1..m]) and the results
are added to form a new distinguisher DK . As in the single-bit case, DK is
expected to show a peak if K = K̇. In [10], it has been proved that this attack
is equivalent to the so-called CPA attack introduced in [4] up to a change of the
attacker model6. In [1], it has been proposed to add the absolute values of the
DK,j (instead of the values themselves) to build DK . This approach may be a
valuable alternative in practice and it is not equivalent to a CPA [10].

The work presented in this paper focuses on multi-bit DPA which is today
systematically tested against industrial cryptographic implementations when it
comes to test their security with respect to side-channel attacks.

2.3 DPA Attack and Transparency Order of s-boxes

As discussed in Section 1, the DPA provides the attacker a verifier (or distin-
guisher) to guess the correct key. The distinguisher based on the so called dif-
ferential traces (Dk,j)k∈Fn

2 ,j∈[1..m] (resp. (Dk)k∈Fn
2

for multi-bit DPA/CPA) works
on the hypothesis that it takes the maximum value for the correct key (though,
due to the presence of system noises one can get several other “ghost peaks”
for wrong keys as observed in [4]). Now, from the designer’s point of view, one

6 Such a model is used in CPA, together with the key hypothesis K, to compute the
predictions that are correlated to each point of the traces T x (see [4] for a detailed
presentation of the CPA).



should design the s-boxes in such a manner so that the distribution of the dif-
ferential trace becomes almost uniform. In such a case, the correct key cannot
be distinguished from a wrong key. This idea has been the starting point of two
studies published in 2004 [15, 24] aiming at defining a new security criterion for
the design of s-boxes with improved resistance against DPA attacks.

In [15], a few ideas were presented to measure the efficiency of DPA on an
s-box. They studied single-bit DPA during the manipulation of the s-box output,
the information being assumed to leak in the Hamming distance model with
independent additive noise [4]. This model assumes that the leakage takes the
form H(β ⊕ F (x⊕ K̇)) +B, where x and K̇ respectively denote a plaintext and
a round key sub-part, where β denotes the initial content of the register before
updating with F (x ⊕ K̇) and where B denotes an independent (measurement)
noise. In this model, the authors of [15] show that the coordinate with highest
amplitude in the single-bit distinguisher DK,j related to the j-th coordinate of
F is asymptotically equivalent to:

∆K,K̇(j, β)
.
= 2−n

m∑
i=1

(−1)βi

∑
K∈Fn

2

CFi,Fj
(K ⊕ K̇) , (1)

where βi denotes the i-th binary coordinate of β.

The original idea of [15] has been afterwards developed and extended in [24]
to encompass multi-bit DPA. This leads the author to introduce the notion of
transparency order (TO for short) to quantify the resistance of s-boxes towards
DPA attacks; if some s-box shows low TO, then that s-box is more resistant
against DPA attack, i.e., the number of power traces to identify the correct
key will be higher. The TO notion introduced in [24] not only depends on the
s-box’s algebraic properties but also on the register initial state β ∈ Fm2 which
is assumed to be constant for some platforms like smart cards which are based
on precharge logic. The precharge logic is applied for some microcontrollers in
which there is a precharge phase during which the registers are initialized to
some fixed value (e.g., before each round in a block cipher implementation).
After certain assumptions, the final formula defining the TO of a n ×m s-box
F = (F1, . . . , Fm) is given by:

TO(F ) = max
β∈Fm

2

|m− 2H(β)| − 1

22n − 2n

∑
a∈Fn∗

2

|
m∑
i=1

(−1)βiAFi
(a)|

 . (2)

Remark 1. The TO notion share the same basic ideas with the side-channel effi-
ciency metric (standard score) discussed in [30]. In that paper, the effectiveness
of an attack is measured by computing the difference between the score of the
distinguisher for the good key and the average score for the wrong hypotheses,
the difference being normalized with the variance of the scores.

One can easily check that the TO becomes minimum for the s-boxes for which
the co-ordinate Boolean functions become constant or affine and on the other



hand, the highly nonlinear s-boxes have higher transparency order, implying that
they are more susceptible to DPA attacks. Though the linear s-boxes are good in
terms of TO, linear s-boxes cannot be used for cryptographic reasons and thus
we have to mainly study the behaviour of TO for the well known nonlinear s-
boxes used in practice. The TO values of constant or linear s-boxes are actually
of little interest, though those values may be computed for noting the bounds
on TO.

In this paper, we critically study the above definition of TO. In the next
section (Section 3), we actually show that this definition has redundancy in
terms of considering the maximum over all β ∈ Fm2 . Then in Section 4, we
critically analyse the definition of TO in the Hamming weight model from the
basic background and identify all the limitations of the existing definition [24].
Next, in Section 5, we present our modified definition of TO that explains the
DPA in Hamming weight model more appropriately than [24] (see also Remark 5).
Eventually, Section 6 confronts the notion of (revised) transparency order with
attack simulations. The goal is to investigate how the low transparency order of
an s-box impacts the efficiency of a side channel attack against its processing.

3 Redundant Definition of Transparency Order [24]

In this section, we explain why the definition (2) is redundant. For such a pur-

pose, we denote by τβF the value |m−2H(β)|− 1
22n−2n

∑
a∈Fn∗

2
|
∑m
i=1(−1)βiAFi

(a)|
in (2) and by νF,β the value 1

22n−2n
∑
α∈Fn∗

2
|
∑m
i=1(−1)βiAFi

(α)|. With these

new notations, we have TO(F ) = maxβ∈Fm
2
τF,β . We give hereafter our first

result.

Proposition 1. τβF = τβF .

Proof. Note that |m−2H(β)| = |m−2(m−H(β))| = |−m+2H(β)| = |m−2H(β)|.
One may also check that νF,β = νF,β , which directly concludes the proof. ut

Next we present the most important result of this section.

Proposition 2. Let 0 < H(β) ≤ bm2 c. Then τβF ≤ τ0F .

Proof. Consider that 0 < k = H(β) ≤ bm2 c. Now, τ0F = (m− νF,0) and τβF =
(m− 2k − νF,β).

Let, in contrast to the statement of the proposition, τβF > τ0F . Then νF,0 −
νF,β > 2k, i.e.,

∑
α∈Fn∗

2

[
|
m∑
i=1

(AFi(α)) | − |
m∑
i=1

(
(−1)βiAFi(α)

)
|

]
> (22n − 2n)2k.

Let S = {1, 2, . . . ,m} and T ⊆ S, such that i ∈ T if and only if βi = 1. That is
T is the support of β.



Then we can rewrite the above inequality as

∑
α∈Fn∗

2

| m∑
i=1

(AFi
(α)) | − |

∑
i∈S\T

(AFi
(α))−

∑
i∈T

(AFi
(α)) |

 > (22n − 2n)2k.

Using the inequality |x| − |y| ≤ |x− y|, we obtain,

∑
α∈Fn∗

2

| m∑
i=1

(AFi
(α))−

∑
i∈S\T

(AFi
(α)) +

∑
i∈T

(AFi
(α)) |

 > (22n − 2n)2k,

i.e.,
∑
α∈Fn∗

2

2

∣∣∣∣∣∑
i∈T

(AFi(α))

∣∣∣∣∣ > (22n − 2n)2k.

We know that |AFi(α)| ≤ 2n, and thus we land into a contradiction as the left
hand side is always less than or equal to the right hand side. (Even taking the
maximum value 2n, we get that the left hand side is equal, but cannot be greater
than the right hand side.) Thus the proof. ut

Therefore, we have the following result that shows that the definition of trans-
parency order is actually redundant and it does not depend on β. The proof
follows from Propositions 1, 2.

Theorem 1. TO(F ) = τ0F = m− 1
22n−2n

∑
α∈Fn∗

2
|
∑m
i=1AFi(α)|.

4 Critically analyzing TO for Multi-bit DPA Attack

Given the redundancy in the definition of TO as in [24], we look into the definition
from the basic principle and obtain various other limitations of the definition.
We highlight several assumptions considered in [24] and critically comment on
those.

The output of the s-box becomes F (x⊕ K̇) from β, where β is the precharge
logic value that is fixed with the system, i.e., β is constant. So, the number of
bits, changed after storing the s-box output bits is H(F (x⊕ K̇)⊕ β). The basic
idea of DPA works as follows.

The adversary collects power traces corresponding to the encryption or de-
cryption of known plaintexts or ciphertexts under the true (unknown) key K̇. As
the corresponding n ×m s-boxes are in general not very large, one may expect
that the power traces are available corresponding to all the 2n possible inputs
x. Once the data is available, the attack may work off-line where the attacker
tries each of the possible 2n keys K (these are actually parts of round keys that
are XORed with x) and partitions the power traces in two bins. It is expected
that for the correct key K̇, the partitioning will show some distinguishing feature
than that in the case of the incorrect keys.

Let us concentrate on the j-th output bit of the s-box. Given any key K
(which may or may not be K̇), we put the power related information in two bins



depending on the value of Fj(x ⊕ K). As in [24], for theoretical analysis, the
Hamming weight of F (x⊕K)⊕ β can be considered as a logical model for the
power related information. The difference of average value in the two bins is

∆K,K̇(j, β) =
1

|SK,1|
∑

x∈SK,1

H
(
F (x⊕ K̇)⊕ β

)
− 1

|SK,0|
∑

x∈SK,0

H
(
F (x⊕ K̇)⊕ β

)
,

where SK,0 = {x|Fj(x⊕K) = 0} and SK,1 = {x|Fj(x⊕K) = 1}. At this point
let us present a technical result.

Proposition 3. Let F = (F1, . . . , Fm) be an n×m s-box (i.e., F : Fn2 → Fm2 ).
Let the co-ordinate functions be such that they are pairwise complement when m
is even. In case m is odd, then we consider m−1

2 pairs of pairwise complement
functions and one constant function. For any such s-box, ∆K,K̇(j, 0) = 0 for any
j, 1 ≤ j ≤ m.

Proof. The proof follows by noting that H(F (x)) is constant for all x ∈ Fn2 .

Thus it is immediate to note that H
(
F (x⊕ K̇)

)
is always constant making

∆K,K̇(j, 0) = 0, for any j. ut

Consider a special case when m is even. For any such s-box, where all the func-
tions are taken to be pairwise complement and bent, no DPA is possible under
the model we are working on. However, the measure presented in [24, 5] shows
that TO is maximum (i.e., equals m) for such functions, which means that they
are maximally prone to such DPA. The conclusion in [24, 5] is not correct and it
happened due to certain assumptions that make the definition of TO invalid for
s-boxes with unbalanced co-ordinate functions such as bent.

Assumption 1. The analysis of [24] implicitly assumes that the co-ordinate
functions of the s-box are balanced.

Note that, while the above assumption that Fj is balanced is true for most
popular s-boxes in block ciphers, it is not true in general. Most importantly, it
is incorrect to hence apply the old formulation of Transparency Order to bent
functions, as done in [24, Theorem 1] and later in [5]. To clarify the situation, we
show more explicitly how the assumption of the balancedness of the co-ordinate
functions led to the old definition of transparency order.

If Fj is balanced, then |SK,0| = |SK,1| = 2n−1 and one can show (see [24] or
Equations (17) and (18) in Appendix C for details):

∆K,K̇(j, β) =
1

2n

(−1)βjAFj
(K ⊕ K̇) +

m∑
i=1,i6=j

(−1)βiCFi,Fj
(K ⊕ K̇)

 , (3)

which implies the following for K = K̇;

∆K̇,K̇(j, β) = (−1)βj +
1

2n

m∑
i=1,i6=j

(−1)βiCFi,Fj
(0) . (4)



Assumption 2 [24]. Fi ⊕ Fj is balanced for every (i, j) ∈ [1..m]2 with i 6= j.

Under Assumption 2, we have CFi,Fj
(0) = 0 for every pair of distinct indices

i and j and thus, ∆K̇,K̇(j, β) = (−1)βj . One may note that Assumptions 1 and
2 are satisfied when the involved (n,m) s-box is balanced (which is the case of
the vast majority of cryptographic s-boxes).

In single-bit DPA attack the expression ∆K,K̇(j, β) is calculated for a fixed
index j and for all hypothesesK ∈ Fn2 . In the multi-bit case, the latter calculation
is done for every j ∈ [1..m]. This actually leads to the processing of the following
quantity δK,K̇(β) [24, Equation (10)]:

δK,K̇(β) = |
m∑
j=1

∆K,K̇(j, β)|. (5)

For K 6= K̇, we have:

δK,K̇(β) =
1

2n

∣∣∣∣∣∣
m∑
j=1

m∑
i=1

(−1)βiCFi,Fj
(K ⊕ K̇)

∣∣∣∣∣∣ . (6)

And, for K = K̇, we have:

δK̇,K̇(β) =

∣∣∣∣∣∣
m∑
j=1

(−1)βj

1 +
1

2n

m∑
i=1,i6=j

(−1)βi⊕βjCFi,Fj
(0)

∣∣∣∣∣∣ , (7)

and Assumption 2 implies δK̇,K̇(β) =
∣∣∣∑m

j=1(−1)βj

∣∣∣ = |m− 2H(β)|.
We now introduce the last assumption made in [24].

Assumption 3. The cross-correlation terms CFi,Fj
(K ⊕ K̇) can be considered

to be zero for every i 6= j and every (K, K̇).

Remark 2. Clearly, this third assumption is not true as we cannot have all the
values zero in cross-correlation spectrum in general. In fact, we will later present
a detailed study for the 8 × 8 s-box used in AES that will clearly show the
limitation of the Assumption 3 made in [24].

Given Assumption 3, we have δK,K̇(β) = 1
2n

∣∣∣∑m
j=1(−1)βjAFj (K ⊕ K̇)

∣∣∣. It is

expected that if K = K̇, then δK,K̇(β) takes the maximum value. Hence, from
the designer’s point of view, s-boxes should be chosen in such a manner so that
for most of K 6= K̇, the value of δK,K̇(β) does not deviate much from δK̇,K̇(β).
The core idea is the following one: a small average distance between δK,K̇(β) and



δK̇,K̇(β) will render the discrimination of K̇ more difficult. This led the author
of [24] to introduce the following definition of transparency order TO:

TO(F ) = max
β∈Fm

2

τβF , where τβF =
1

2n − 1

∑
K∈Fn

2 −{K̇}

(
δK̇,K̇(β)− δK,K̇(β)

)
. (8)

As we have described, the work in [24] considered a few assumptions, but
several critical comments can be made on that. To be specific, we point out the
following.

– Assumption 1 is logical and it works for practical s-boxes that the co-ordinate
Boolean functions are balanced. However, given this assumption, it is not
possible to consider unbalanced co-ordinate functions in the s-box under this
definition. However, this had been improperly done in [24, 5] in concluding
certain results related to bent functions.

– Assumption 2 is also logical in the sense that it is quite practical to consider
that the XOR of two co-ordinate functions should be balanced.

– Assumption 3 considers that the cross-correlation spectrum between two co-
ordinate functions will contain all zero values due to certain independence.
This is indeed not correct and one should specifically calculate these value
that we will also present here. For example, for the 8× 8 s-box used in AES,
the values in the spectrum are indeed significant. Ignoring this significance
led to the redundant definition of TO(F ) in [24] where it does not depend
on β at all as we have described in Section 3.

4.1 Considering the cross-correlation terms

For a proper measure, we need to add the cross-correlation terms as given in (6).
Thus, we should consider the following definition for further investigation in this
area:

τ ′
β
F = |m− 2H(β)| (9)

− 1

2n(2n − 1)

∑
a∈Fn∗

2

∣∣∣∣∣∣
m∑
j=1

(−1)βjAFj (a) +

m∑
i=1,i6=j

(−1)βiCFi,Fj (a)

∣∣∣∣∣∣ .
Similar to Proposition 1, one may note that under the modified definition of

τ ′
β
F as given in (9), τ ′

β
F and τ ′

β
F are equal (see (19) in Appendix C for details).

Let us now consider τ ′F as in (10). This definition will only be valid for the
n×m s-boxes F = (F1, . . . , Fm), where each co-ordinate function Fi and further
the functions Fi ⊕ Fj for 0 ≤ i 6= j ≤ m are balanced.

τ ′F = max
β∈Fm

2

[|m− 2H(β)| (10)

− 1

22n − 2n

∑
a∈Fn∗

2

∣∣∣∣∣∣
m∑
j=1

(−1)βjAFj
(a) +

m∑
i=1,i6=j

(−1)βiCFi,Fj
(a)

∣∣∣∣∣∣].



Unfortunately, similar to (2), this definition also becomes redundant for crypto-
graphically strong s-boxes. This is because, the magnitude of the values in auto-
correlation and cross-correlation spectra of cryptographically strong n-variable
Boolean functions are of the order of 2

n
2 . Thus, the term |m− 2H(β)| will dom-

inate hugely and naturally it will be maximum when β has all-zero or all-one
pattern.

Now consider the definition from cryptanalysts’ viewpoint. The power traces
will be available to the attacker and she can analyse the data off-line to guess
the correct key. Thus, the attacker will try to use the power traces in such a way
so that the correct key K̇ can be distinguished from the other keys.

0 50 100 150 200 250
β

2
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τ
β F
,τ

β F

Fig. 1. Values of τβF (in Yellow) and τ ′
β
F (in Blue) as β varies over F8

2 for AES s-box.
The 8-bit patterns of β are written as their integer values.

For AES s-box, the values of τβF and τ ′
β
F are plotted in Figure 1 for different

values β. The figure shows that for some values of β, τβF and τβF are negative.
For those values of β, the coefficient δK,K̇(β) , which prevents the attacker to
guess the correct key for these β. This happens because the absolute value is
processed after taking the sum of the ∆K,K̇(j, β) (see (5)). Note that if the
precharge logic β is indeed all-zero or all-one, then the existing idea of [24]
works well. However, when H(β) becomes closer to m

2 , the term |m − 2H(β)|
reduces substantially, making τβF and τ ′

β
F negative in some cases, that makes the

definition unacceptable from cryptanalyst’s point of view.

5 Redefining TO: where to take the absolute values

As introduced prior to Proposition 3, the quantity ∆K,K̇(j, β) corresponds to
the test of the key candidate K in a single-bit DPA attack. The attack is assumed



to target the j-th bit of the updating with F (x ⊕ K̇) of a register whose initial
content is always β. In [24], the author suggests to extend this attack to several
bits by processing the absolute value of the quantities ∆K,K̇(j, β) for several
indices j (e.g., j ∈ [1..8] for an 8-bit register). In [10], it is argued that this kind
of attack is equivalent to a CPA up to a change of the attacker leakage modeling.
Here, we propose another approach to extend the initial single-bit attack to a
multi-bit one. This exactly corresponds to the proposal made by Bévan and
Knudsen in [1], and consists in summing the absolute values of ∆K,K̇(j, β) for
several indices j. It has been proved that this kind of multi-bit DPA attack is not
reducible to a CPA attack and is actually a valuable alternative in practice [10].
Our proposal leads to the following definition of a coefficient δK,K̇(β):

δK,K̇(β) =

m∑
j=1

|∆K,K̇(j, β)| . (11)

Similarly as for (7), Assumption 2 implies that δK̇,K̇(β) equals
∑m
j=1 |(−1)βj |

that is m. Compared to (7), it may be checked that the term related to H(β)
is removed. This is indeed important since this Hamming weight of β was influ-
encing the complete measure without any real justification and was making the
definition redundant by maximizing it for all-zero or all-one β.

For K 6= K̇, Equation (6) becomes:

δK,K̇(β) =
1

2n

m∑
j=1

∣∣∣∣∣∣(−1)βjAFj (K ⊕ K̇) +

m∑
i=1,i6=j

(−1)βiCFi,Fj (K ⊕ K̇)

∣∣∣∣∣∣
=

1

2n

m∑
j=1

∣∣∣∣∣
m∑
i=1

(−1)βi⊕βjCFi,Fj (K ⊕ K̇)

∣∣∣∣∣ , (12)

which leads to the following new version, called TO(F, β), of the coefficient de-
fined in (9); TO(F, β)

.
= 1

2n−1
∑
a∈Fn

2
? δ0,0(β)− δa,0(β), or equivalently

TO(F, β) =
1

2n − 1

∑
a∈Fn

2
?

m− m∑
j=1

|∆a,0(j, β)|

 (13)

that is

TO(F, β) = m− 1

2n(2n − 1)

∑
a∈Fn∗

2

m∑
j=1

∣∣∣∣∣
m∑
i=1

(−1)βi⊕βjCFi,Fj
(a)

∣∣∣∣∣ , (14)

where a plays the role of K ⊕ K̇ in (12).

Remark 3. We still have TO(F, β) = TO(F, β).

We eventually deduce the following new definition of the TO criterion:



Definition 1 (Improved Transparency Order). Let F be a balanced n×m
function. Its improved transparency order is the coefficient TO(F ) defined by:

TO(F ) = max
β∈Fm

2

m− 1

22n − 2n

∑
a∈Fn∗

2

m∑
j=1

∣∣∣∣∣
m∑
i=1

(−1)βi⊕βjCFi,Fj
(a)

∣∣∣∣∣
 . (15)

Remark 4. In order not to multiply the number of terms and criteria, we chose
to continue to use the term “transparency order” when referring to our improved
version. As we think that the previous version of the criterion introduced in [24]
should be systematically replaced by the new one, this should not introduce
ambiguity in the rest of this work.

Remark 5. From designers’ point of view, it is important to consider the precharge
values β for which TO(F, β) is minimum. Indeed, for such precharge values
β, the attacker advantage is minimum. In the rest of the paper, the value
minβ∈Fm

2
TO(F, β) is denoted by TOmin(F ) and called minimum transparency

order. On the other hand, precharge logic values maximizing TO(F, β) corre-
spond to the worst case from designers’ point of view and to the best case for
attackers.

In Appendix D, we exhibit an interesting lower bound on TO(F ). The main
combinatorial contribution in this bound is that, all the cross-correlation terms
are replaced by Walsh spectrum values.

5.1 Example with some existing s-boxes

Let us first refer to the 8 × 8 s-box F of AES [13]. The graphical representa-
tion TO(F, β) is presented in Figure 2 and one may note the symmetry due to
TO(F, β) = TO(F, β).

It may be observed that the minimum value 6.82083 of TO(F, β) is achieved
for β = βmin = (0, 0, 0, 1, 0, 0, 1, 1) (integer value 19) and its complement,
whereas the maximum value 6.91605 is achieved for βmax = (0, 1, 1, 1, 1, 1, 1, 0)
(integer value 126) and its complement. We hence deduce that the TO of the
AES s-box is TO(F ) = 6.91605. Moreover, from designers’ point of view, it is bet-
ter to use βmin as the precharge logic as in that case more effort will be required
(than when any other β is the precharge logic) to identify the peak correspond-
ing to the correct key. Our lower bound of TO(F ) presented in Theorem 4 of
Appendix D provides the value 6.51457. We have also analyzed the family of
PRINCE 4× 4 s-boxes [3] (details in Appendix A). Our analysis shows that they
have significantly different behaviours in terms of TO. This is experimentally
confirmed in Section 6.

5.2 TO of s-boxes in the same (extended) affine equivalence classes

Two n×n s-boxes F and G are affine equivalent if there exist two affine permu-
tations A,B ∈ An such that G = B ◦ F ◦ A, i.e., G(x) = [B ◦ F ◦ A](x),
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Fig. 2. Values of TO(F, β) as β varies over F8
2 for AES s-box. The 8-bit patterns of β

are written as their integer values.

for all x ∈ Fn2 . Further if there exists C ∈ Ln such that F and G satisfy
G(x) = [B ◦F ◦A](x)⊕C(x), then F and G are said to be extended affine (EA)
equivalent. Some cryptographic properties remain invariant under such trans-
formations. The set of functions G which are EA-equivalent to F is denoted by
EA(F ). In this section, we would like to pursue whether the DPA resistance of
s-boxes is affected because of these transformations. It is an important aspect in
design of block ciphers, which often assumes that since affine transformation does
not affect properties like non-linearity, maximum value in the auto-correlation
spectrum, degree (when more than 1), it is fine to replace one with the other.

The affine invariance of the TO criterion is stated in the following theorem
whose proof is given in Appendix C.

Theorem 2. Let F be an n×m balanced function. Then, for any affine permu-
tation A ∈ An we have TO(F ◦A) = TO(F ).

On the other hand, if two functions F and G are EA-equivalent but not
affine equivalent (meaning that G = B ◦ F ◦ A ⊕ C with A,B ∈ An, C ∈ Ln
and C non-constant), then their TO are not necessarily equal. For example, F =
084b2ef613ac57d9 and G = 03d5070601ebeff0 are two EA-equivalent s-boxes
with TO(F ) = 2.466 and TO(G) = 2.766. These two s-boxes are related by the
relation F = B ◦F +C, where B and C are the linear mappings associated with

the matrices


1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1

 and


0 1 0 1
1 0 1 0
1 0 0 1
1 0 1 1

, respectively.

The number of 4× 4 s-boxes up to affine equivalence is 302 [2], among which
10 s-boxes have nonlinearity 4, degree 3 and absolute autocorrelation value 8,
which are the basic cryptographic properties that make these s-boxes useful in



practice. We compute the TO values of each of these 10 s-boxes (denoted as F )
and their extended affine equivalent ones (denoted as G). The results are shown
in Table 1. From these tables it is evident that better TO values are obtained by
considering the extended affine equivalent functions of these 10 s-boxes, hence
we recommend to use such functions G from Table 1 that give better resistance
against DPA, i.e., lesser TO value. Following the Table 1, one should use some
G such that TO(G) = 2.233.

s-box (F ) TO(F ) β s-box (G) TO(G) β

084c2a1563efbd97 2.500 4 086ea29f45cb317d 2.266 2
084c2613a9db75ef 2.433 5 0e795f321ab6dc48 2.233 3
084c2a1563db79ef 2.400 3 08c4a29563dbf1e7 2.266 3
084c261da937b5ef 2.333 1 084c621de973f5ab 2.266 7
084c261da39b75ef 2.433 5 04519b826d7e3afc 2.233 4
084c261da3be9f57 2.533 7 0e97c58f24ab631d 2.233 5
084c2a1563ef7d9b 2.466 3 086e4c1725ab3f9d 2.266 2
084c261da3be5f97 2.533 6 092bd8a76c354fe1 2.333 0
084c261da3bef975 2.433 3 016794ebacf52d83 2.333 4
084c261da39b7e5f 2.433 7 04518a936f7c2bed 2.233 3

Table 1. All 4× 4 s-box F up to affine equivalence with nonlinearity 4, degree 3 and
absolute autocorrelation value 8, and their respective affine equivalent s-boxes that
achieve the minimum TO(G); the β values are also given where the TO is attained.

6 Practical Soundness of the Transparency Order

6.1 Attack Simulations

This section aims to confront the notion of (revised) transparency order with
attack simulations. Essentially, our goal is to study to what extent the low trans-
parency order of an s-box impacts the efficiency of a side channel attack against
its processing.

We first performed CPA attack simulations against the 8 PRINCE s-boxes listed
in Table 2 (Appendix A). We think that the latter ones are good targets for
our study since their minimum transparency order are reasonably different and
ranges from 1.56667 (for s-box 4) to 2.23333 (for s-box 7). In these first tests
campaign, we choose to simulate the information leakage in the classical Ham-
ming Distance model with Gaussian noise. Namely, the leakage L(X⊕K̇) related
to the processing of the s-box output F (X + K̇) equals H(F (x ⊕ K̇) ⊕ β) + B,
where B is a random variable whose distribution is Gaussian with null mean
and standard deviation σ. The value β corresponds to the initial state of the
memory before the writing of F (x ⊕ K̇). According to the discussion in previ-
ous sections, we assumed that it can be chosen by the designer and, for each



PRINCE s-box F , we selected it to minimize TO(F, β) (see Table 2)7. Each hy-
pothesis K on K̇ has been tested by estimating the correlation coefficient 8

ρ(HW(F (X ⊕ K) ⊕ β), L(X ⊕ K̇)). It can be noticed that the initial content
β of the register is assumed to be known by the attacker, which makes sense
since it is part of the design parameters and therefore must be public according
to Kerckhoff’s rule. The number of leakage observations used to estimate the
correlation is denoted by N . Attacks have been tested for different amounts of
noise (namely for different standard deviations σ ∈ [1..10]). For each of them,
we estimated the minimum number of observations N required for the attack
to succeed with a probability at least equal to 0.9. As argued in [17, 25], this
is a sound way to evaluate the efficiency of a side-channel attack. Results are
reported in Figure 3.

Remark 6. Since leakages are generated with the same (Hamming distance)
model used to compute the predictions, the use of the correlation coefficient
as a statistical distinguisher is an optimal choice. In particular, we experimen-
tally validated that replacing it by a mutual information (as proposed in [14])
does not improve the attacks success rates, nor change the conclusions we have
drawn from our simulations with CPA.

It may be checked in Figure 3 that the transparency order impacts the CPA at-
tack efficiency in the Hamming distance model. This impact increases with the
noise and, for σ = 10, the attack efficiency (i.e., the number of traces) is almost
multiplied by 2.5 if we compare s-boxes 1 and 7. One can also observe that low
TO alone does not fully capture the resistance against CPA since s-box 1 seems to
be always more resistant than s-box 4 whereas its TO is slightly greater (1.663
versus 1.56).

In Section 5, we related the new notion of transparency order to the multi-bit
DPA attack introduced in [1]. Since the latter attack is not equivalent to a CPA,
we ran a second attack simulation campaign. The results are reported in Figure
3. As expected, they essentially confirm the results we had with the CPA: the
lower TO, the higher the resistance against the attacks.

6.2 Conclusion of the Practical Soundness of the Transparency
Order

As shown by our simulations, the (minimum) transparency order is indeed re-
lated to the resistance of the s-box implementation against side channel attacks
like the CPA or the multi-bit DPA. Choosing s-box with the minimum trans-
parency order and using precharge value β for which the minimum is achieved
seems therefore a good defense strategy. From this point of view, our simulations
confirm our theoretical analysis. However, our simulations also show that a small

7 this should correspond to a maximum level of security.
8 We recall that the correlation coefficient between two random variables U and V can

be soundly estimated from respectively N observations (ui)i and (vi)i of U and V
by ρ(U, V ) ' (N

∑
i uivi −

∑
i uivi)/(

√
N

∑
i u

2
i − (

∑
i ui)

2
√
N

∑
i v

2
i − (

∑
i vi)

2).
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Fig. 3. Minimum number of Messages (in y-axis) required to achieve a 90% success
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minimum transparency order is not sufficient alone to achieve a satisfying resis-
tance level against CPA: in the most favourable situation (Figure 3), the number
of needed observations to attack the s-box output is “only” multiplied by 2.5
when considering the two extreme cases of s-boxes 1 and 7. This is definitely not
sufficient in practice where one usually expects that no attack succeeds with less
than 1 million observations (or even more). As a conclusion, choosing s-boxes
with small minimum transparency order is a sound strategy if it is combined with
other classical countermeasures like e.g., masking [7], shuffling [27] or thresh-
old implementation [21]. Moreover, our analysis (e.g., Table 1) suggests that
among s-boxes with equal (and good) cryptographic properties, there may exist
significant differences in terms of (minimum) transparency order.

7 Conclusion

In this paper we have critically analyzed the definition of transparency order
originally introduced in [24] almost a decade back. Even if several works have
been published on this notion (e.g., [5, 11, 18, 22]), we exhibited several incon-
sistencies in the definition as well as in the interpretation of the definition that
went unnoticed for a long time. We have then conducted an in-depth analy-
sis of the notion which led us to output a revised definition which answers all
the issues identified in the previous version. Then, we critically investigated the
practical soundness of the (revised) transparency order notion. Through several
attacks simulation campaigns, we have shown that it is indeed related to the
efficiency of side channel attacks like CPA and multi-bit DPA. On the other hand
it also clear that a small transparency order is not sufficient alone to ensure the
practical security of the implementation and must therefore be combined with
other classical countermeasures.

As a final conclusion of this work, we think that the design of s-boxes with
small transparency order is an interesting open avenue for further research. Also,
it will be interesting to precisely study how the (minimum) transparency order
impacts the efficiency of attacks like the template attacks [9], the linear regres-
sion attacks [10] or the MIA [14], especially when it is combined with masking.
Eventually, the (revised) notion of transparency order seems to share several sim-
ilarities with the notion of confusion coefficient introduced in [12] and recently
used in [23] to design DPA resistant s-boxes. A comparison analysis between the
two approaches appears to be a promising subject for future research on this
topic.
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A Analysis for the s-boxes in context of PRINCE

Eight 4 × 4 s-boxes are referred in [3]. In Table 2 we show the maximum and
minimum values of TO(F, β) for each of the s-boxes.

s-box βmax (as integer) TO(F ) βmin (as integer) TOmin(F )

s-box-1 0 2.46667 1 1.63333

s-box-2 2 2.56666 1 1.7

s-box-3 2 2.53333 1 1.66667

s-box-4 4 2.46667 1 1.56667

s-box-5 4 2.53333 2 2.16667

s-box-6 0 2.46667 6 2.1

s-box-7 6 2.5 5 2.23333

s-box-8 2 2.66667 7 2.2

Table 2. Maximum (corresponding to βmax) and minimum (corresponding to βmin)
values of TO(F, β) as β varies over F4

2 for the eight PRINCE s-boxes (available in Table
3 of Appendix A in the eprint version of [3]).

B Impact of an Transparency Order when model error is
considered

In this section, we study the impact of an erroneous modelling on the CPA resis-
tance of an s-box, by performing CPA attack simulations against the fourth and
the seventh PRINCE s-boxes9 under the assumption that the information is not
leaking in the Hamming distance model but in an erroneous version of it. Namely,
for a fixed model error standard deviation σer chosen10 in {0, 0.2, 0.4, 0.6, 0.8, 1.0},
we simulated the leakage L(X ⊕ K̇) such that:

L(X ⊕ K̇) = ϕ(F (X ⊕ K̇)⊕ β) +B , (16)

where ϕ is a function defined for every y ∈ F4
2 by ϕ(y) = HW(y) + ε with ε

randomly generated according to a normal distribution with mean 0 and stan-
dard deviation σer. The variable B still refers to an independent Gaussian noise
with 0 mean and standard deviation σ. For the processing of the predictions,
we kept the Hamming weight model (the adversary is not assumed to know the
erroneous leakage model). The results of our CPA attack simulations are reported
in Figure 4 (bars in dark blue correspond to s-box 4 whereas those in light blue
correspond to s-box 7, for each standard deviation σ – in x-axis – there is one
bar for each σer in {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}).
9 those s-boxes correspond to the two opposite extrema in terms of TO.

10 These standard deviations correspond to j% of the mean H(y) when y ranges uni-
formly over F4

2 and j ∈ {0, 10, 20, 30, 40, 50}.



It may be checked that the fourth s-box, which has minimum TO, stays
more resistant than the seventh s-box for any error in the modelling and the noise
standard deviation. More interestingly, our simulations show that the difficulty of
attacking s-box 4 increases more quickly with the σer than for s-box 7. Actually,
for a σer greater than or equal to 0.8, a 90% success rate11 was achieved against
s-box 4 only when the noise standard deviation was equal to 1. For greater noise
standard deviations (and for σer ≥ 0.8), this success rate was never achieved by
CPA attacks with less than 500 000 traces.
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Fig. 4. CPA in the presence of errors σer ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} and σ ∈ {1, . . . , 5}
(both on x-axis). For each pair (σ, σer) there is one dark blue bar for s-box 4 and one
light-blue bar for s-box 7 of PRINCE. The pairs (σ, σer) for which there is no dark
blue bar corresponds to situations where the number of traces to achieve 0.9 success
probability is at least 500 000.

The following sections are given to help the review process but are not planned
to be included in the final version.

11 The number of repetitions is 1000.



C Detailed calculations

∆K,K̇(j, β) in terms of s-box parameters

∆K,K̇(j, β) = − 1

2n−1

∑
x∈Fn

2

(−1)Fj(x⊕K)H
(
F (x⊕ K̇)⊕ β

)
(17)

= − 1

2n−1

∑
x∈Fn

2

(−1)Fj(x⊕K)
m∑
i=1

(Fi(x⊕ K̇)⊕ βi)

= − 1

2n−1

∑
x∈Fn

2

(−1)Fj(x⊕K) 1

2

(
m−

m∑
i=1

(−1)Fi(x⊕K̇)⊕βi

)

= −m
2n

∑
x∈Fn

2

(−1)Fj(x⊕K) +
1

2n

m∑
i=1

(−1)βi

∑
x∈Fn

2

(−1)Fj(x⊕K)⊕Fi(x⊕K̇)

Calculations related to ∆K,K̇(j, β)

∆K,K̇(j, β) = Q1 +Q2, where (18)

Q1 =
1

2n

∑
x∈{0,1}n

(−1)βj (−1)Fj(x⊕K)⊕Fj(x⊕K̇), for i = j

=
(−1)βj

2n
AFj (K ⊕ K̇), and

Q2 =
1

2n

m∑
i=1,i6=j

(−1)βi

∑
x∈{0,1}n

(−1)Fj(x⊕K)⊕Fi(x⊕K̇), for i 6= j

=
1

2n

m∑
i=1,i6=j

(−1)βiCFj ,Fi(K ⊕ K̇).

Proof of τ ′βF = τ ′βF



τ ′
β
F = |m− 2H(β)|

− 1

2n(2n − 1)

∑
a∈Fn∗

2

∣∣∣∣∣∣
m∑
j=1

(−1)βjAFj (a) +

m∑
i=1,i6=j

(−1)βiCFi,Fj (a)

∣∣∣∣∣∣
= |m− 2H(β)|

− 1

2n(2n − 1)

∑
a∈Fn∗

2

∣∣∣∣∣∣
m∑
j=1

−(−1)βjAFj (a)−
m∑

i=1,i6=j

(−1)βiCFi,Fj (a)

∣∣∣∣∣∣
= |m− 2H(β)|

− 1

2n(2n − 1)

∑
a∈Fn∗

2

∣∣∣∣∣∣
m∑
j=1

(−1)βjAFj (a) +

m∑
i=1,i6=j

(−1)βiCFi,Fj (a)

∣∣∣∣∣∣
= τ ′

β
F . (19)

Proof of Theorem 2

Theorem 3. Let F be an n×m balanced function. Then, for any affine permu-
tation A ∈ An we have TO(F ◦A) = TO(F ).

Proof. Suppose F = (F1, . . . , Fn). Equation (14) implies:

TO(F ◦A, β) = m− 1

2n(2n − 1)

∑
a∈Fn∗

2

m∑
j=1

∣∣∣∣∣
m∑
i=1

(−1)βi⊕βjCFi◦A,Fj◦A(a)

∣∣∣∣∣ . (20)

Since A is an affine permutation over Fn2 , we have

CFi◦A,Fj◦A(a) =
∑
x∈Fn

2

(−1)Fi◦A(x)⊕Fj◦A(x⊕a) =
∑
x∈Fn

2

(−1)Fi(x)⊕Fj(x⊕A(a)⊕A(0)) ,

that is

CFi◦A,Fj◦A(a) = CFi,Fj
(L(a)) , (21)

where L is the linear function defined by L(a) = A(a)⊕A(0).

Equations (20) and (21) together straightforwardly imply:

TO(F ◦A, β) = m− 1

2n(2n − 1)

∑
a∈Fn∗

2

m∑
j=1

∣∣∣∣∣
m∑
i=1

(−1)βi⊕βjCFi,Fj
(a)

∣∣∣∣∣
i.e., TO(F ◦A, β) = TO(F, β) which concludes the proof. ut



D A lower bound of TO(F ) using Walsh spectrum only

We present a lower bound of TO(F ) for a given F = (F1, . . . , Fm). The following
result will be used to derive the bound.

Lemma 1. Suppose e, f, g, h are Boolean functions of n-variables. Then∑
a∈Fn

2

Ce,f (a)Cg,h(a) =
1

2n

∑
a∈Fn

2

We(a)Wf (a)Wg(a)Wh(a).

Proof. Suppose Fn2 = {a0, . . . , a2n−1}. It is known that

[Ce,f (a0), . . . , Ce,f (a2n−1)]Hn = [We(a0)Wf (a0), . . . ,We(a2n−1)Wf (a2n−1)]

[Cg,h(a0), . . . , Cg,h(a2n−1)]Hn = [Wg(a0)Wh(a0), . . . ,Wg(a2n−1)Wh(a2n−1)],

where Hn is the Hadamard matrix of order 2n × 2n. Take the product

[Ce,f (a0), . . . , Ce,f (a2n−1)]Hn
(

[Cg,h(a0), . . . , Cg,h(a2n−1)]Hn
)T

= [We(a0)Wf (a0), . . . ,We(a2n−1)Wf (a2n−1)]

 Wg(a0)Wh(a0
...

Wg(a2n−1)Wh(a2n−1)


Since, HnHTn = 2nI2n×2n , where I2n×2n is the identity matrix of order 2n × 2n,
then from the product, we have∑

a∈Fn
2

Ce,f (a)Cg,h(a) =
1

2n

∑
a∈Fn

2

We(a)Wf (a)Wg(a)Wh(a).

Theorem 4. For F = (F1, . . . , Fm) : Fn2 → Fm2 , the value of TO(F ) has the
following lower bound

m−
√
2n−1

(22n−2n)

m∑
j=1

( m∑
i=1

∑
a∈Fn

2
∗

W 2
Fi

(a)W 2
Fj

(a) + 2
∑

1≤i<k≤m

∑
a∈Fn

2
∗

WFi(a)W 2
Fj

(a)WFk
(a)

) 1
2

.

Proof. It is clear that TO(F ) ≥ TO(F, 0). So we calculate a lower bound of
TO(F, 0). From (14) we get

TO(F, 0) = m− 1

(22n − 2n)

m∑
j=1

∑
a∈Fn∗

2

|
m∑
i=1

CFi,Fj (a)|

(22)



Applying Cauchy-Schwarz inequality we get

∑
a∈Fn∗

2

|
m∑
i=1

CFi,Fj (a)| ≤
(

(2n − 1)
∑
a∈Fn∗

2

( m∑
i=1

CFi,Fj (a)
)2) 1

2

=

(
(2n − 1)

∑
a∈Fn

2

[( m∑
i=1

CFi,Fj (a)
)2
−
( m∑
i=1

CFi,Fj (0)
)2]) 1

2

=

(
(2n − 1)

∑
a∈Fn

2

( m∑
i=1

CFi,Fj
(a)
)2) 1

2

(23)

Note that

∑
a∈Fn

2

( m∑
i=1

CFi,Fj
(a)
)2

=
∑
a∈Fn

2

m∑
i=1

C2Fi,Fj
(a) + 2

∑
a∈Fn

2

∑
1≤i<k≤m

CFi,Fj
(a)CFk,Fj

(a)

=

m∑
i=1

∑
a∈Fn

2

C2Fi,Fj
(a) + 2

∑
1≤i<k≤m

∑
a∈Fn

2

CFi,Fj
(a)CFk,Fj

(a)

Then applying Lemma 1,

∑
a∈Fn

2

( m∑
i=1

CFi,Fj
(a)
)2

=

m∑
i=1

∑
a∈Fn

2

W 2
Fi

(a)W 2
Fj

(a) + 2
∑

1≤i<k≤m

∑
a∈Fn

2

WFi
(a)W 2

Fj
(a)WFk

(a).

Replacing this value of
∑
a∈Fn

2

(∑m
i=1 CFi,Fj

(a)
)2

in (23), an upper bound of∑
a∈Fn∗

2
|
∑m
i=1 CFi,Fj

(a)| is obtained. Then using this upper bound in (22), we

get a lower bound of TO(F, 0) as follows

m−
√
2n−1

(22n−2n)

m∑
j=1

( m∑
i=1

∑
a∈Fn

2

W 2
Fi

(a)W 2
Fj

(a) + 2
∑

1≤i<k≤m

∑
a∈Fn

2

WFi
(a)W 2

Fj
(a)WFk

(a)

) 1
2

.

Note that TO(F, β) assumes that all the coordinate functions are balanced, there-
fore the above bound can be written as

m−
√
2n−1

(22n−2n)

m∑
j=1

( m∑
i=1

∑
a∈Fn

2
∗

W 2
Fi

(a)W 2
Fj

(a) + 2
∑

1≤i<k≤m

∑
a∈Fn

2
∗

WFi
(a)W 2

Fj
(a)WFk

(a)

) 1
2

.

This serves as a lower bound of TO(F ). ut



E Further exploring the Transparency Order: 1-st Order
Distance

The balancedness of F = (F1, · · · , Fm) implies that all the functions in the
form Fu ⊕ Fv, with u and v being distinct elements of [1..m], are balanced. As
originally observed in [24], this directly implies that the coefficient ∆K,K̇(v, β)

equals (−1)βv if K = K̇. Based on this observation, it has been proposed in
[28] to measure the resistance of an s-box against DPA attacks by computing the

following Euclidean distance d
(2)

K,K̇
(β) between ((−1)βv )v∈[1..m] and the vector

(∆K,K̇(v, β)))v∈[1..m] for each key candidate K:

d
(2)

K,K̇
(β) = ||((−1)βv )v∈[1..m] − (∆K,K̇(v, β)))v∈[1..m]||2 ,

where || · ||2 denotes the Euclidean norm.
The idea of [28] can obviously be extended to any norm. For instance, for

the Manhattan norm || · ||1 we can defined a new metric d
(1)

K,K̇
(β) such that:

d
(1)

K,K̇
(β) = ||((−1)βv )v∈[1..m] − (∆K,K̇(v, β)))v∈[1..m]||1 .

Let us denote by d(F, β) the mean of the d
(1)

K,K̇
(β) for K 6= K̇ (i.e., d(β) =

1
2n−1

∑
K∈Fn

2 ,K 6=K̇ d
(1)

K,K̇
(β)). We prove hereafter that for an s-box F , maxβ∈Fn

2
d(F, β)

can serve as an upper bound for TO(F ).

Proposition 4. Let F be a balanced n×m s-box, then we have:

TO(F ) 6 max
β∈Fn

2

d(F, β) .

Proof. By definition of d(β) we have

d(F, β) =
1

(2n − 1)

∑
K∈Fn2
K 6=K̇

m∑
v=1

∣∣∣(−1)βv −∆K,K̇(v, β)
∣∣∣ i.e.,

d(F, β) ≥ 1

2n − 1

∑
K∈Fn2
K 6=K̇

(m−
m∑
j=1

|∆K,K̇(j, β)|) ,

= TO(F, β) ,by (13) .

Therefore, TO(F ) = maxβ∈Fn
2
TO(F, β) 6 maxβ∈Fn

2
d(F, β) . ut

We went for a similar exercise as in Table 1 for maxβ∈F4
2
d(β) instead of TO(F )

(resp. TO(G)). In each EA-equivalence class (i.e., for each set of functions EA-
equivalent to one of the 10 s-boxes F in Table 1), we obtained the minimum
value 4.266 for minG∈EA(F ) maxβ∈F4

2
d(β).


