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Abstract. Advanced Side-Channel Analyses make use of dimensionality
reduction techniques to reduce both the memory and timing complexity
of the attacks. The most popular methods to effectuate such a reduction
are the Principal Component Analysis (PCA) and the Linear Discrim-
inant Analysis (LDA). They indeed lead to remarkable efficiency gains
but their use in side-channel context also raised some issues. The PCA
provides a set of vectors (the principal components) onto which project
the data. The open question is which of these principal components are
the most suitable for side-channel attacks. The LDA has been valorized
for its theoretical leaning toward the class-distinguishability, but dis-
couraged for its constraining greed of data. In this paper we present an
in-depth study of these two methods, and, to automatize and to ame-
liorate the principal components selection, we propose a new technique
named cumulative Explained Local Variance (ELV) selection. Moreover
we present some extensions of the LDA, available in less constrained
situations than the classical version. We equip our study with a com-
prehensive comparison of the existing and new methods in real cases.
It allows us to verify the soundness of the ELV selection, and the ef-
fectiveness of the methods proposed to extend the use of the LDA to
side-channel contexts where the existing approaches are inapplicable.

Keywords: Side-channel attacks, dimensionality reduction, principal compo-
nents analysis, components selection, linear discriminant analysis, explained lo-
cal variance, small size sample problem

1 Introduction

The measurement of the power consumption or of the electromagnetic irradi-
ations during the execution of cryptographic algorithms in constrained elec-
tronic devices can reveal information about sensitive variables (e.g. crypto-
graphic keys). The side channel traces are usually acquired by oscilloscopes with
a very high sampling rate, which permits a powerful inspection of the component
behaviour, but, at the same time, produces high-dimensional data, that spread



the sensitive information over a (sometimes) huge number of time samples. Re-
ducing the dimensionality of the data is an important issue for Side-Channel At-
tacks (SCA). Considering the side channel traces as column vectors x in RD, the
compressing phase might be seen as the application of a function ε : RD → RC ,
called extractor in this paper.

The present work focuses on the so-called projecting extractors, i.e. those
methods that provide extractors ε whose image components are linear combina-
tions of the original data, or equivalently, expressible via a matrix multiplication:

ε(x) = Ax with A ∈MR(C,D) , (1)

where MR(C,D) denotes the set of real-coefficient matrices of size C×D. In par-
ticular we effectuate an in-depth study and a comprehensive comparison between
the PCA and the LDA methods [10, 11], and we investigate their exploitability in
Side-Channel context. Indeed, PCA and LDA are classical statistical procedures,
but the way they have been inherited in SCA domain is somehow ambiguous
and opened some issues and questions.

The PCA has been applied both in an unsupervised way, i.e. on the whole
data [2, 14], and in a supervised way, i.e. on traces grouped in classes and av-
eraged [1, 7–9, 22]. The second way implies that, during the training phase, the
attacker is able to choose, or at least to know, the secret parameters of the imple-
mentation under attack (or a perfect copy of it). As already remarked in [9] and
not surprisingly, the complete knowledge assumed in the supervised approach
hugely raises performances; we will highlight it in our experiments, and we will
concentrate on this powerful kind of approach, leaving the unsupervised case
for further studies. The main competitor of PCA in the supervised context is
the LDA, that thanks to its class-distinguishability asset, is known to be more
meaningful and informative [4, 22] than the PCA method for side channels. Nev-
ertheless, the LDA is often set aside because of its practical constraints; it is
subject to the so-called Small Sample Size problem (SSS), i.e. it requires a num-
ber of observations (traces) which must be higher than the dimension (size) D of
them. In some contexts it might be an excessive requirement, which may become
unacceptable in many practical situations where the amount of observations is
very limited and the traces size is huge.

One of the open issues in PCA concerns the choice of the components that
must be kept after the dimension reduction: as already remarked by Specht et al.
[21], some papers declare that the leading components are those that contain al-
most all the useful information [1, 8], while others propose to discard the leading
components [2]. In a specific attack context, Specht et al. compares the results
obtained by choosing different subsets of consecutive components, starting from
some empirically chosen index. They conclude that for their data the optimal
result is obtained by selecting a single component, the fourth one, but they give
no formal argumentation about this choice. Such a result is obviously very case-
specific. Moreover, the possibility of keeping non-consecutive components is not



considered.

Our main contribution consists in proposing a new selection methodology,
called cumulative ELV selection. We will argue about the generality and the
soundness of this methodology and show that it can raise the PCA performances,
making them close to those of the LDA, even in the supervised context. This
makes PCA an interesting alternative to LDA in those cases where the LDA
is inapplicable. The reasonning behind the ELV selection methodology is es-
sentially based on the observation that, for secure implementations, the leaking
information, if existing, is spread over a few time samples of each trace. This
observation has already been met by Mavroeidis et al. in [17], where the authors
also proposed a components selection method. As we will see in this paper, the
main difference between their proposal and ours is that we do not discard the
information given by the eigenvalues associated to the PCA components, but we
synergistically exploit such information and the observation met. For the sake of
comparison, we also analyse many propositions to circumvent the SSS problem
that have been made in literature, especially by Pattern Recognition and Face
Recognition communities [3, 6, 13, 24]. The gain given by these techniques does
not outperform the PCA method equipped with our ELV selection.

The paper is organised as follows: in Section 2 we fix notations, recall pre-
liminaries and formalize the context. Section 3 presents the PCA, and handles
the choice of components problem, introducing the ELV selection method. In
Section 4 the LDA method is presented, together with different methodologies
to avoid the SSS problem. Experiments and comparisons are showed in Section
5, while conclusions and perspectives follow in Section 6.

2 Preliminaries and Formalization

2.1 Preliminaries

In the following, bold block capitals M denote matrices and Greek or Latin bold
lower cases, α or x, denote real column vectors. The i-th entry of a vector x is
indicated by x[i].

A side-channel key recovery adversary, being inspired by the model proposed
by Standaert et al. [23], corresponds to a 5-tuple A = (A, τ,m,N ′, N), where A
is an algorithm or a procedure with time complexity τ and memory complexity
m, that takes as input two sets of measurements of respective sizes N ′ and N .
The algorithm A returns a vector of key candidates. Since the goal of the attack
is to distinguish the right key k? in a set K of candidates, the output vector,
called guessing vector g, sorts such candidates in decreasing order with respect
to their likelihood:

A:
(
(xi)i=1,...N ′ , (yj)j=1,...N

)
7→ g = [g[1], . . . ,g[|K|]] . (2)



The first set of input traces (xi)i=1,...N ′ , here called profiling set, is optional,
and corresponds to measurements obtained from a profiling device, identical to
the device under attack but with full access to the public and secret parameters.
The second set of traces (yj)j=1,...N , called attack set, corresponds to measure-
ments acquired from the device under attack, parametrized by a key which will
be the target of the attack.

An interesting tool to assess the soundness of an adversary is given by the
guessing entropy [16] and by the asymptotic guessing entropy, respectively de-
fined as

GEA(N) = E [i : g[i] = k?] and GE∞A = lim
N→∞

GEA(N) , (3)

where A(N) denotes the adversary A with its fifth parameter fixed to N.

A trace x can be seen as an element in RD, and its size or dimension D,
that depends on a lot of factors (e.g. the instruments setup or the cryptographic
algorithm under attack), usually ranges between some thousands and some hun-
dreds of thousands. Nevertheless, only few points of the trace depend on the
secret target key. A preliminary step of an attack therefore generally consists in
the extraction of the so-called Points of Interest (PoI) from the rough traces. By
definition, the latter points are those which depend on both the secret target
parameter and on some given public data (a necessary condition to perform dif-
ferential attacks). This extraction represents a non-trivial concrete obstacle for
the practical performances of an attack.

2.2 Formalization: Extractors and Fundamental Property

To formalize the problem of the research of PoIs, we remark that in general an
attack is composed of four fundamentally different phases:

1. Instruments calibration and traces acquisitions (to build the profiling and
attack sets)

2. [Optional] trace pre-processing
3. [Optional] profiling (useful to model the leakage function)
4. Key discrimination: a statistical test, or a statistical distinguisher, is pro-

cessed over the traces to discriminate key candidates

In this scheme the research of PoI is part of the traces pre-processing. We will
formalize it as the application of a function, called extractor (by analogy to the
notion of randomness extractor [18]):

Definition 1. Let x ∈ RD represents an observation. An Extractor is any func-
tion of the form:

εC : RD → RC with C ≤ D
x 7→ εC(x) .



Notation 1. The dimension C of an extractor will be omitted if there is no
ambiguity or if it is not needed in the context.

Example 1. A special family of extractors that is widely studied in last years,
is the one constituted by the linear or projecting extractors, i.e. those for which
each sample in the reduced space C is a linear combination of samples of the
original space. By analogy to (1), such extractors can be defined as C × D
matrices, whose rows are the coefficients to use for the C linear combinations.

Obviously, not any extractor ε is suitable to soundly realise the traces pre-
processing of an attack; for example the restriction over a random coordinate,
i.e. ε(x) = x[r], r being random, is hardly a good candidate for an extractor.
For this reason an adversary might aim to only consider extractors that satisfy
the following fundamental property:

Property 1 (Effective Extractors). Let A be an adversary and GEA(N) be its
guessing entropy, when no trace processing phase is effectuated. Let ε be an
extractor, and A′ be an adversary that coincides with A but whose algorithm

A is fed with the sets
(

(ε(xi))i=1,...N ′ ,
(
ε((yj))

)
j=1,...N

)
, i.e. an adversary that

applies ε as traces pre-processing phase. The extractor ε is an effective extractor
with respect to N only if, for any T ≥ N, we have:

GEA′(T ) ≤ GEA(T ) . (4)

In practice this property guarantees that the application of ε does not discard the
informative parts of the traces, those that make A achieve its guessing entropy.

3 Principal Component Analysis

3.1 Principal Component Analysis, the classical statistical tool

The Principal Component Analysis (PCA) [10] is a statistical technique for data
dimensionality reduction. It looks for the so-called Principal Components (PCs
for short), which are vectors that form an orthonormal basis for RD (i.e. these
vectors have norm equal to 1 and are orthogonal to each other). Such PCs are
computed as the eigenvectors of the empirical covariance matrix of data: given
a set of data (xi)i=1,...,N , the empirical covariance matrix is given by:

S =
1

N

N∑
i=1

(xi − x)(xi − x)ᵀ , (5)

where x is the empirical mean of data. Let us denote by r the rank of S and
by α1, . . . ,αr and λ1, . . . , λr its eigenvectors and the corresponding eigenvalues,
respectively. We assume that the αi are listed in the decreasing order of the
values λi. It can be shown that each λi equals the empirical variance of the data



projected onto the corresponding PC αi. Since the data variability is associ-
ated to the amount of information, transforming data over the basis provided
by the PCs leads to a dimensionality reduction that reinforces the information:
such a dimensionality reduction is obtained by projecting the data onto the C-
dimensional subspace of RD spanned by the C leading PCs, or equivalently by
constructing the matrix A of (1) storing as rows the C leading PCs, transposed.

3.2 Principal Component Analysis, the Class-Oriented Version

In SCA context, the useful information part contained in data is the one that al-
lows to discriminate observations linked to different intermediate computations.
Let us denote by Z = e(P,K) the target intermediate variable, that depends on
both a secret variable K and on a public one P , and that takes values z ∈ Z. The
side-channel attack efficiency depends on the ability of the involved extractor to
amplify the distinguishability between traces associated to different z.

During the profiling phase the attacker is assumed to know the value z of the
sensitive variable handled during each acquisition. He can therefore assign the
class z to each profiling trace (in analogy with the pattern recognition terminol-
ogy), obtaining the labelled profiling set (xz

i )i=1,...,Nz , where Nz is the number
of traces belonging to the class z. This knowledge is very useful to construct a
good class-distinguishing extractor, but the classical PCA does not exploit it.
For this reason in SCA literature [1, 7–9, 22] a class-oriented version of PCA is
often used instead of the classical one. Let xz be the empirical mean of traces
belonging to the same class z. The class-oriented version of the PCA consists
in applying the PCA dimensionality reduction to the set (xz)z∈Z , instead of
applying it directly to the traces xz

i . This implies that the empirical covariance
matrix will be computed using only the |Z| average traces. Equivalently, in case
of balanced acquisitions (Nz constant for each class z), it amounts to replace the
covariance matrix S of data in (5) by the so-called between-class or inter-class
scatter matrix, given by:

SB =
∑
z∈Z

Nz(xz − x)(xz − x)ᵀ . (6)

Remark that SB coincides, up to a multiplicative factor, to the covariance ma-
trix obtained using the class-averaged traces.

Performing PCA (or LDA as we will see in next section) always requires
to compute the eigenvectors of some symmetric matrix S, essentially obtained
by multiplying a matrix M with its transposed (e.g. for class-oriented PCA we
have M = [

√
Nz1(xz1 −x),

√
Nz2(xz2 −x), . . . ]). Let M have dimension D×N,

and suppose N � D (which occurs for example in class-oriented PCA , since
N = |Z|). Then, the matrix S = MMᵀ has rank at most N. Moreover, rows of
M are often linearly dependent (as in our example since they are forced to have



zero mean), so the rank of S is actually strictly less than N, giving us at most
N − 1 eigenvectors.

A practical problem when D is large, which happens e.g. when attacking
RSA, is represented by the computation and the storage of the D × D matrix
S. Archambeau et al. [1] proposed a method that circumvents this issue, allow-
ing computing the eigenvectors of low-rank big-dimensional symmetric matrices
without computing and storing such matrices. In Sec. 4 we will observe in which
cases such a method can be applied to LDA and for which LDA variants.

3.3 The Open Question: Choosing the Components to Keep

The introduction of the PCA method in SCA context (either in its classical or
class-oriented version) has raised some important questions: how many principal
components and which ones are sufficient/necessary to reduce the trace size (and
thus the attack processing complexity) without losing important discriminative
information?

Until now, an answer to the questions above has been given in [8], linked to
the concept of explained variance (or explained global variance, EGV for short)
of a PC αi:

EGV(αi) =
λi∑r

k=1 λk
, (7)

where r is the rank of the covariance matrix S, and λj is the eigenvalue associated
to the j-th PC αj . EGV(αi) is the variance of the data projected over the i-th PC
(which equals λi) divided by the total variance of the original data (given by the
trace of the covariance matrix S, i.e. by the sum of all its non-zero eigenvalues).
By definition of EGV, the sum of all the EGV values is equal to 1; that is why this
quantity is often multiplied by 100 and expressed as percentage. Exploiting the
EGV to choose among the PCs consists in fixing a wished cumulative explained
variance β and in keeping C different PCs, where C is the minimum integer such
that

EGV(α1) + EGV(α2) + · · ·+ EGV(αC) ≥ β . (8)

However, if the adversary has a constraint for the reduced dimension C, the
EGV notion simply suggests to keep the first C components, taking for granted
that the optimal way to chose PCs is in their natural order. This assumption
is not always confirmed in SCA context: in some works, researchers have al-
ready remarked that the first components sometimes contain more noise than
information [2, 21] and it is worth discarding them. For the sake of providing a
first example of this behaviour on publicly accessible traces, we applied a class-
oriented PCA on 3000 traces from the DPA contest v4 [20]; we focused over a
small 1000-dimensional window in which, in complete knowledge about masks
and other countermeasures, information about the first Sbox processing leaks
(during the first round). In Fig. 1 the first and the sixth PCs are plotted. It may
be noticed that the first component indicates that one can attend a high variance



by exploiting the regularity of the traces, given by the clock signal, while the
sixth one has high coefficients localised in a small time interval, very likely to
signalize the instants in which the target sensitive variable leaks.
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Fig. 1: First and sixth PCs in DPA contest v4 trace set (between time samples 198001
and 199000)

To the best of our knowledge, a single method adapted to SCA context has
been proposed until now to automatically choose PCs [17] while dealing with
the issue raised in Fig. 1. It is based on the following assumption:

Assumption 1. The leaking side-channel information is localised in few points
of the acquired trace.

In the rest of the paper, we conduct our own analyses under Assumption 1
that we think to be reasonable in SCA contexts where the goal of the security
developers is to minimize the number of leaking points. Under this assumption,
the authors of [17] use for side-channel attack purposes the Inverse Participation
Ratio (IPR), a measure widely exploited in Quantum Mechanics domain (see for
example [12]). They propose to use such a score to evaluate the eigenvectors
localization. It is defined as follows:

IPR(αi) =

D∑
j=1

αi[j]
4 . (9)

The authors of [17] suggest to collect the PCs in decreasing order with respect
to the IPR score.

The selection methods provided by the evaluation of the EGV and of the
IPR are somehow complementary: the former is based only on the eigenvalues
associated to the PCs and does not consider the form of the PCs themselves; the
latter completely discards the information given by the eigenvalues of the PCs,
considering only the distribution of their coefficients. One of the contributions
of the present paper is to propose a new selection method, that builds a bridge
between the EGV and the IPR approaches. As we will argue, our method, based



on the so-called explained local variance, does not only lead to the construc-
tion of a new selection criterion, but also permits to modify the PCs, choosing
individually the coefficients to keep and those to discard.

3.4 The Explained Local Variance Selection Method

The method we develop in this section is based on a compromise between the
variance provided by each PC (more precisely its EGV) and the number of time
samples necessary to achieve a consistent part of such a variance. To this purpose
we introduce the concept of Explained Local Variance (ELV).
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Fig. 2: Cumulative ELV trend of principal components. On the right a zoom of the
plot on the left. Data acquisition described in Sec. 5.

Let us start by giving some intuition behind our new concept. Thinking to
the observations xᵀ, or to the class-averages xᵀ in class-oriented PCA case, as
realizations of a random variable Xᵀ, we have that λi is an estimator for the
variance of the random variable Xᵀ ·αi. Developing, we obtain

λi =v̂ar(

D∑
j=1

Xᵀ[j]αi[j]) =

D∑
j=1

D∑
k=1

ˆcov(Xᵀ[j]αi[j],X
ᵀ[k]αi[k]) = (10)

=

D∑
j=1

αi[j]

D∑
k=1

αi[k] ˆcov(Xᵀ[j],Xᵀ[k]) =

D∑
j=1

αi[j](S
ᵀ
j ·αi) = (11)

=

D∑
j=1

αi[j]λiαi[j] =

D∑
j=1

λiαi[j]
2 (12)

where Sᵀ
j denotes the j-th row of S and (12) is justified by the fact that αi

is an eigenvector of S, with λi its corresponding eigenvalue. The result of this
computation is quite obvious, since ‖ αi ‖= 1, but it evidences the contribution
of each time sample in the information held by the PC. This makes us introduce
the following definition:



Definition 2. The Explained Local Variance of a PC αi in a sample j, is
defined by

ELV(αi, j) =
λiαi[j]

2∑r
k=1 λk

= EGV(αi)αi[j]
2 . (13)
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Fig. 3: The first six PCs. Acquisition campaign on an 8-bit AVR Atmega328P (see
Sec. 5).

Let J = {ji1, ji2, . . . , jiD} ⊂ {1, 2, . . . , D} be a set of indexes sorted such that
ELV(αi, j

i
1) ≥ ELV(αi, j

i
2) ≥ · · · ≥ ELV(αi, j

i
D). It may be observed that the

sum over all the ELV(αi, j), for j ∈ [1, . . . , D], equals EGV(αi). If we operate
such a sum in a cumulative way following the order provided by the sorted set
J , we obtain a complete description of the trend followed by the component
αi to achieve its EGV. As we can see in Fig. 2, where such cumulative ELVs
are represented, the first 3 components are much slower in achieving their final
EGV, while the 4th, the 5th and the 6th achieve a large part of their final EGVs
very quickly (i.e. by adding the ELV contributions of much less time samples).
For instance, for i = 4, the sum of the ELV(α4, j

4
k), with k ∈ [1, . . . , 30], almost

equals EGV(α4), whereas the same sum for i = 1 only achieves about the 15%
of EGV(α1). Actually, the EGV of the 4th, the 5th and the 6th component only
essentially depends on a very few time samples. This observation, combined with
Assumption 1, suggests that they are more suitable for SCA than the three first
ones. To validate this statement, it suffices to look at the form of such compo-
nents (Fig. 3): the leading ones are very influenced by the clock, while the latest
ones are well localised over the leaking points.

Operating a selection of components via ELV, in analogy with the EGV, re-
quires to fix the reduced space dimension C, or a threshold β for the cumulative
ELV. In the first case, the maximal ELVs of each PC are compared, and the C
components achieving the highest values of such ELVs are chosen. In the second
case, all pairs (PC, time sample) are sorted in decreasing order with respect to



their ELV, and summed until the threshold β is achieved. Then only PCs con-
tributing in this sum are selected.

We remark that the ELV is a score associated not only to the whole compo-
nents, but to each of their coefficients. This interesting property can be exploited
to further remove, within a selected PC, the non-significant points, i.e. those with
a low ELV. In practice this is done by setting these points to zero. That is a
natural way to exploit the ELV score in order to operate a kind of denoising for
the reduced data, making them only depend on the significant time samples. In
Sec. 5 (scenario 4) we test the performances of an attack varying the number
of time samples involved in the computation of the reduced data, and showing
that such a denoising processing might impact significantly.

4 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) [11] is another statistical tool for dimen-
sionality reduction, which is theoretically more appropriate than PCA for classi-
fication problems, such as SCA, as already observed in [4, 22]. Indeed it seeks for
linear combinations of data that characterize or separate two or more classes,
not only spreading class centroids as much as possible, like the class-oriented
PCA does, but also minimizing the so-called intra-class variance, i.e. the vari-
ance shown by data belonging to the same class.

Description. Applying LDA consists in maximizing the so-called Rayleigh quo-
tient:

α1 = argmaxα

αᵀSBα

αᵀSWα
, (14)

where SB is the between-class scatter matrix already defined in (6) and SW is
called within-class (or intra-class) scatter matrix:

SW =
∑
z∈Z

Nz∑
i=1

(xz
i − xz)(xz

i − xz)ᵀ. (15)

Remark 1. Let S be the the global covariance matrix of data, also called total
scatter matrix, defined in (5); we have the following relationship between SW,SB

and S:

S =
1

N
(SW + SB) . (16)

It can be shown that the vector α1 which maximizes (14) must satisfy
SBα1 = λSWα1, for a constant λ, i.e. has to be an eigenvector of S−1WSB.
Moreover, for any eigenvector α of S−1WSB, with associated eigenvalue λ, the
Rayleigh quotient equals such a λ:

αᵀSBα

αᵀSWα
= λ . (17)



Then, among all eigenvectors of S−1WSB, α1 must be the leading one.

The computation of the eigenvectors of S−1WSB is known under the name
of generalized eigenvector problem. The difficulty here comes from the fact that
S−1WSB is not guaranteed to be symmetric. Due to this non-symmetry, α1 and
the others eigenvectors do not form an orthonormal basis for RD, but they are
anyway useful for classifications scopes, as in SCA. Let us refer to them as Linear
Discriminant Components (LDCs for short); as for PCs we consider them sorted
in decreasing order with respect to their associated eigenvalue, which gives a
score for their informativeness, see (17). Analogously to the PCA, the LDA pro-
vides a natural dimensionality reduction: one can project the data over the C
first LDCs. As for PCA, this choice might not be optimal when applying this
reduction to side-channel traces. For the sake of comparison, all the selection
methods proposed for the PCA (EGV, IPR and ELV) will be tested in associa-
tion to the LDA as well.

In the following subsection we will present a well-known problem that affects
the LDA in many practical contexts, and describe four methods that circumvent
such a problem, with the intention to test them over side-channel data.

4.1 The Small Sample Size Problem

In the special case in which the matrix SB is invertible, the generalized eigen-
value problem is convertible in a regular one, as in [22]. On the contrary, when
SB is singular, the simultaneous diagonalization is suggested to solve such a
problem [11]. In this case one can take advantage by the singularity of SB to
apply the computational trick proposed by Archambeau et al., see Sec. (3.2),
since at most r = rank(SB) eigenvectors can be found.

If the singularity of SB does not affect the LDA dimensionality reduction, we
cannot say the same about the singularity of SW: SCA and Pattern Recognition
literatures point out the same drawback of the LDA, known as the Small Sample
Size problem (SSS for short). It occurs when the total number of acquisitions
N is less than or equal to the size D of them.4 The direct consequence of this
problem is the singularity of SW and the non-applicability of the LDA.

If the LDA has been introduced relatively lately in the SCA literature, the
Pattern Recognition community looks for a solution to the SSS problem at least
since the early nineties. We browsed some of the proposed solutions and chose
some of them to introduce, in order to test them over side channel traces.

4 It can happen for example when attacking an RSA implementation, where the ac-
quisitions are often huge (of the order of 1,000,000 points) and the number of mea-
surements may be small when the SNR is good, implying that a good GE can be
achieved with a small N .



Fisherface Method The most popular among the solutions to SSS is the
so-called Fisherface method5 [3]. It simply relies on the combination between
PCA and LDA: a standard PCA dimensionality reduction is performed to data,
making them pass from dimension D to dimension N−|Z|, which is the general
maximal rank for SW. In this reduced space, SW is very likely to be invertible
and the LDA therefore applies.

SW Null Space Method It has been introduced by Chen et al. in [6] and
exploits an important result of Liu et al. [15] who showed that Fisher’s criterion
(14) is equivalent to:

α1 = argmaxα

αᵀSBα

αᵀSWα + αᵀSBα
. (18)

The authors of [6] point out that such a formula is upper-bounded by 1, and
that it achieves its maximal value, i.e. 1, if and only if α is in the null space
of SW. Thus they propose to first project data onto the null space of SW and
then to perform a PCA, i.e. to select as LDCs the first |Z| − 1 eigenvectors of
the between-class scatter matrix of data into this new space. More precisely, let
Q = [v1, . . . ,vD−rank(SW)] be the matrix of vectors that span the null space of
SW. [6] proposes to transform the data x into x′ = QQᵀx. Such a transformation
maintains the original dimension D of the data, but let the new within-class
matrix S′W = QQᵀSWQQᵀ be the null D ×D matrix. Afterwards, the method
looks for the eigenvectors of the new between-class matrix S′B = QQᵀSBQQ

ᵀ.
Let U be the matrix containing its first |Z|− 1 eigenvectors: the LDCs obtained
via the SW null space method are the columns of QQᵀU .

Direct LDA As the previous, this method, introduced in [24], privileges the
low-ranked eigenvectors of SW, but proposes to firstly project the data onto
the rank space of SB, arguing the fact that vectors of the null space of SB do
not provide any between-class separation of data. Let DB = V ᵀSBV be the
diagonalization of SB, and let V ? be the matrix of the eigenvectors of SB that
are not in its null space, i.e. whose eigenvalues are different from zero. Let also
D?

B denotes the matrix V ?ᵀSBV
?; transforming the data x into D?

B
1/2V ?ᵀx

makes the between-class variance to be equal to the (|Z|−1)× (|Z|−1) identity
matrix. After this transformation the within-class variance assumes the form
S′W = D?

B
1/2V ?ᵀS′WV ?D?

B
1/2. After storing the C lowest-rank eigenvectors in

a matrix U?, the LDCs obtained via the Direct LDA method are the columns of
V ?D?

B
1/2U?ᵀ.

ST Spanned Space Method The last variant of LDA that we consider has
been proposed in [13] and is actually a variant of the Direct LDA: instead of

5 The name is due to the fact that it was proposed and tested for face recognition
scopes.



removing the null space of SB as first step, this method removes the null space
of ST = SB + SW. Then, denoting S′W the within-class matrix in the reduced
space, the reduced data are projected onto its null space, i.e. are multiplied
by the matrix storing by columns the eigenvectors of S′W associated to the
null eigenvector, thus reduced again. A final optional step consists in verifying
whether the between-class matrix presents a non-trivial null-space after the last
projection and, in this case, in effectuating a further projection removing it.

Remark 2. Let us remark that, from a computational complexity point of view
(see [13] for a deeper discussion), the least time-consuming procedure among the
four proposed is the Direct LDA, followed by the Fisherface and the ST Spanned
Space Method, that have a similar complexity. The SW Null Space Method is in
general much more expensive, because the task of removing the SW null space
requires the actual computation of the (D × D)-dimensional matrix SW, i.e.
the computational trick proposed by Archambeau et al. [1], see Sec. 3.2 is not
applicable. On the contrary, the other three methods take advantage of such a
procedure, reducing drastically their complexity.

5 Experimental Results

In this section we compare the different extractors provided by the PCA and
the LDA in association with the different techniques of components selection.
Defining an universal criterion to compare the different extractors would not
make sense since the latter one should encompass a lot of parameters, sometimes
opposite, that vary according to the context (amount of noise, specificity of the
information leakage, nature of the side channel, etc.). For this reason we will
choose to split our comparisons according to four contexts depending on the
final goal pursued by the attacker:

1. Minimize N: achieve GEA′ ≤ β with the minimal number of attack traces,
with β a fixed threshold, common to the four goals

2. Minimize N ′: achieve GEA′ ≤ β with the minimal number of profiling traces
3. Minimize C: achieve GEA′ ≤ β reducing as much as possible the size of the

extracted traces
4. Minimize #PoI: achieve GEA′ ≤ β exploiting the minimal number of origi-

nal trace points.

An attack scenario has been defined for each of the goals above: in each one,
three of the four parameters N,N ′, C,#PoI are fixed and one varies. For those
in which N ′ is fixed, the value of N ′ is chosen high enough to avoid the SSS
problem, and the extensions of LDA presented in Sec. 4.1 are not evaluated. 6

This choice of N ′ will imply that the LDA is always performed in a favourable
situation, which makes expect the LDA to be particularly efficient for these
experiments. Consequentely, for the scenarios in which N ′ is high, our goal is to
study whether the PCA can be made almost as efficient as the LDA thanks to
the component selection methods discussed in Sec. 3.3.

6 This study is let open for an extended version of this paper.
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Fig. 4: Guessing Entropy as function of the number of attack traces for different ex-
traction methods. All Guessing Entropies are estimated as the average rank of the right
key over 100 independent experiments.

The testing adversary. Our testing adversary attacks an 8-bit AVR micropro-
cessor Atmega328P and acquires power-consumption traces via the ChipWhis-
perer platform [19].7 The target device stores a secret 128-bit key and performs
the first steps of an AES: the loading of 16 bytes of the plaintext, the AddRound-
Key step and the AES Sbox. It has been programmed twice: two different keys
are stored in the device memory during the acquisition of the profiling and of
the attack traces, to simulate the situation of two identical devices storing a dif-
ferent secret. The size D of the traces equals 3996. The sensitive target variable
is the output of the first Sbox processing, but, since the key is fixed also during
the profiling phase, and both Xor and Sbox operations are bijective, we expect
to detect three interesting regions (as those high-lighted by PCs 4, 5 and 6, in
Fig. 3): the reading of the first byte of the plaintext, the first AddRoundKey
and the first Sbox. We consider an identity classification leaking function (i.e. we
make minimal assumption on the leakage function), which implies that the 256
possible values of the Sbox output yields to 256 classes. For each class we assume
that the adversary acquires the same number Np of traces, i.e. N ′ = Np × 256.
After the application of the extractor ε, the trace size is reduced to C. Then
the attacker performs a Bayesian Template Attack [5], using C-variate Gaus-
sian templates. This choice comes from the information-theoretic optimality of
such an attack which, exploiting the maximum likelihood parameters estimation,
yields to an unbiased comparison between the extractors.

Scenario 1. To analyse the dependence between the extraction methods pre-
sented in Sections 3 and 4 and the number of attack traces N needed to achieve
a given GE, we fixed the other parameters as follows: Np = 50 (N ′ = 50× 256),
C = 3 and #PoI = 3996 (all points are allowed to participate in the building of
the PCs and of the LDCs). The experimental results, depicted in Fig. 4(a)-(b),

7 This choice has been done to allow for reproducibility of the experiments.



show that the PCA standard method has very bad performances in SCA, while
the LDA outperforms the others. Concerning the class-oriented PCA, we observe
that its performance is close to that of LDA when combined with the selection
methods ELV (which performs best) or IPR.

Scenario 2. Now we test the behaviour of the extraction methods as function of
the number Np of available profiling traces per class. The number of components
C is still fixed to 3, #PoI = 3996 again and the number of attack traces is
N = 100. This scenario has to be divided into two parts: if Np ≤ 15, then N ′ < D
and the SSS problem occurs. Thus, in this case we test the four extensions of
LDA presented in Sec. 4.1, associated to either the standard selection, to which
we abusively refer as EGV, 8 or to the IPR selection. We compare them to
the class-oriented PCA associated to EGV, IPR or ELV. The ELV selection
is not performed for the techniques extending LDA, since for some of them the
projecting LDCs are not associated to some eigenvalues in a meaningful way. On
the contrary, if Np ≥ 16 there is no need to approximate the LDA technique, so
the classical one is performed. Results for this scenario are shown in Fig. 5. It may
be noticed that the combinations class-oriented PCA + ELV/IPR select exactly
the same components, for our data, see Fig. 5(e) and do not suffer from the lack
of profiling traces. They are slightly outperformed by the SW Null Space method
associated with the EGV, see Fig.5(d). The Direct LDA (Fig. 5(b)) method also
provides a good alternative, while the other tested methods do not show a stable
behaviour. The results in absence of the SSS problem (Fig.5(f)) confirm that the
standard PCA is not adapted to SCA, even when provided with more profiling
traces. It also shows that among class-oriented PCA and LDA, the class-oriented
PCA converges faster.

Scenario 3. Let C be now variable and let the other parameters be fixed as
follows: N = 100, Np = 200,#PoI = 3996. Looking at Fig. 6, we might observe
that the standard PCA might actually well perform in SCA context if provided
with a larger number of kept components; on the contrary, a little number of
components suffices to the LDA. Finally, keeping more of the necessary compo-
nents does not worsen the efficiency of the attack, which allows the attacker to
choose C as the maximum value supported by his computational means.

Remark 3. In our experiments the ELV selection method only slightly outper-
forms the IPR. Nevertheless, since it relies on more sound and more general
observations, i.e. the maximization of explained variance concentrated into few
points, it is likely to be more robust and less case-specific. For example, in
Fig. 5(f) it can be remarked that while the class-oriented PCA + ELV line keeps
constant on the value 0 of guessing entropy, the class-oriented PCA + IPR is
sometimes higher than 0.

8 It consists in keeping the C first LDCs (the C last for the Direct LDA)
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Fig. 5: Guessing Entropy as function of the number of profiling traces. Figures (a)-(d):
methods extending the LDA in presence of SSS problem; Figure (e): class-oriented PCA
in presence of the SSS problem; Figure (f): number of profiling traces high enough to
avoid the SSS problem.
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Parameter to minimize

Method Selection N N′ (SSS) N′ (¬SSS) C

PCA standard EGV - - -

PCA standard ELV - - -

PCA standard IPR - - +

PCA class EGV - - - -

PCA class ELV + F F +

PCA class IPR + F + -

LDA EGV F + F
LDA ELV + + F
LDA IPR + + F

SW Null Space EGV F
SW Null Space IPR +

Direct LDA EGV F
Direct LDA IPR +

Fisherface -

ST Spanned Space -

Table 1: Overview of extractors per-
formances in tested situations.
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Fig. 7: Guessing Entropy as function of the number of time samples contributing to
the extractor computation.

An overview of the results of our comparison in scenarios 1, 2 and 3 is de-
picted in Table 1: depending on the adversary purpose, given by the parameter
to minimize, a F denotes the best method, a + denotes a method with perfor-
mances close to those of the best one and a − is for methods that show lower
performances. Techniques introduced in this paper are highlighted by a grey
background. For example we remark that the class-oriented PCA takes advan-
tage of the association with our ELV selection of components, achieving optimal
performances when the goal is to minimize the number of profiling traces N ′.
As expected, when there are no constraints over N ′, the LDA outperforms the
other methods; however, even in this case which is very favourable to the LDA,
the class-oriented PCA equipped with the ELV selection has an efficiency which
is close to that of the LDA.

Scenario 4. This is the single scenario in which we allow the ELV selection
method to not only select the components to keep but also to modify them,
keeping only some coefficients within each component, setting the other ones to
zero. We select pairs (component, time sample) in decreasing order of the ELV



values, allowing the presence of only C = 3 components and #PoI different
times samples: i.e., we impose that the matrix A defining the extractor (see (1))
has C = 3 rows (storing the 3 chosen components, transposed) and exactly #PoI
non-zero columns. Looking at Fig. 7 we might observe that the LDA allows to
achieve the maximal guessing entropy with only 1 PoI in each of the 3 selected
components. Actually, adding PoIs worsen its performances, which is coherent
with the assumption that the vulnerable information leaks in only a few points.
Such points are excellently detected by the LDA. Adding contribution from other
points raises the noise, which is then compensated by the contributions of further
noisy points, in a very delicate balance. Such a behaviour is clearly visible in
standard PCA case: the first 10 points considered raise the level of noise, that
is then balanced by the last 1000 points.

6 Conclusions

In this paper we studied and compared two well-known techniques to construct
extractors for side-channel traces, the PCA and the LDA. The LDA method is
more adequate than the PCA one, thanks to its class-distinguishing asset, but
more expensive and not always available in concrete situations. We deduced from
a general consideration about side-channel traces, i.e. the fact that for secured
implementations the vulnerable leakages are concentrated into few points, a new
methodology for selecting components, called ELV. We showed that the class-
oriented PCA, equipped with the ELV, achieves performances close to those of
the LDA, becoming a cheaper and valid alternative to the LDA. Being our core
consideration very general in side-channel context, we believe that our results
are not case-specific. Finally, among other alternatives to the LDA in presence
of SSS problem proposed in Pattern Recognition literature, we showed that the
Direct LDA and the SW Null Space Method are promising, as well.
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