Jean-Sébastien Coron
email: jean-sebastien.coron@uni.lu

Aurélien Greuet
email: a.greuet@oberthur.com

Emmanuel Prouff

Rina Zeitoun
email: r.zeitoun@oberthur.com

Faster Evaluation of SBoxes via Common Shares

We describe a new technique for improving the efficiency of the masking countermeasure against side-channel attacks. Our technique is based on using common shares between secret variables, in order to reduce the number of finite field multiplications. Our algorithms are proven secure in the ISW probing model with n t + 1 shares against t probes. For AES, we get an equivalent of 2.8 non-linear multiplications for every SBox evaluation, instead of 4 in the Rivain-Prouff countermeasure. We obtain similar improvements for other block-ciphers. Our technique is easy to implement and performs relatively well in practice, with roughly a 20% speed-up compared to existing algorithms.

Introduction

Side-Channel Attacks. Side-channel analysis is a class of cryptanalytic attacks that exploit the physical environment of a cryptosystem to recover some leakage about its secrets. It is often more efficient than a cryptanalysis mounted in the so-called black-box model where no leakage occurs. In particular, continuous side-channel attacks in which the adversary gets information at each invocation of the cryptosystem are especially threatening. Common attacks as those exploiting the running-time, the power consumption or the electromagnetic radiations of a cryptographic computation fall into this class. Many implementations of block ciphers have been practically broken by continuous side-channel analysis and securing them has been a longstanding issue for the embedded systems industry.

The Masking Countermeasure. A sound approach to counteract side-channel attacks is to use secret sharing [START_REF] Blakely | Safeguarding cryptographic keys[END_REF][START_REF] Shamir | How to Share a Secret[END_REF], often called masking in the context of side-channel attacks. This approach consists in splitting each sensitive variable x of the implementation into n shares such that x = x 1 ⊕ • • • ⊕x n , where n is called the sharing order, such that x can be recovered from these shares but no information can be recovered from fewer than n shares. It has been shown that the complexity of mounting a successful side-channel attack against a masked implementation increases exponentially with the order [CJRR99, [START_REF] Prouff | Higher-Order Side Channel Security and Mask Refreshing[END_REF][START_REF] Duc | Unifying leakage models: From probing attacks to noisy leakage[END_REF]. Starting from this observation, the design of efficient secure schemes for different ciphers has become a foreground issue. When specified at order n, such a scheme aims at specifying how to update the sharing of the internal state throughout the processing while ensuring that (1) the final sharing corresponds to the expected ciphertext, and (2) the n-th order security property is satisfied.

The ISW Probing Model. Ishai, Sahai and Wagner [START_REF] Ishai | Private circuits: Securing hardware against probing attacks[END_REF] initiated the theoretical study of securing circuits against an adversary who can probe a fraction of its wires. They showed how to transform any circuit of size |C| into a circuit of size O(|C| • t 2) secure against any adversary who can probe at most t wires. The ISW constructions consists in secret-sharing every variable x into x = x 1 ⊕ x 2 ⊕ • • • ⊕ x n where x 2 , . . . , x n are uniformly and independently distributed bits, with n 2t + 1 to get security against t probes. Processing a XOR gate is straightforward as the shares can be xored separately. The processing of an AND gate z = xy is based on writing:

z = xy = n ⊕ i=1 x i • n ⊕ i=1 y i = ⊕ 1 i,j n x i y j (1)
where the cross-products x i y j are first computed and then randomly recombined to get an n-sharing of the output z. This construction, called ISW gadget in the rest of this paper, enables, in its general form, to securely evaluate a multiplication at the cost of n 2 multiplications, 2n(n -1) additions and n(n -1)/2 random values. Its complexity is therefore O(n 2), which implies that the new circuit with security against t probes has O(|C| • t 2) gates.

A proof of security in the ISW framework is usually simulation based: one must show that any set of t probes can be perfectly simulated without the knowledge of the original variables of the circuit. In [START_REF] Ishai | Private circuits: Securing hardware against probing attacks[END_REF] and subsequent work this is done by progressively generating a subset I of input shares such that the knowledge of those input shares is sufficient to simulate all the t probes. For example, in the above AND gate, if the adversary would probe x i • y j , one would put both indices i and j in I, so that the simulator would get the input shares x i and y j , and therefore could simulate the product x i • y j . More generally in the ISW construction every probe adds at most two indices in I, which implies |I| 2t. Therefore if the number of shares n is such that n 2t + 1, then |I| < n, which implies that only a proper subset of the input shares is required for the simulation; those input shares can in turn be generated as independently uniformly distributed bits. Therefore, the knowledge of the original circuit variables is not required to generate a perfect simulation of the t probes, hence these probes do not bring any additional information to the attacker (since he could perform that simulation by himself).

Existing work. In the last decade, several masking countermeasures have been proposed for block-ciphers together with security proofs in the ISW probing model, based on the original notion of private circuits introduced in [START_REF] Ishai | Private circuits: Securing hardware against probing attacks[END_REF]. Except [START_REF] Coron | Higher order masking of look-up tables[END_REF] which extends the original idea of [START_REF] Kocher | Differential Power Analysis[END_REF] to any order, the other proposals are based on the ISW gadget recalled above. The core idea of the latter works is to split the processing into a short sequence of field multiplications and F 2 -linear operations, and then to secure these operations independently, while ensuring that the local security proofs can be combined to prove the security of the entire processing. When parametrized at order n, as recalled above the complexity of the ISW gadget for the field multiplication is O(n 2), but only O(n) for F 2 -linear operations.1 Therefore, an interesting problem is to minimize the number of field multiplications required to evaluate an SBox.

In the Rivain-Prouff countermeasure [START_REF] Rivain | Provably secure higher-order masking of AES[END_REF], the authors showed how to adapt the ISW circuit construction to a software implementation of AES, by working in F 2 8 instead of F 2 . Namely as illustrated in Fig. 1, the non-linear part S(x) = x 254 of the AES SBox can be evaluated with only 4 non-linear multiplications over F 2 8 , and a few linear squarings. Each of those 4 multiplications can in turn be evaluated with the previous ISW gadget based on Equation (1), by working over F 2 8 instead of F 2 .

x

x 3

x 12

x 2 x 15 x 240 x 252 x 254

x 15

x 240 x 254

x x 3 x 12

x 2 x 14

2 k -1 i=0 a i x i over F 2 k using Lagrange's interpolation theorem.
Therefore one can mask any SBox by securely evaluating this polynomial using n-shared multiplications as in the Rivain-Prouff countermeasure. To improve efficiency, one must look for operations sequences (e.g. SBox representations) that minimize the number of field multiplications which are not F 2 -linear2 (this kind of multiplication shall be called non-linear in this paper). This problematic has been tackled out in [CGP + 12], [START_REF] Roy | Analysis and improvement of the generic higher-order masking scheme of fse 2012[END_REF] and [START_REF] Coron | Fast evaluation of polynomials over binary finite fields and application to side-channel countermeasures[END_REF] and led to significantly reduce the number of multiplications needed to evaluate any function defined over F 2 k for k 10 (e.g. the AES SBox can be evaluated with only 4 multiplications, and only 4 multiplications are needed for the DES SBoxes).

Recently, a sequence of works continued to improve the original work [ISW03] and led, in particular, to exhibit a new scheme enabling to securely evaluate any function of algebraic degree 2 at the cost of a single multiplication (with the ISW gadget). The application of this work to the AES SBox led the authors of [START_REF] Grosso | Efficient masked s-boxes processing -A step forward[END_REF] to describe a scheme which can be secure at any order n and is a valuable alternative to the scheme proposed in [START_REF] Rivain | Provably secure higher-order masking of AES[END_REF]. In parallel, some schemes [BGN + 14, NRS11, PR11] have been proposed which remain secure in the probing model even in presence of so-called glitches [START_REF] Mangard | Pinpointing the side-channel leakage of masked AES hardware implementations[END_REF] and the recent work [RBN + 15] has investigated relations between these schemes and the ISW construction.

Refined Security Model: t-SNI Security. Since in this paper we are interested in efficiency improvements, we would like to use the optimal n = t + 1 number of shares instead of n = 2t + 1 as in the original ISW countermeasure. For n 2t + 1 shares the security proof for the single ISW multiplication gadget easily extends to the full circuit [START_REF] Ishai | Private circuits: Securing hardware against probing attacks[END_REF]; however for n t + 1 shares only one must be extra careful. For example, for the Rivain-Prouff countermeasure, it was originally claimed in [START_REF] Rivain | Provably secure higher-order masking of AES[END_REF] that only n t + 1 shares were required, but an attack of order (n -1)/2 + 1 was later described in [START_REF] Coron | Higher-order side channel security and mask refreshing[END_REF]; the security proof in [START_REF] Rivain | Provably secure higher-order masking of AES[END_REF] with n t + 1 shares actually applies only when the ISW multiplication is used in isolation, but not for the full block-cipher.

To prove security with n t+1 shares only for the full block-cipher, a refined security model against probing attacks was recently introduced in [BBD + 15a], called t-SNI security. As shown in [BBD + 15a], this stronger definition of t-SNI security enables to prove that a gadget can be used in a full construction with n t + 1 shares, instead of n 2t + 1 for the weaker definition of t-NI security (corresponding to the original ISW security proof). The authors show that the ISW multiplication gadget does satisfy this stronger t-SNI security definition. They also show that with some additional mask refreshing, the Rivain-Prouff countermeasure for the full AES can be made secure with n t + 1 shares. Due to its power and simplicity, the t-SNI notion appears to be the "right" security definition against probing attacks. Therefore, in this paper, we always prove the security of our algorithms under this stronger t-SNI notion, so that our algorithms can be used within a larger construction (typically a full block-cipher) with n t + 1 shares only.

Our Contribution. Our goal in this paper is to further improve the efficiency of the masking countermeasure. As recalled above, until now the strategy followed by the community has been to reduce the number of calls to the ISW multiplication gadget. In this paper, we follow a complementary approach consisting in reducing the complexity of the ISW multiplication gadget itself. Our core idea is to use common shares between the inputs of multiple ISW multiplication gadgets, up to the first n/2 shares; in that case, a given processing performed in the first ISW gadget can be re-used in subsequent gadgets.

Consider for example the alternative evaluation circuit for x 254 in AES used in [START_REF] Gentry | Homomorphic evaluation of the AES circuit[END_REF], as illustrated in Fig. 1. It still has 4 non-linear multiplications as in the original circuit [START_REF] Rivain | Provably secure higher-order masking of AES[END_REF], but now the two multiplications x 14 ← x 12 • x 2 and x 15 ← x 12 • x 3 can be evaluated in parallel, moreover with a common operand x 12 . Let denote by d ← c • a and e ← c • b those two multiplications with common operand c. In the ISW multiplication gadget, one must compute all cross-products c i • a j and c i • b j for all 1 i, j n. Now if we can ensure that half of the shares of a and b are the same, that is a j = b j for all 1 j n/2, then the products c i • a j and c i • b j for 1 j n/2 are the same and can be computed only once; see Fig. 2 for an illustration. This implies that when processing the second multiplication gadget for e ← c • b, we only have to compute n 2 /2 finite field multiplications instead of n 2 . For two multiplications as above, this saves the equivalent of 0.5 multiplication. To ensure that the two inputs have half of their shares in common, we introduce a new gadget called CommonShares with complexity O(n), taking as input two independent n-sharings of data and outputting two new n-sharings, but with their first n/2 shares in common. Obviously this must be achieved without degrading the security level; we show that this is indeed the case by proving the security of the full SBox evaluation in the previous t-SNI model, with n t + 1 shares. Note that we cannot have more than n/2 shares in common between two variables a and b, since otherwise there would be a straightforward attack with fewer than n probes: namely if a i = b i for all 1 i k, then we can probe the 2(n-k) remaining shares a i and b i for k +1 i n; if k > n/2 this gives strictly less than n shares, whose xor gives the secret variable a ⊕ b. Hence having half of the shares in common is optimal.

More generally, the 16 SBoxes of AES can be processed in parallel, and therefore each of the 4 non-linear multiplications in x 254 can be processed in parallel. As opposed to the previous case those multiplications do not share any operand, but we show that by using a generalization of the CommonShares algorithm between m operands instead of 2, for every multiplication in the original circuit one can still save the equivalent of roughly 1/4 multiplication. This also applies to other block-ciphers as well, since in most block-ciphers the SBoxes are applied in parallel. One can therefore apply the technique from [START_REF] Coron | Fast evaluation of polynomials over binary finite fields and application to side-channel countermeasures[END_REF] based on fast polynomial evaluation, and using our CommonShares algorithm between the inputs of the evaluated polynomials, we again save roughly 1/4 of the number of finite field multiplications. Our results for various block-ciphers are summarized in Table 1, in which we give the equivalent number of non-linear multiplications for a single SBox evaluation, for various block-ciphers; we refer to Section 5 for a detailed description. Finally, we show in the full version of this paper [START_REF] Coron | Faster evaluation of sboxes via common shares[END_REF] how to apply our common shares technique to the Threshold Implementations (TI) approach for securing implementation against side channel attacks, even in the presence of glitches. Practical Implementation. A practical implementation of our common shares technique is described in Section 7, for the n-shared evaluation of x 254 in AES, on ATmega1284P (8-bit AVR microcontroller) and ARM Cortex M0 (32-bit CPU). We obtain that our technique is relatively practical: for a large number of shares, we get roughly a 20% speed improvement compared to the Rivain-Prouff countermeasure (but only roughly 5% compared to the quadratic evaluation technique in [START_REF] Grosso | Efficient masked s-boxes processing -A step forward[END_REF]).

Security Definitions

Given a variable x ∈ F 2 k and an integer n, we say that the vector (x 1 , . . . ,

x n) ∈ (F 2 k) n is an n-sharing of x if x = n i=1 x i .
We recall the security definitions from [BBD + 15a], which we make slightly more explicit. For simplicity we only provide the definitions for a simple gadget taking as input a single variable x (given by n shares x i) and outputting a single variable y (given by n shares y i). We provide the generalization to multiple inputs and outputs in the full version of this paper [START_REF] Coron | Faster evaluation of sboxes via common shares[END_REF]. Given a vector (x i) 1 i n , we denote by x |I := (x i) i∈I the sub-vector of shares x i with i ∈ I.

Definition 1 (t-NI security). Let G be a gadget taking as input (x i) 1 i n and outputting The t-NI security notion corresponds to the original security definition in the ISW probing model; it allows to prove the security of a full construction with n 2t + 1 shares. The stronger t-SNI notion allows to prove the security of a full construction with n t + 1 shares only [BBD + 15a]. The difference is that in the stronger t-SNI notion, the size of the input shares subset I can only depend on the number of internal probes t 1 , and must be independent of the number of output variables |O| that must be simulated (as long as the condition t 1 +|O| t is satisfied). Intuitively, this provides an "isolation" between the output shares and the input shares of a given gadget, and for composed constructions this enables to easily prove that a full construction is t-SNI secure, based on the t-SNI security of its components.

(y i) 1 i n .

The Rivain-Prouff Countermeasure

In this section we recall the Rivain-Prouff countermeasure [START_REF] Rivain | Provably secure higher-order masking of AES[END_REF] for securing AES against high-order attacks. It can be seen as an extension to F 2 k of the original ISW countermeasure [START_REF] Ishai | Private circuits: Securing hardware against probing attacks[END_REF] described in F 2 . The Rivain-Prouff countermeasure is proved t-SNI secure in [BBD + 15a]; therefore it can be used to protect a full block-cipher against t probes with n t + 1 shares, instead of n 2t + 1 shares in the original ISW probing model.

The Rivain-Prouff Multiplication

The Rivain-Prouff countermeasure is based on the SecMult operation below, which is similar to the ISW multiplication gadget but over F 2 k instead of F 2 . The SecMult algorithm enables to securely compute a product c = a • b over F 2 k , from an n-sharing of a and b, and outputs an n-sharing of c. Here we use the linear memory version from [START_REF] Coron | Higher order masking of look-up tables[END_REF], using similar notations as in [BBD + 15a].

Algorithm 1 SecMult

Require: shares ai satisfying n i=1 ai = a, shares bi satisfying n i=1 bi = b Ensure: shares ci satisfying n i=1 ci = a • b 1: for i = 1 to n do 2:

ci ← ai • bi 3: end for 4: for i = 1 to n do 5: It is shown in [BBD + 15a] that the SecMult algorithm is t-SNI secure with n t + 1 shares. For completeness we provide a proof of Lemma 1 in the full version of this paper [START_REF] Coron | Faster evaluation of sboxes via common shares[END_REF]; our proof is essentially the same as in [BBD + 15a]. In the full version of this paper [START_REF] Coron | Faster evaluation of sboxes via common shares[END_REF], we also provide a slightly different, more modular proof in which we separate the computation of the matrix elements v ij = a i • b j from the derivation of the output shares c i .

for j = i + 1 to n do 6: r ← F 2 k referred by ri,j 7: ci ← ci ⊕
Lemma 1 (t-SNI of SecMult). Let (a i) 1 i n and (b i) 1 i n be the input shares of the SecMult operation, and let (c i) 1 i<n be the output shares. For any set of t 1 intermediate variables and any subset |O| t 2 of output shares such that t 1 + t 2 < n, there exist two subsets I and J of indices with |I| t 1 and |J| t 1 , such that those t 1 intermediate variables as well as the output shares c |O can be perfectly simulated from a |I and b |J .

Mask Refreshings

To obtain security against t probes with n t+1 shares instead of n 2t+1, the previous SecMult algorithm is usually not sufficient; one must also use a mask refreshing algorithm. The following RefreshMask operation is used in [BBD + 15a] to get the t-SNI security of a full construction.

The following lemma is proven in [BBD + 15a], showing the t-SNI security of RefreshMask. In the full version of this paper [START_REF] Coron | Faster evaluation of sboxes via common shares[END_REF] we also provide a modular proof, using the same approach as in Lemma 1; namely the above RefreshMask algorithm can be viewed as a SecMult with multiplication by 1, with shares (1, 0, . . . , 0); therefore the same proof technique applies.

Lemma 2 (t-SNI of RefreshMask). Let (a i) 1 i n be the input shares of the RefreshMask operation, and let (c i) 1 i n be the output shares. For any set of t 1 intermediate variables and any subset |O| t 2 of output shares such that t 1 + t 2 < n, there exists a subset I of indices with |I| t 1 , such that the t 1

Algorithm 2 RefreshMask

Input: a1, . . . , an Output: c1, . . . , cn such that n i=1 ci = n i=1 ai 1: For i = 1 to n do ci ← ai 2: for i = 1 to n do 3:

for j = i + 1 to n do 4: r ← {0, 1} k 5: ci ← ci ⊕ r 6: cj ← cj ⊕ r 7:
end for 8: end for 9: return c1, . . . , cn intermediate variables as well as the output shares c |O can be perfectly simulated from a |I .

Application to the Computation of x 254 in F 2 8

To compute y = x 254 over F 2 8 with 4 multiplications, the following sequence of operation is used in [START_REF] Rivain | Provably secure higher-order masking of AES[END_REF], including two RefreshMask operations.

Algorithm 3 SecExp254

Input: shares x1, . . . , xn satisfying x = n i=1 xi Output: shares y1, . . . , yn such that n i=1 yi = x 254 1:

For i = 1 to n do zi ← x 2 i i zi = x 2 2: (zi) 1 i n ← RefreshMask((zi) 1 i n) 3: (yi) 1 i n ← SecMult((zi) 1 i n , (xi) 1 i n) i yi = x 3 4: For i = 1 to n do wi ← y 4 i i wi = x 12 5: (wi) 1 i n ← RefreshMask((wi) 1 i n) 6: (yi) 1 i n ← SecMult((yi) 1 i n , (wi) 1 i n) i yi = x 15 7: For i = 1 to n do yi ← y 16 i i yi = x 240 8: (yi) 1 i n ← SecMult((yi) 1 i n , (wi) 1 i n) i yi = x 252 9: (yi) 1 i n ← SecMult((yi) 1 i n , (zi) 1 i n) i yi = x 254 10: return y1, . . . , yn
Using the two previous lemmas, one can prove the t-SNI security of Sec-Exp254; we refer to [BBD + 15a] for the proof.

Lemma 3 (t-SNI of x 254). Let (x i) 1 i n be the input shares of ExpSec254, and let (y i) 1 i n be the output shares. For any set of t 1 intermediate variables and any subset |O| t 2 of output shares such that t 1 + t 2 < n, there exists a subset I of indices with |I| t 1 , such that those t 1 intermediate variables as well as the output shares y |O can be perfectly simulated from x |I .

As explained in [BBD + 15a], since the SecExp254 operation has the t-SNI property, it can be used to secure a full AES against t probes with n t + 1 shares.

Secure Computation of 2 Parallel Multiplications with

Common Operand, and Application to AES

In this section we show a first efficiency improvement of the Rivain-Prouff countermeasure for AES recalled in the previous section. Namely, we show that when two finite-field multiplications d ← c • a and e ← c • b have the same operand c, we can save n 2 /2 field multiplications in SecMult by making sure that the inputs a and b have half of their shares in common; we then show how to apply this technique to the evaluation of the AES SBox, by using an alternative evaluation circuit for x 254 .

Arithmetic Circuit with Depth 3 for x 254 . The original arithmetic circuit for computing y = x 254 over F 2 8 from [RP10] and recalled in Section 3.3 has 4 multiplicative levels, with a total of 4 non-linear multiplications. Below we use an alternative circuit with only 3 multiplicative levels, still with 4 multiplications, as described in [START_REF] Gentry | Homomorphic evaluation of the AES circuit[END_REF]; see Fig. 1 for an illustration.

• Level 1: compute x 3 = x • x 2 (1 mult) and then x 12 = (x 3) 4 .

• Level 2: compute x 14 = x 12 • x 2 (1 mult) and x 15 = x 12 • x 3 (1 mult), and then x 240 = (x 15) 16 . • Level 3: compute x 254 = x 240 • x 14 (1 mult).

Multiplications with Common Shares. In the arithmetic circuit above, the multiplications x 14 ← x 12 • x 2 and x 15 ← x 12 • x 3 can be computed in parallel; moreover they have one operand x 12 in common. More generally, assume that we must compute two multiplications with a common operand c:

d ← c • a e ← c • b
The SecMult algorithm will compute the cross-products c i • a j and c i • b j for all 1 i, j n. Now assume that half of the shares of a and b are the same, that is a j = b j for all 1 j n/2. In that case the products c i • a j for 1 j n/2 have to be computed only once, and therefore when processing e ← c • b, we only have to compute n 2 /2 multiplications instead of n 2 ; see Fig. 2 for an illustration. For an arithmetic circuit with 4 multiplications as above, this saves the equivalent of 0.5 multiplication.

The CommonShares Algorithm

The CommonShares algorithm below ensures that the output shares a i and b i corresponding to a and b are the same on the first half, that is a i = b i for all 1 i n/2. In the rest of the paper, for simplicity we assume that n is even.

Algorithm 4 CommonShares

Require: shares ai satisfying n i=1 ai = a, shares bi satisfying n i=1 bi = b Ensure: shares a i and b i satisfying n i=1 a i = a and n i=1 b i = b, with a i = b i for all 1 i n/2 1:

for i = 1 to n/2 do 2: ri ← $ F 2 k 3: a i ← ri, a n/2+i ← (a n/2+i ⊕ ri) ⊕ ai a i ⊕ a n/2+i = ai ⊕ a n/2+i 4: b i ← ri, b n/2+i ← (b n/2+i ⊕ ri) ⊕ bi b i ⊕ b n/2+i = bi ⊕ b n/2+i 5: end for 6: return (a i) 1 i n and (b i) 1 i n
It is easy to see that we still get as output an n-sharing of the same variables a and b, since for each 1 i n/2 we have a i ⊕ a n/2+i = a i ⊕ a n/2+i , and similarly for b. As explained previously, we cannot have more than n/2 shares in common between a and b, since otherwise there would be a straightforward attack with fewer than n probes: namely if a i = b i for all 1 i k, then we can probe the 2(n -k) remaining shares a i and b i for k + 1 i n; if k > n/2 this gives strictly less than n shares, whose xor gives the secret variable a ⊕ b. Hence having half of the shares in common is optimal.

The following Lemma shows the security of the CommonShares algorithm; as will be shown later, for this algorithm we only need the weaker t-NI security property (instead of t-SNI).

Lemma 4 (t-NI of CommonShares). Let (a i) 1 i n and (b i) 1 i n be the input shares of the algorithm CommonShares, and let (a i) 1 i n and (b i) 1 i n be the output shares. Proof. The proof intuition is as follows. If for a given i with 1 i n/2 the adversary requests only one of the variables r i , a n/2+i ⊕ r i , b n/2+i ⊕ r i , a n/2+i or b n/2+i , then such variable can be perfectly simulated without knowing any of the input shares a i , b i , a n/2+i and b n/2+i , thanks to the mask r i . On the other hand, if two such variables (or more) are requested, then we can provide a perfect simulation from the 4 previous input shares, whose knowledge is obtained by adding the two indices i and n/2 + i in S . Therefore we never add more than one index in S per probe (or per output index in I or J), which implies that the size of the subset S of input shares is upper-bounded by |I| + |J| + t 1 , as required. 3More precisely, we describe hereafter the construction of the set S ⊂ [1, n] of input shares, initially empty. For every probed input variable a i and b i (for any i), we add i to S . For all 1 i n/2, we let t i be the number of probed variables among a n/2+i ⊕ r i and b n/2+i ⊕ r i . We let:

λ i := t i + |{i, n/2 + i} ∩ I| + |{i, n/2 + i} ∩ J| ,
We then add {i, n/2 + i} to S if λ i 2. This terminates the construction of S . By construction of S , we must have |S | |I| + |J| + t as required.

We now show that the output shares a |I and b |J and the t 1 intermediate variables of Algorithm CommonShares can be perfectly simulated from a |S and b |S . This is clear for the probed input variables a i and b i . For all 1 i n/2, we distinguish two cases. If λ i 2, then {i, n/2 + i} ∈ S , so we can let r i ← F 2 k as in the real algorithm and simulate all output and intermediate variables from the knowledge of a i , a n/2+i , b i and b n/2+i . If λ i = 1, then if t i = 0, then only a single output variable among a i , b i , a n/2+i and b n/2+i must be simulated. Since each of those variables is masked by r i , we can simulate this single output variable by generating a random value in F 2 k . Similarly, if t i = 1, then only one of the two intermediate variables among a n/2+i ⊕ r i and b n/2+i ⊕ r i is probed (while no output variable must be simulated), and therefore we can also simulate such variable by generating a random value in F 2 k . This terminates the proof of Lemma 4.

The CommonMult Algorithm

To perform the two multiplications with the same operand d ← c•a and e ← c•b, instead of doing two independent SecMult, we define the following CommonMult algorithm below.

Algorithm 5 CommonMult

Input: shares satisfying c = n i=1 ci, a = n i=1 ai and b = n i=1 bi. Output: di such that n i=1 di = c • a, and ei such that

n i=1 ei = c • b 1: (a i) 1 i n , (b i) 1 i n ← CommonShares((ai) 1 i n , (bi) 1 i n) 2: (di) 1 i n ← SecMult((ci) 1 i n , (a i) 1 i n) 3: (ei) 1 i n ← SecMult((ci) 1 i n , (b i) 1 i n) 4: return (di) 1 i n and (ei) 1 i n .
The algorithm first calls the previous CommonShares subroutine, to ensure that half of the shares of a and b are the same. It then applies the previous SecMult algorithm twice to securely compute the two multiplications. Then the multiplications c i • a j for 1 j n/2 performed in the first SecMult can be reused in the second SecMult, so this saves n 2 /2 multiplications. More precisely, for the SecMult computation performed at Line 3, we don't have to compute again the products c i • b j for 1 j n/2, since those products have already been computed at Line 2 with c i • a j , since a j = b j for all 1 j n/2. However reusing at Line 3 the products already computed at Line 2 requires to store O(n 2) values. In the full version of this paper [START_REF] Coron | Faster evaluation of sboxes via common shares[END_REF] we describe a different version of the CommonMult algorithm above, where the matrix elements c i • a j are computed on the fly and then used in both SecMult, with memory complexity O(n) instead of O(n 2).

The following Lemma shows that the CommonMult algorithm is t-SNI secure in the ISW model, with n t + 1 shares. We provide the proof in the full version of this paper [START_REF] Coron | Faster evaluation of sboxes via common shares[END_REF].

Lemma 5 (t-SNI of CommonMult). Let (a i) 1 i n , (b i) 1 i n and (c i) 1 i n be the input shares of the CommonMult operation, and let (d i) 1 i n and (e i) 1 i n be the output shares.

Application to AES SBoxes

We are now ready to describe the full computation of y = x 254 based on the CommonShares algorithm; the algorithm SecExp254' is described below; it is a variant of Algorithm 3.

Algorithm 6 SecExp254'

Input: shares x1, . . . , xn satisfying x = n i=1 xi Output: shares y1, . . . , yn such that n i=1 yi = x 254 1:

For i = 1 to n do zi ← x 2 i i zi = x 2 2: (xi) 1 i n ← RefreshMask((xi) 1 i n) 3: (yi) 1 i n ← SecMult((zi) 1 i n , (xi) 1 i n) i yi = x 3 4: For i = 1 to n do wi ← y 4 i i wi = x 12 5: (wi) 1 i n ← RefreshMask((wi) 1 i n) 6: (zi) 1 i n , (yi) 1 i n ← CommonMult((wi) 1 i n , (zi) 1 i n , (yi) 1 i n) i zi = x 14 , i yi = x 15 7: For i = 1 to n do yi ← y 16 i i yi = x 240 8: (yi) 1 i n ← SecMult((yi) 1 i n , (zi) 1 i n) i yi = x 254 9: return y1, . . . , yn
The following Lemma proves the t-SNI security of our new algorithm; therefore our new algorithm achieves exactly the same security level as Algorithm 3. That is, it can be used in the computation of a full block-cipher, with n t + 1 shares against t probes. We provide the proof in the full version of this paper [START_REF] Coron | Faster evaluation of sboxes via common shares[END_REF].

Lemma 6 (t-SNI of x 254). Let (x i) 1 i n be the input shares of the x 254 operation, and let (y i) 1 i n be the output shares. For any set of t 1 intermediate variables and any subset |O| t 2 of output shares such that t 1 + t 2 < n, there exists a subset I of indices with |I| t 1 , such that those t 1 intermediate variables as well as the output shares y |O can be perfectly simulated from x |I .

Finally, we summarize in Table 2 the complexities of the above algorithms.

Parallel Multiplications with Common Shares

In the previous section, we have shown that by using a different arithmetic circuit for x 254 , two multiplications in F 2 8 could be processed in parallel, moreover with a common operand, and then by using half common shares we could save the equivalent of 1/2 multiplication out of 4 in the evaluation of an AES SBox.

In the full version of this paper [START_REF] Coron | Faster evaluation of sboxes via common shares[END_REF], we consider the case of parallel multiplications that do not necessarily share an operand. Previously we have focused on a single evaluation of an AES SBox, but in AES the 16 SBoxes can actually be processed in parallel, and therefore each of the 4 multiplications in x 254 can be processed in parallel. As opposed to the previous case those multiplications do not share any operand, but we show that by using a generalization of the CommonShares algorithm between m operands instead of 2, for every multiplication one can still save the equivalent of roughly 1/4 multiplication.

Parallel Computation of Quadratic Functions

In [START_REF] Carlet | Algebraic decomposition for probing security[END_REF], the authors propose a generalization of an idea originally published in [START_REF] Coron | Higher-order side channel security and mask refreshing[END_REF] to securely process any function h of algebraic degree 4 2, with application to the secure evaluation of SBoxes. The algorithm is based on the following equation:

h n i=1 x i = 1 i<j n h(x i + x j + s ij) + h(x i + s ij) + h(x j + s ij) + h(s ij) + n i=1 h(x i) + ((n + 1) mod 2) • h(0) (2)
which holds for any s ij ∈ F 2 k . From the above equation, any function h of algebraic degree 2 can be securely processed with n-th order security.

In the full version of this paper [START_REF] Coron | Faster evaluation of sboxes via common shares[END_REF], we recall the algorithm from [START_REF] Carlet | Algebraic decomposition for probing security[END_REF] for the secure evaluation of the quadratic function h(x), and its application to AES. We then show how to use our common shares technique for we provide for m parallel evaluations of h(x).

Implementation

We have done a practical implementation of our algorithms for the AES SBox. More precisely we have implemented the n-shared evaluation of x 254 in four different ways:

• RP10: using the Rivain-Prouff algorithm, as described in Alg. 3; • CM: using our common shares technique, as described in Alg. 6; • GPS14: using quadratic functions, as described in the full version of this paper [CGPZ16]; • GPS14CS: using quadratic functions and common shares, as explained in the full version of this paper [START_REF] Coron | Faster evaluation of sboxes via common shares[END_REF]; For portability, the code is written in C, except the field multiplication in F 2 8 which is written in assembly for ATmega1284P (8-bit AVR microcontroller) and for ARM Cortex M0 (32-bit CPU). Performance is evaluated using simulators (AVR Studio for ATmega, Keil uVision for ARM). We assume that the random generation of one byte takes 1 cycle. This assumption is reasonable: there are at least several dozens of cycles between two 1-byte random number requests; on chips embedding hardware RNG, this is often enough to get a random value by a single memory access, without waiting. We give the average number of cycles to compute one AES SBox among 16 SBoxes in Table 3.

8
Those implementation results show that our common shares technique is relatively practical: for a large number of shares, we get roughly a 20% speed improvement compared to the Rivain-Prouff countermeasure (but only roughly 5% compared to the quadratic evaluation technique in [START_REF] Grosso | Efficient masked s-boxes processing -A step forward[END_REF]).

Fig. 1 .

 1 Fig. 1. a) Sequential computation of x 254 as used in [RP10, BBD + 15a]. b) Alternative computation of x 254 ; the multiplications x 14 = x 12 • x 2 and x 15 = x 12 • x 3 can be computed in parallel [GHS12].

Fig. 2 .

 2 Fig.2. When half of the shares in a and b are the same, the multiplications corresponding to the left-hand blocks are the same. This saves the equivalent of 0.5 multiplications out of 2.

 For any set of t 1 intermediate variables and any subsets of indices I, J ⊂ [1, n], there exists a subset S ⊂ [1, n] with |S | |I| + |J| + t 1 , such that those t 1 variables as well as the output shares a |I and b |J can be perfectly simulated from a |S and b |S .

 The Rivain-Prouff countermeasure was later extended by Carlet et al. to any look-up table [CGP + 12]. Namely any given k-bit SBox can be represented

	by a polynomial

Table 1 .

 1 Equivalent

	SBox

number of non-linear multiplications for a single SBox evaluation, for various block-ciphers.

 The gadget G is said t-NI secure if for any set of t 1 intermediate variables and any subset O of output indices, there exists a subset I of input indices with |I| t 1 + |O|, such that the t 1 intermediate variables and the output variables y |O can be perfectly simulated from x |I . Definition 2 (t-SNI security). Let G be a gadget taking as input (x i) 1 i n and outputting (y i) 1 i n . The gadget G is said t-SNI secure if for any set of t 1 intermediate variables and any subset O of output indices such that t 1 + |O| t, there exists a subset I of input indices with |I| t 1 , such that the t 1 intermediate variables and the output variables y |O can be perfectly simulated from x |I .

 For any set of t 1 intermediate variables and any subsets |O 1 | t 2 and |O 2 | t 2 of output shares such that t 1 + t 2 < n, there exist two subsets I and J of indices such that |I| t 1 and |J| t 1 , and those t 1 intermediate variables as well as the output shares d |O 1 and e |O 2 can be perfectly simulated from a |J , b |J and c |I .

Table 2 .

 2 Table 2 shows that our new algorithm for x 254 saves n 2 /2 multiplications, with the same security level as in the original algorithm. Complexity of CommonMult and SecExp254'; for simplicity we omit the O(n) terms.

		# add # mult # rand
	SecMult (Alg. 1)	2n 2	n 2	n 2 /2
	RefreshMask (Alg. 2)	n 2	-	n 2 /2
	SecMult × 2	4n 2	2n 2	n 2
	CommonMult (Alg. 5)	4n 2	3n 2 /2	n 2
	SecExp254 (Alg. 3)	10n 2	4n 2	3n 2
	SecExp254' (Alg. 6)	10n 2	7n 2 /2	3n 2

Table 3 .

 3 GPS14ATmega 268.10 3 209.10 3 152.10 3 147.10 3 0.9, 0.81, 0.78 1.1, 1, 0.97 ARM 303.10 3 251.10 3 215.10 3 200.10 3 0.89, 0.85, 0.83 0.95, 0.93, 0.93 Performances comparison of the RP10, CM, GPS14 and GPS14CS algorithms, on the ATmega and ARM platforms.

			shares		16 shares
		RP10 CM GPS14 GPS14CS RP10 CM GPS14 GPS14CS
	ATmega 20360 18244 11076	12447	70966 57644 39554	40086
	ARM	20333 18156 13796	13156	77264 65556 54133	50560
			32 shares		Ratio for 8,16 and 32 shares
		RP10	CM GPS14 GPS14CS	CM/RP10 GPS14CS/

Part of this work has been done at Safran Identity and Security, and while the author was at ANSSI, France.

A function f is F2-linear if it satisfies f (x ⊕ y) = f (x) ⊕ f (y) for any pair (x, y) of elements in its domain. This property must not be confused with F2m -linearity of a function, where m divides n and is larger than 1, which is defined such that f (ax ⊕ by) = af (x) ⊕ bf (y), for every a, b ∈ F2m . An F2m -linear function is F2-linear but the converse is false in general.

A multiplication over a field of characteristic 2 is F2-linear if it corresponds to a Frobenius automorphism, i.e. to a series of squarings.

Note that the proof would not work without the masks ri; namely with ri = 0 we would need to know both ai and a n/2+i to simulate a n/2+i ; hence with t probes we would need at least n 2t + 1 shares, which would make CommonShares useless.

The algebraic degree of a function h is the integer value max a i =0 (HW(i)) where the ai's are the coefficients of the polynomial representation of h and where HW(i) denotes the Hamming weight of i.

Acknowledgments. We wish to thank Sonia Belaïd who applied the EasyCrypt verification tool [BBD + 15b] on our AES SBox algorithm with common shares, at order n = 6.