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NONPARAMETRIC MODEL CALIBRATION FOR DERIVATIVES

FRÉDÉRIC ABERGEL, RÉMY TACHET DES COMBES, AND RIADH ZAATOUR

Abstract. Consistently fitting vanilla option surfaces is an important issue in
derivative modelling. In this paper, we consider three different models: local
and stochastic volatility, local correlation, hybrid local volatility with stochastic
rates, and address their exact, nonparametric calibration. This calibration process
requires solving a nonlinear partial integro-differential equation. A modified
alternating direction implicit algorithm is used, and its theoretical and numerical
analysis is performed.

1. Introduction

One of the most important challenge for real-life applications of a model to
derivatives trading is the issue of calibration. Similar to common situations in many
areas of physics and engineering, once a model has been suggested, its parameters
have to be estimated using external data. In the case of derivative modelling, those
data are the liquid (tradable) options, generally called vanilla products.
It is well-known since the pioneering work of Breeden and Litzenberger (1978)
and its celebrated extension by Dupire (1993) that the knowledge of market data
such as the prices of vanilla options across all strikes and maturities is equivalent
to the knowledge of the risk-neutral marginals of the underlying stock distribution.
Here, we are interested in applications of this result to three different cases.
The first one is quite classic, and is the starting point of our work: local and stochas-
tic volatility models. Such models are very useful in practice, since they offer both
the flexibility and realistic dynamics of stochastic volatility, and the exact calibra-
tion properties of local volatility. The problem of calibrating local and stochastic
volatility models has been dealt with for a while now, for instance by Lipton (2002).
However, practitioners seem to agree that the stability of its resolution becomes un-
certain when the volatility’s volatility is too large. We shall see that indeed some
kind of instability appears, and offer explanations to the phenomenon.

F. Abergel, R. Tachet des Combes, R. Zaatour, Chaire de Finance Quantitative, Laboratoire MICS,
CentraleSupélec, 92290 Châtenay-Malabry, France.
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The second case we focus on is the correlation between assets. Empirical measures
give a certain set of results. However, when modelling a basket on multiple under-
lyings, a problem occurs. If one uses local volatility models for each underlying
and correlates their brownian motions using the empirical correlation, the basket
obtained will not reproduce the vanillas quoted on the market. This raises signif-
icant issues when hedging products on multiple underlyings. One of the solution
for this problem is the known ’local correlation’ approach: the correlation matrix
for the n underlyings is deformed using a parameter, function of the time and the
basket level. Here, we use that approach to obtain a calibration equation for the
basket, relatively similar to the one appearing in the local and stochastic volatility
model, and then numerically solve said equation in a two-underlyings framework.
The last topic we shall be interested in are interest rates, we study a hybrid model:
local volatility with stochastic rates. Using a partial differential equation approach
similar to the local correlation and the local and stochastic volatility, we write a
calibration equation for the vanillas of this hybrid model, solve it and verify the
accuracy of the fit.
The general form of our calibration equations is nonlinear partial and integro-
differential. For their resolution, we chose to adapt the alternating direction im-
plicit scheme (very efficient to solve classic linear second order parabolic equa-
tions, Richtmyer and Morton (1967)). Being in a nonlinear non-local framework,
many questions arise. Is it relevant to use ADI algorithms to solve the equations
stemming from our calibration problems? How should we deal with the nonlocal
term? Is the finite difference scheme we chose consistent, and what is the order of
the truncation error? Can we detect an instability in certain cases? Is it possible to
explain it?
The aim of this work is to address and at least partially answer these questions. The
paper is organized as follows. In Section 2, we quickly present the case of the local
and stochastic volatility model. Section 3 is devoted to the local correlation, its
calibration equation and the fit we obtain in the case of a basket on two underlyings.
In Section 4, we do the same thing in the stochastic rates frame. Finally, in Section
5 and 6, we adress the questions raised previously concerning the ADI algorithm
used for the resolution, Section 7 is a brief conclusion.

2. Local and Stochastic Volatility models
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2.1. Partial Integro-Differential Equation for the calibration of LSV models.
The diffusion model is assumed to be the following

dS t

S t
= r(t)dt + a(t, S t)b(yt)dW1

t (1)

dyt = µ(t, yt)dt + ξ(t, yt)dW2
t (2)

(S t, t ≥ 0) is the stock price process and (yt, t ≥ 0) the stochastic component of
the volatility. The function b simply transforms that factor into a proper volatil-
ity. a is the local volatility part of the model, exactly as in Dupire’s formula, its
value shall be specified depending on the aimed vanillas. ξ is the volatility of the
volatility factor (commonly called ’vovol’) and µ is a drift term. W1 and W2 are
one-dimensional standard brownian motions with correlation ρ.
Let us now consider a surface of vanilla prices C(T,K) and the corresponding Local
Volatility σD. Under suitable regularity and ellipticity assumptions, the following
proposition can be proved

Proposition 2.1. The diffusion model defined by (1-2) has a density p(t, S , y) with
respect to Lebesgue’s measure. Moreover, if the model fits the surface of vanillas
C(T,K) then necessarily

a2(t, S ) = σ2
D(t, S )

∫
R

p(t, S , y)dy∫
R

b2(y)p(t, S , y)dy
(3)

Proof. The exact assumptions and the existence proof can be found in Tachet
(2011). Here, the main concern is the calibration result. Let us assume that the
model fits exactly the surface C. Letting (S 0, y0) denote the initial state of the sys-
tem, the joint density p(t, S , y) of the couple (S t, yt) verifies Kolmogorov forward
equation

∂p
∂t
−

∂2

∂S 2 (
1
2

a2b2S 2 p) −
∂2

∂S ∂y
(ρabξS p) −

∂2

∂y2 (
1
2
ξ2 p)) +

∂

∂S
(rS p) +

∂

∂y
(µp) = 0

p(0, S , y) = δS 0,y0

Applying Fubini, let q(t, S ) =
∫
R

p(t, S , y)dy be the first marginal density of our
couple. It is possible to integrate the previous equation and obtain

∂q
∂t
−

∂2

∂S 2 (
1
2

a2S 2(
∫
R

b2(y)p(t, S , y)dy)) +
∂

∂S
(rS q) = 0

q(0, S ) = δS 0
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In the case of a local volatility model (b = 1 and a = σD), the density qD of the
Spot process solves the equation

∂qD

∂t
−

∂2

∂S 2 (
1
2
σ2

DS 2qD) +
∂

∂S
(rS qD) = 0

qD(0, S ) = δS 0

The vanillas of the LSV model being perfectly fitted, we have q = qD. Identifying
the terms in the two last formulas gives

a2(t, S ) = σ2
D(t, S )

q∫
R

b2 pdy
= σ2

D(t, S )

∫
R

p(t, S , y)dy∫
R

b2(y)p(t, S , y)dy

�

Using this proposition, and reintroducing the value of a in Kolmogorov forward
equation, the joint density p(t, S , y) is then solution of the nonlinear partial integro-
differential equation

∂p
∂t
−

∂2

∂S 2 (
1
2
σ2

Db2S 2

∫
R

pdy∫
R

b2 pdy
p) −

∂2

∂S ∂y
(ρσDbξS (

∫
R

pdy∫
R

b2 pdy
)

1
2 p) (4)

−
∂2

∂y2 (
1
2
ξ2 p)) +

∂

∂S
(rS p) +

∂

∂y
(µp) = 0

p(0, S , y) = δS 0,y0(5)

There is thus equivalence between the existence of a model (1-2) that calibrates the
vanillas C and the existence of a solution p to the pide (4).

Remark 2.1. The quotient
∫
R

b2 pdy∫
R

pdy
is nothing but the conditional expectation of the

volatility squared, knowing the spot process. This result is not original in itself
(by applying the theorem from Gyongy (1986) for instance), the partial differential
equation method however is unusual, and will be used on the other models as well.

The theoretical study of equation (4)-(5) can be found in Abergel and Tachet
(2010). Existence of solutions is proved under strong assumptions (especially on
b, which must be sufficiently close to a constant). The general resolution remains
an open problem.

2.2. Numerical results. It seems to be well-known among practitioners, that in-
stabilities occur in their calibration when the volatility’s volatility (in the notations,
function ξ) is too large. This seems to confirm the theoretical limitations met try-
ing to prove the global existence of a solution: when the function b oscillates too
much (a change of scale in the factor yt clearly shows the equivalence between a
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b that moves a lot and a large ξ), the resolution of the equation is not guaranteed
anymore. To assess these statements, we considered our problem from a practical
viewpoint.
In this section, the calibration that stems from solving the partial differential equa-
tion (4) is studied, for two stochastic volatility models: a lognormal one and a
’Cox-Ingersoll-Ross’ process. The details of the algorithm used for the resolution
and a study of the instabilities will be treated later, in sections 5 and 6.

2.2.1. Lognormal volatility. Starting with a simple mean reverting model for the
volatility factor, the function b is chosen as an exponential

dS t

S t
= r(t)dt + a(t, S t)exp(yt)dW1

t (6)

dyt = κ (δ − yt) dt + γ dW2
t (7)

with

a2(t, S ) = σ2
D(t, S )

∫
R

p(t, S , y)dy∫
R

exp(2y)p(t, S , y)dy

Equation (4) is solved using the functions we just chose and the local volatility σD

associated to the EuroSTOXX 50 implied volatility surface of 2009/04/02. Once
function p, density of the couple (S t, yt), is found, we compute the vanilla prices for
different strikes and maturities using this density. To have a point of comparison,
the same prices are also computed with the local volatility σD, both of them are
then compared to the targeted prices (column TP).

Strike TP LV LSV
0.5 54.54 54.46 54.43
0.6 51.35 51.34 51.20
0.7 48.12 48.14 48.02
0.8 44.86 44.93 44.82
0.9 41.57 41.66 41.56
1.0 38.26 38.32 38.15
1.1 35.41 35.46 35.34
1.2 33.25 33.27 33.15
1.3 31.68 31.67 31.57
1.4 30.53 30.48 30.46
1.5 29.80 29.72 29.76

Strike TP LV LSV
0.5 49.82 49.79 49.71
0.6 47.23 47.22 47.15
0.7 44.61 44.60 44.56
0.8 41.97 41.98 41.92
0.9 39.30 39.32 39.29
1.0 36.63 36.61 36.59
1.1 34.31 34.30 34.29
1.2 32.35 32.38 32.36
1.3 30.75 30.77 30.75
1.4 29.43 29.44 29.44
1.5 28.41 28.42 28.40
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Let us then plot the error between the original vanillas and the ones obtained with
the model. The calibration is quite efficient, the errors are equivalent to the ones of
the local volatility model.

2.2.2. Cox-Ingersoll-Ross process. We also focus on the calibration of a model
inspired from the interest rates framework: the volatility is assumed to follow a
CIR process.

dS t

S t
= r(t)dt + a(t, S t)ytdW1

t (8)

dyt = κ (α − yt) dt + γ
√

yt dW2
t (9)

Detailled properties of this process are described by Brigo and Alfonsi (2005). In
particular, as long as 2κα > γ2, yt is strictly positive a.e. Once again, equation (4)
is solved with this stochastic volatility.
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3. Application to the ’Local Correlation’ model

In this chapter, we are interested in the calibration of a market with n stocks
and a basket on those stocks. The purpose is to define a diffusion model for those
underlyings that is able to reproduce their implied volatility surface as well as the
one of the basket.
The notations are the following, let (S i

t)1≤i≤n denote the n stocks involved in our
problem. The basket’s value is given by

Bt =

n∑
i=1

wiS i
t (10)

where the set (wi)1≤i≤n stands for the weights of the different underlyings. They
are assumed to be constant in the rest of our work. Let us also fix n + 1 surfaces of
vanillas (Ci(T,K))1≤i≤n and CB(T,K).

3.1. Inconsistencies between stock and basket options. The naive approach to
solve this problem is simply to consider n local volatility models

dS i
t

S i
t

= r(t)dt + σi(t, S i
t)dW i

t (11)

The functions σi are easily determined to fit the surfaces (Ci(T,K))1≤i≤n with this
diffusion. The correlation matrix ρ = (ρij)1≤i,j≤n associated to the standard brow-
nian motions W i

t of each underlying can be estimated with historical data. The
model is now entirely defined. By equation (10) of Bt, the vanilla prices for the
basket are completely determined and are equal to E[(

∑
wiS i

T − K)+]. However,
there is no particular reason for the surface computed in this framework to be equal
to CB(T,K). In fact, the skew of the basket is more pronounced on the market than
in a model with constant correlations between the underlyings, Qu (2010).

3.2. ’Local Correlation’ model. In the manner of B. Dupire who decided to let
the volatility depend on the level of the spot process, a degree of freedom is added
to our model by distorting the matrix of correlation with a function of Bt. This
method appears for instance in Tachet (2011); Jourdain and Sbai (2012) where the
basket level induces some feedback on the values of the different underlyings. In
our context, the new correlation matrix is taken as a linear combination of ρ and
the constant matrix with only 1 as coefficients. This matrix ρ̃ is equal to

ρ̃i j = λ + (1 − λ)ρi j = ρi j + λ(1 − ρi j) (12)
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We shall see while writing the calibration equation that λ has to be chosen as a
function of the time and of Bt. The matrix ρ̃i j can be seen as an analogous of
Dupire’s local volatility, a ’Local Correlation’ so to speak.
Assuming that ρ is a proper correlation matrix (definite, positive...), and that the
coefficients of the diffusion have a sufficient regularity, our diffusion model then
possesses a density in the more general case of a matrix ρ function of the couple
(t, B). It is also possible to write a condition for the vanillas of the model to be
fitted

Proposition 3.1. The diffusion model defined by (11) with a correlation function of
the couple (t, B), has a density p(t, S 1, .., S n) with respect to Lebesgue’s measure.
Furthermore, this model calibrates the surface CB(T,K) of Bt’s vanillas (repre-
sented by its local volatility surface σB) if and only if

σ2
B(t, B)B2

∫
p̃(t, B, S 2, .., S n)dS 2..dS n =

∑
1≤i, j≤n

wiw jρi j(t, B)
∫

(β̃iβ̃ j p̃)(t, B, S 2, .., S n)dS 2..dS n (13)

where

p̃(t, B, S 2, .., S n) = p(t, S 1, S 2, .., S n) β̃i(t, B, S 2, .., S n) = S iσi(t, S i)

with

S 1 =
1

w1
(B −

n∑
i=2

wiS i) (14)

Proof. The existence of the transition density p(t, S 1, .., S n) stems from the as-
sumptions made on the regularity of the coefficients, and on ρ, for more details see
Tachet (2011). We can now write the calibration problem for the vanillas of the
basket Bt. The density just defined satisfies Kolmogorov forward equation

∂p
∂t
−

1
2

∑
1≤i, j≤n

∂2

∂S i∂S j (ρi jS iσiS jσ j p) +
∑

1≤i≤n

∂

∂S i (rS i p) + rp = 0

To ease the problem, it is useful to change the coordinates (S 1, ..., S n) into (B, S 2, ..., S n)
with S 1 defined by (14). After computations, the equation becomes

∂ p̃
∂t
−

1
2

∑
1≤i, j≤n

wiw j
∂2

∂B2 (ρi jβ̃iβ̃ j p̃) −
1
2

∑
2≤i, j≤n

(
∂2

∂S i∂S j + wi
∂2

∂B∂S j + w j
∂2

∂S i∂B
)(ρi jβ̃iβ̃ j p̃)

−
∑

2≤i≤n

w1
∂2

∂B∂S j (ρ1iβ̃1β̃i p̃) +
∂

∂B
(rBp̃) +

∑
2≤i≤n

∂

∂S i (rS i p̃) + r p̃ = 0
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where p̃(B, S 2, ..., S n) and β̃i(B, S 2, ..., S n) are defined above. Integrating the equa-
tion against the variables (S 2, ..., S n), and writing q = 1

w1

∫
p̃dS 2..dS n, the density

of the marginal law of B satisfies

∂q
∂t
−

1
2

∑
1≤i, j≤n

wiw j
∂2

∂B2 (ρi j

∫
β̃iβ̃ j p̃dS 2..dS n) +

∂

∂B
(rBq) + rq = 0

Comparing this equation to Dupire’s equation for the local volatility σB

∂q
∂t
−

1
2
∂2

∂B2 (σ2
DB2q) +

∂

∂B
(rBq) + rq = 0

if our model reproduces the vanillas σD, then the following equality must be veri-
fied

σ2
DB2
∫

p̃dS 2..dS n =
∑

1≤i, j≤n

wiw jρi j

∫
β̃iβ̃ j p̃dS 2..dS n

Reciprocally, the condition we just wrote is clearly sufficient for the options to be
calibrated �

Remark 3.1. Let us note that this condition is written as an equality between two
functions of the time and of B. The other variables are no longer represented.

Assuming that condition (13) is not verified, the model defined by (11) does not fit
the vanillas of the basket Bt. It has to be enriched to solve the calibration problem.
Our choice is to distort the correlation matrix. The new matrix ρ̃ is described by
(12). Hence, let Θ denote the matrix Θi j = 1 for all 1 ≤ i, j ≤ n. We also notice
that, the trace of ρ being equal to n, its smallest eigenvalue Kρ is smaller than 1.

Lemma 3.1. The matrix ρ̃ = (1 − λ)ρ + λΘ is also a correlation matrix as long as
λ is in ]r, 1[ with

r = −min(max
i, j

1 + ρi j

1 − ρi j
,

Kρ

n − Kρ
) < 0 (15)

Proof. Clearly, for all (ξi, ξ j) ∈ R2∑
1≤i, j≤n

ξi((1 − λ)ρi j + λ)ξ j ≥ Kρ(1 − λ)|ξ|2 + λ(
∑

1≤i≤n

ξi)2

If λ is positive, since Kρ(1 − λ) is stricty positive, the matrix remains definite posi-
tive. Now, if λ < 0, Cauchy-Schwarz gives∑

1≤i, j≤n

ξi((1 − λ)ρi j + λ)ξ j ≥ (Kρ(1 − λ) + λn)|ξ|2
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Since Kρ ≤ 1, λ > − Kρ

n−Kρ
is enough for Kρ(1 − λ) + λn to be stricly positive.

The diagonal coefficients of ρ̃ are still 1. As for the other terms, thanks to the first
term in relation (15), they still belong to the interval ] − 1, 1[. �

We introduce the new correlation matrix in condition (13), this gives

λ( p̃) =

σ2
DB2
∫

p̃dS 2..dS n −
∑

1≤i, j≤n

wiw jρi j

∫
β̃iβ̃ j p̃dS 2..dS n

∑
1≤i, j≤n

wiw j(1 − ρi j)
∫

β̃iβ̃ j p̃dS 2..dS n
(16)

λ( p̃) is a function of B and t. It is now possible to use this value to write a pide on
the density p̃. Any solution of the following equation is a density that calibrates
the vanillas of the basket

∂ p̃
∂t

+ L1 p̃ + Lλ( p̃)
2 ( p̃) = 0 (17)

where L1 is linear and verifies

L1 p̃ = −
1
2

∑
1≤i, j≤n

wiw jρi j
∂2

∂B2 (β̃iβ̃ j p̃) −
1
2

∑
2≤i, j≤n

ρi j(
∂2

∂S i∂S j + wi
∂2

∂B∂S j + w j
∂2

∂S i∂B
)(β̃iβ̃ j p̃)

−
∑

2≤i≤n

w1ρ1i
∂2

∂B∂S j (β̃1β̃i p̃) +
∂

∂B
(rBp̃) +

∑
2≤i≤n

∂

∂S i (rS i p̃) + r p̃

and Lλ( p̃)
2 is the nonlinear part of the equation

Lλ( p̃)
2 ( p̃) = −

1
2

∑
1≤i, j≤n

wiw j(1 − ρi j)
∂2

∂B2 (λ( p̃)β̃iβ̃ j p̃) −
1
2

∑
2≤i, j≤n

(1 − ρi j)(
∂2

∂S i∂S j + wi
∂2

∂B∂S j

+w j
∂2

∂S i∂B
)(λ( p̃)β̃iβ̃ j p̃) −

∑
2≤i≤n

w1(1 − ρ1i)
∂2

∂B∂S j (λ( p̃)β̃1β̃i p̃)

Remark 3.2. The operator L1 + L2 stems from a change of coordinates on a uni-
formly elliptic operator. It is also elliptic, uniformly on any domain where the β̃i

are bounded away from 0 by a strictly positive constant.

Furthermore, the initial condition is

p̃(0, B, S 2, ..., S n) = δ(
∑

wiS i
0, S

2
0, ..., S

n
0)
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where S i
0 is the market value at instant 0 of the i-th stock. Applying this initial

condition to (16), the initial value of λ is equal to

λ( p̃)(0, B) =

σ2
D(0, B)B2 −

∑
1≤i, j≤n

wiw jρi jS i
0σi(0, S i

0)S j
0σ j(0, S

j
0)∑

1≤i, j≤n

wiw j(1 − ρi j)S i
0σi(0, S i

0)S j
0σ j(0, S

j
0)

(18)

For a theoretical study of the calibration equation, we refer the reader to Tachet
(2011).

3.3. Resolution of the equation for the calibration of a basket. This subsec-
tion focuses on the results of the calibration for a two-underlyings basket. Let us
consider two assets, both of them are assumed to generate the following implied
volatility surface

KT 0,088 0,167 0,25 0,50 0,75 1,0 1,1
80% 48,0% 47,9% 46,5% 45,0% 43,8% 43,0% 43,0%
90% 45,0% 44,9% 44,1% 43,0% 42,0% 41,4% 41,4%

100% 43,0% 42,9% 42,2% 41,5% 40,8% 40,4% 40,4%
110% 41,5% 41,4% 40,8% 40,3% 39,9% 39,6% 39,6%
120% 41,0% 40,9% 40,6% 40,2% 39,7% 39,4% 39,4%

Using a Monte-Carlo simulation and the local volatilities stemming from those
surfaces, the theoretical prices for the basket Bt are computed, with weights w1 =

w2 = 0.5 and a correlation ρ12 = −0.5

KT 0,088 0,167 0,25 0,50 0,75 1,0 1,1
80% 22,90% 22,54% 21,80% 20,72% 20,00% 19,61% 19,54%
90% 21,52% 21,21% 20,73% 19,78% 19,34% 19,03% 19,04%

100% 20,01% 19,94% 19,83% 19,15% 18,91% 18,68% 18,71%
110% 18,73% 18,43% 18,77% 18,58% 18,47% 18,26% 18,31%
120% 17,91% 17,67% 18,04% 18,11% 18,15% 18,04% 18,13%

Distorting this theoretical surface by a factor of 0.9, and thus making the prices of
the basket inconsistent with the prices of the underlyings, the calibration algorithm
is applied. Solving the partial integro-differential equation (17) gives the following
vanillas (quoted in implied volatility)
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KT 0,25 0,50 0,75 1,0
Theor. LC Theor. LC Theor. LC Theor. LC

80% 19,62% 19,77% 18,65% 19,03% 18,00% 18,55% 17,65% 18,14%
90% 18,66% 18,83% 17,80% 18,21% 17,40% 17,91% 17,13% 17,70%
100% 17,85% 17,66% 17,24% 17,18% 17,02% 17,08% 16,81% 16,99%
110% 16,89% 16,66% 16,72% 16,54% 16,63% 16,34% 16,44% 16,35%
120% 16,23% 16,02% 16,29% 16,24% 16,34% 16,11% 16,24% 16,26%

Here are some results for other tests. We calibrate a model with the following
parameters ρ12 = 0, w1 = 0.3 and w2 = 0.7, the targeted surface is the theoretical
one distorted with two factors: first 0.95 and second 1.05.

KT 0,25 0,50 0,75 1,0
Theor. LC Theor. LC Theor. LC Theor. LC

80% 32.17% 32.10% 30.91% 30.88% 29.99% 29.96% 29.46% 29.43%
90% 31.49% 31.40% 30.43% 32.10% 29.60% 29.52% 29.22% 29.14%
100% 30.58% 30.42% 29.86% 29.62% 29.30% 29.02% 29.02% 28.76%
110% 30.01% 29.80% 29.68% 29.36% 29.04% 28.66% 28.93% 28.56%
120% 29.92% 29.74% 29.63% 29.30% 29.08% 28.68% 28.96% 28.52%

KT 0,25 0,50 0,75 1,0
Theor. LC Theor. LC Theor. LC Theor. LC

80% 35.56% 35.36% 34.17% 34.05% 33.15% 33.01% 32.56% 32.42%
90% 34.81% 34.63% 33.64% 33.50% 32.73% 32.56% 32.30% 32.14%
100% 33.81% 33.60% 33.01% 32.75% 32.39% 32.07% 32.08% 31.75%
110% 33.17% 32.93% 32.81% 32.44% 32.10% 31.66% 31.98% 31.50%
120% 33.07% 32.81% 32.75% 32.35% 32.14% 31.65% 32.02% 31.47%

At last, a different surface for the second underlying is chosen, mutliplying the first
one (described in 3.3) by 0.9, the correlation is this time taken as 0.5.

KT 0,25 0,50 0,75 1,0
Theor. LC Theor. LC Theor. LC Theor. LC

80% 40.78% 40.35% 39.16% 38.77% 37.87% 37.49% 37.16% 36.84%
90% 39.73% 39.51% 38.39% 38.10% 37.26% 36.97% 36.74% 36.46%
100% 38.44% 38.37% 37.52% 37.27% 36.71% 36.40% 36.32% 36.01%
110% 37.54% 37.40% 37.06% 36.78% 36.20% 35.85% 36.05% 35.71%
120% 37.31% 37.24% 36.89% 36.68% 36.10% 35.81% 35.98% 35.68%

The results are rather satisfactory, especially at the money. To keep the compu-
tations to a reasonnable duration, a sparse initial surface was used. This explains
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why the calibration is not better far from the money, the fitting method is nonthe-
less valid. Now follows an outlook of the values taken by the new correlation ρ̃
at different maturities when the theoretical surface is distorted by factors 0.95 and
1.05. The parameters are: ρ12 = 0.5, w1 = 0.7 and w2 = 0.3.

As expected, the Local Correlation and the distorsion factor evolve in the same
direction. The underlyings must be more correlated when the implied volatility of
the basket is higher, and reciprocally. Furthermore, it appears that in the case of
the 0.95 distorsion, the correlation has to violently decrease for high values of B:
the two underlyings must be anti-correlated when they are both large.
As for the influence of the maturity, let us first state that in the computation of λ,
when the denominator is smaller than 10−6, we chose not to change the correlation,
to avoid numerical errors. It appears that, as long as B is in a zone where λ was
actually computed, the framework chosen to test the calibration actually generates
a local correlation constant in time.

4. Application to stochastic interest rates

This section is dedicated to hybrid local volatility models with stochastic rates.
The interest rate is assumed to be stochastic and to follow a diffusion equation. The
volatility depends on the level of the spot process exactly as in a local volatility
model. The idea is to compute its exact value for the vanillas in this model to be
calibrated.
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4.1. Calibration of the hybrid local volatility model. The risk-neutral diffusion
of the model is written as

dS t

S t
= r(t, yt)dt + σ(t, S t)dW1

t (19)

dyt = µ(t, yt)dt + λ(t, yt)dW2
t

The two brownian motions are correlated with a constant correlation denoted by
ρ. Classic regularity and ellipticity assumptions are made on the coefficients of the
diffusion (described in Tachet (2011)) to get the

Proposition 4.1. The diffusion model defined above has a transition density with
respect to Lebesgue’s measure. The value of σ that fits its vanillas is given by

σ2(t, S ) = σ2
D(t, S ) + 2

r(t)
∫
R

∫ +∞

S p(t, s, y)dsdy −
∫
R

∫ +∞

S r(t, y)p(t, s, y)dsdy

S
∫
R

p(t, S , y)dy
(20)

where p(t, S , y) is the density of the couple (S t, yt), and r(t) a deterministic curve
of rates used in the computation of Dupire’s local volatility σD.

Proof. The existence of the density p(t, S , y) stems from the assumptions on the
coefficients. Let us prove formula (20). The function p solves the forward parabolic
equation

∂p
∂t
−

∂2

∂S 2 (
1
2
σ2S 2 p) −

∂2

∂S ∂y
(ρσλS p) −

∂2

∂y2 (
1
2
λ2 p)) +

∂

∂S
(rS p) +

∂

∂y
(µp) + rp = 0

with the initial condition p(0, S , y) = δS 0,y0 . As previously, the equation is inte-
grated with respect to y, writing q(t, S ) =

∫
R

p(t, S , y)dy

∂q
∂t
−

∂2

∂S 2 (
1
2
σ2S 2q) +

∂

∂S
(S
∫
R

r(t, y)p(t, S , y)dy) +

∫
R

r(t, y)p(t, S , y)dy = 0

This equation needs to be matched with

∂qD

∂t
−

∂2

∂S 2 (
1
2
σ2

DS 2qD) +
∂

∂S
(rS qD) + rqD = 0

qD(0, S ) = δS 0

Both of them can be written as

1
2
σ2S 2 =

∫ +∞

0 (s − S )+(∂q
∂t + ∂

∂s (s
∫

rpdy) +
∫

rpdy)ds

q

1
2
σ2

DS 2 =

∫ +∞

0 (s − S )+(∂qD
∂t + ∂

∂s (srqD) + rqD)ds

qD
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Computing∫ +∞

0
(s − S )+ ∂

∂s
(s
∫

rpdy)ds =

∫ +∞

0
(s − S )+(s

∂

∂s
(
∫

rpdy) +

∫
rpdy)ds

= −

∫ +∞

0

∂

∂s
((s − S )+)s

∫
rpdyds

= −

∫ +∞

0
s1s≥S

∫
rpdyds

where the second line stems from a simple integration by parts. Reintroducing this
into the previous equations, we get

1
2
σ2S 2 =

∫ +∞

0 (s − S )+ ∂q
∂t ds − S

∫ +∞

S

∫
rpdyds

q

1
2
σ2

DS 2 =

∫ +∞

0 (s − S )+ ∂qD
∂t ds − rS

∫ +∞

S qDds

qD

In order to calibrate the vanillas, all that remains to be done is match the marginal
density q with qD, giving the necessary condition

1
2
σ2S 2 +

S
∫ +∞

S

∫
rpdyds

q
=

1
2
σ2

DS 2 +
rS
∫ +∞

S qds

q

Replacing q by
∫
R

p(t, S , y)dy completes the proof. �

The calibration equation for the vanillas of our hybrid model is thus

∂p
∂t
−

∂2

∂S 2 (
1
2
σ2S 2 p) −

∂2

∂S ∂y
(ρσλS p) −

∂2

∂y2 (
1
2
λ2 p)) +

∂

∂S
(rS p) +

∂

∂y
(µp) + rp = 0 (21)

with σ given by formula (20). Using similar technics to the other cases, an exis-
tence result can be obtained under certain assumptions, but this is not the scope
of this paper. It is however noteworthy that one of the necessary hypothesis is the
small variation of function r with respect to the deterministic curve r.

4.2. Numerical calibration. In this section, the theoretical results above are ap-
plied to calibrate a given diffusion model. Assuming the instantaneous rate to obey
a Vasicek model (or in other words an Ornstein-Uhlenbeck process), the diffusion
equations become

dS t

S t
= rtdt + σ(t, S t)dW1

t

drt = a(b − rt)dt + γdW2
t

The ADI algorithm described in section 5 is applied to equation (21) with the co-
efficients associated to this diffusion. The initial condition is p0(S , r) = δS 0,r0 .
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As in the two previous sections, this partial integro-differential equation is solved
with a variable change for the spot process x = ln(S ). The grid chosen is [−10σ

√
t, 10σ

√
t]×

[−0.1, 0.2] with σ = 0.2 and r0 = 0.04. We discretize it with 300 points in both
the spot and the rate direction. The initial condition (Dirac mass at the point
(ln(S 0), r0)) is approximated by a bivariate Gaussian centred at that point with a
very small variance.

The following numerical values are taken for the diffusion

a = 0.5 b = 0.7 γ = 0.01 r0 = 0.04

These values generate the interest rate

Maturity 0.5 1.0 1.5 2.0 2.5 3.0 4.0 5.0
Rate 4.344% 4.634% 4.880% 5.090% 5.269% 5.423% 5.672% 5.861%

To assess the quality of the calibration, call and put options on the spot process
are computed by integration on the grid and compared to the targeted prices (target
columns). Convergence is quite satisfactory. For instance, for 6 months and 1 year
maturity vanillas, one finds

Strike Target Call Target Put
0.5 49.30 49.31 0.39 0.40
0.6 40.14 40.15 1.01 1.02
0.7 31.49 31.51 2.15 2.16
0.8 23.55 23.57 3.99 4.00
0.9 16.52 16.55 6.74 6.76
1.0 10.62 10.65 10.62 10.64
1.1 6.16 6.19 15.95 15.96
1.2 3.22 3.24 22.79 22.79
1.3 1.53 1.54 30.87 30.87
1.4 0.67 0.68 39.79 39.79
1.5 0.28 0.28 49.18 49.17

Target Call Target Put
48.95 48.97 1.25 1.26
40.63 40.66 2.47 2.48
32.89 32.91 4.27 4.28
25.80 25.83 6.72 6.74
19.45 19.48 9.91 9.93
13.94 13.96 13.94 13.95
9.46 9.48 19.00 19.02
6.07 6.09 25.15 25.16
3.68 3.70 32.31 32.31
2.12 2.13 40.28 40.29
1.17 1.18 48.87 48.87

5. Algorithm for the resolution of the calibration equation

In the previous sections, we wrote the calibration equations and gave graphs
for their efficiency. In this one, we describe the algorithm used to solve them: a
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classic alternating direction implicit scheme. The nonlinear term is handled using
a forward induction at first, and then a predictor-corrector method.
The strong feature of an ADI scheme is its convergence rate in time and space:
O(δx2) + O(δt2). The nonlinearity of the equation challenges this assertion. It is
however possible to prove that it remains true in this case too.

5.1. Alternating Direction Implicit scheme. The calibration equation is a second-
order parabolic equation. One of the most efficient method to solve such equations
is a finite-difference approximation with alternating direction methods. For more
informations on the subject, the reader can look into Richtmyer and Morton (1967),
numerous articles have also been published, in particular Douglas and Rachford
(1956); Douglas (1962); Douglas and Gunn (1964); Beam and Warming (1980).
Let us now consider the following equation

∂p
∂t
−
∂2

∂x2 (
1
2

f 2I2(p)p) −
∂2

∂x∂y
(ρ f gI(p)p) −

∂2

∂y2 (
1
2

g2 p)) +
∂

∂x
(αp) +

∂

∂y
(βp) + γp = 0 (22)

p(0, S , y) = δS 0,y0 (23)

where f, g, α, β and γ are functions of t, x and y, ρ a constant and I(p) the quotient
of integrals

I2(p)(t, x) =

∫
h2(y)p(t, x, y)dy∫

p(t, x, y)dy
(24)

Remark 5.1. We restricted ourselves to two-dimensional equations since they cover
all the concrete examples studied previously. But the computations that follow are
true in the general case. The cost in time however becomes an issue in higher
dimensions.

The domain for the numerical resolution is ]0,T [×]x∗, x∗[×]y∗, y∗[. The first step
is to take care of the initial condition. Instead of the Dirac, the initial condition p0

is chosen as a gaussian distribution with very small variance. It obviously approxi-
mates our initial condition. It also verifies (on any bounded domain) the properties
of regularity and strict positivity required in the theoretical study of the equation
(though in the present section, we are only interested in its numerical resolution).
Let p(t, x, y) = p0(x, y) if x = x∗, x∗ or y = y∗, y∗ be the boundary conditions.

The algorithm is based upon a predictor-corrector approach. Let ∆x, ∆y and ∆t
be increments of the variables x, y and t, where ∆x =

x∗−x∗
I , ∆y =

y∗−y∗
J and

∆t = T
N with I, J and N integers. The sets of points in the x,y,t-plane is given by

xn = x∗ + i ∆x
x∗−x∗

, y j = y∗ + j ∆y
y∗−y∗

and tn = n∆t
T , for 0 ≤ i ≤ I, 0 ≤ j ≤ J and
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0 ≤ n ≤ N. We construct four sequences pn, p∗n, qn and q∗n of space-dependent
functions with n between 0 and N.

A classic alternating direction implicit scheme functions as follows: let us define
the initial functions

p∗0(i, j) = q0(i, j) = q∗0(i, j) = p0(xi, y j)

and then by induction

q∗n+1 − pn

∆t
= δ2

x(I2(pn)
f 2
n+1q∗n+1 + f 2

n pn

4
) + δ2

xy(ρ fngnI(pn)pn) + δ2
y(

1
2

g2
n pn)

− δx(
αn+1q∗n+1 + αn pn

2
) − δy(βn pn) −

γn+1q∗n+1 + γn pn

2
(25)

qn+1 − pn

∆t
= δ2

x(I2(pn)
f 2
n+1q∗n+1 + f 2

n pn

4
) + δ2

xy(ρ fngnI(pn)pn) + δ2
y(

g2
n+1qn+1 + g2

n pn

4
)

− δx(
αn+1q∗n+1 + αn pn

2
) − δy(

βn+1qn+1 + βn pn

2
) −

γn+1qn+1 + γn pn

2
(26)

where fn(i, j) designates f (n∆t, xi, y j) (the same thing being true for the other co-
efficients of the equation). δ is a difference operator for the space derivatives. For
instance, with 1 ≤ i ≤ I − 1 and 1 ≤ j ≤ J − 1

δ2
x fn =

fn(i − 1, j) − 2 fn(i, j) + fn(i + 1, j)
∆x2

δ2
xy fn =

fn(i − 1, j − 1) − fn(i + 1, j) − fn(i, j + 1) + fn(i + 1, j + 1)
4∆x∆y

δx fn =
fn(i + 1, j) − fn(i − 1, j)

2∆x
...

The equations (25) and (26) form two tridiagonal systems that can be solved very
efficiently. A recursion formula can be computed on the functions qn defined above

qn+1 − q∗n+1

∆t
= δ2

y(
g2

n+1qn+1 − g2
n pn

4
) − δy(

βn+1qn+1 − βn pn

2
) − γn+1

qn+1 − q∗n+1

2
Thus

q∗n+1 = qn+1 −
2∆t

2 + γn+1∆t
(δ2

y(
g2

n+1qn+1 − g2
n pn

4
) − δy(

βn+1qn+1 − βn pn

2
))
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And eventually

qn+1 − pn

∆t
= δ2

x(I2(pn)
f 2
n+1qn+1 + f 2

n pn

4
) + δ2

xy(ρ fngnI(pn)pn) + δ2
y(

g2
n+1qn+1 + g2

n pn

4
)

− δx(
αn+1qn+1 + αn pn

2
) − δy(

βn+1qn+1 + βn pn

2
) −

γn+1qn+1 + γn pn

2

−
∆t

4 + 2γn+1∆t
δ2

x(I2(pn) f 2
n+1(δ2

y(
g2

n+1qn+1 − g2
n pn

4
) − δy(

βn+1qn+1 − βn pn

2
)))

+
∆t

2 + γn+1∆t
δx(αn+1(δ2

y(
g2

n+1qn+1 − g2
n pn

4
) − δy(

βn+1qn+1 − βn pn

2
))) (27)

In the litterature concerning alternating direction implicit schemes, the functions
qn are often called the predicted value of the solution p, a second ’corrector’ step
usually follows. In our case, the equation being nonlinear, we start by chosing
pn+1 = qn+1 and study the finite-difference approximation that results.

Proposition 5.1. This last finite-difference equation is consistent with the partial
differential equation (22) on a bounded domain with smooth initial condition p0,
the truncation error is O(∆t) + O(∆x2) + O(∆y2) + O(∆x3

∆y ).

Proof. Let p be a classic solution of equation (22) on a bounded domain, with
p|t=0 = p0. We assume that p is strictly positive and sufficiently differentiable
for all the quantities in the sequel to be properly defined. All the derivatives that
appear are bounded as a consequence of the regularity assumptions on p. Writing
pn

i, j = pn(xi, y j) = p(tn, xi, y j), a simple Taylor expansion with remainder gives

pn+1
i, j − pn

i, j

∆t
=

∂p
∂t (tn, xi, y j) +

∂p
∂t (tn+1, xi, y j)

2
+

∆t
2

(
∂2 p
∂t2 (tn + θ, xi, y j) −

∂2 p
∂t2 (tn + θ∗, xi, y j))

As for the space derivatives, clearly

δ2
x pn =

∂2 pn

∂x2 (xi, y j) +
∆x2

24
(
∂4 pn

∂x4 (xi + θ1, y j) +
∂4 pn

∂x4 (xi − θ2, y j))

δ2
xy pn =

∂2 pn

∂x∂y
(xi, y j) +

∆y2

12
(
∂4 pn

∂x∂y3 (xi, y j + θ1) +
∂4 pn

∂x∂y3 (xi, y j − θ2))

+
∆x2

24∆y
[
∂3 pn

∂x3 (xi + θ3, y j−1) −
∂3 pn

∂x3 (xi + θ4, y j−1)

+
∂3 pn

∂x3 (xi − θ5, y j+1) −
∂3 pn

∂x3 (xi − θ6, y j+1)]

δx pn =
∂pn

∂x
(xi, y j) +

∆x2

12
(
∂3 pn

∂x3 (xi + θ1, y j) +
∂3 pn

∂x3 (xi − θ2, y j))

where the different constants θ are between 0 and ∆t, ∆x or ∆y depending on the
context, they may change from one formula to another. Let E denote the truncation
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error for scheme (27), we have

E =
pn+1 − pn

∆t
− δ2

x(I2(pn)
f 2
n+1 pn+1 + f 2

n pn

4
) − δ2

xy(ρ fngnI(pn)pn) − δ2
y(

g2
n+1 pn+1 + g2

n pn

4
)

+ δx(
αn+1 pn+1 + αn pn

2
) + δy(

βn+1 pn+1 + βn pn

2
) +

γn+1 pn+1 + γn pn

2

+
∆t

4 + 2γn+1∆t
δ2

x(I2(pn) f 2
n+1(δ2

y(
g2

n+1 pn+1 − g2
n pn

4
) − δy(

βn+1 pn+1 − βn pn

2
)))

−
∆t

2 + γn+1∆t
δx(αn+1(δ2

y(
g2

n+1 pn+1 − g2
n pn

4
) − δy(

βn+1 pn+1 − βn pn

2
)))

Applying the previous expansions and using the fact that p verifies equation (22)
at times tn and tn+1 gives us

E = e1 − e21 − e22 − e23 − e3 + e41 + e42 + e5

with e1 the error coming from the time-derivative

e1 =
∆t
2

(
∂2 p
∂t2 (tn + θ, xi, y j) −

∂2 p
∂t2 (tn + θ∗, xi, y j))

e21, e22 and e23 come from the second order space-derivatives

e21 =
∆x2

96
[
∂4

∂x4 (I2(pn) f 2
n pn)(xi + θ1, y j) +

∂4

∂x4 (I2(pn) f 2
n pn)(xi − θ2, y j)

+
∂4

∂x4 (I2(pn) f 2
n+1 pn+1)(xi + θ3, y j) +

∂4

∂x4 (I2(pn) f 2
n+1 pn+1)(xi − θ4, y j)]

e22 =
∆y2

12
(
∂4

∂x∂y3 (ρ fngnI(pn)pn)(xi, y j + θ1) +
∂4

∂x∂y3 (ρ fngnI(pn)pn)(xi, y j − θ2))

+
∆x2

24∆y
(
∂3

∂x3 (ρ fngnI(pn)pn)(xi + θ3, y j−1) −
∂3

∂x3 (ρ fngnI(pn)pn)(xi + θ4, y j−1)

+
∂3

∂x3 (ρ fngnI(pn)pn)(xi − θ5, y j+1) −
∂3

∂x3 (ρ fngnI(pn)pn)(xi − θ6, y j+1))

e23 =
∆y2

96
[
∂4

∂y4 (g2
n pn)(xi, y j + θ1) +

∂4

∂y4 (g2
n pn)(xi, y j − θ2)

+
∂4

∂y4 (g2
n+1 pn+1)(xi, y j + θ3) +

∂4

∂y4 (g2
n+1 pn+1)(xi, y j − θ4)]

e3 enables us to compensate for both the nondiagonal term and the nonlocal term
I(pn) that cannot be computed implicitely

e3 =
∂2

∂x2 [(I2(pn) − I2(pn+1))
f 2
n+1 pn+1

4
] +

∂2

∂x∂y
[
ρ

2
( fngnI(pn)pn − fn+1gn+1I(pn+1)pn+1)]
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e41 and e42 are the terms corresponding to the first order space-derivatives

e41 =
∆x2

24
[
∂3

∂x3 (αn pn)(xi + θ1, y j) +
∂3

∂x3 (αn pn)(xi − θ2, y j)

+
∂3

∂x3 (αn+1 pn+1)(xi + θ3, y j) +
∂3

∂x3 (αn+1 pn+1)(xi − θ4, y j)]

e42 =
∆y2

24
[
∂3

∂y3 (βn pn)(xi, y j + θ1) +
∂3

∂y3 (βn pn)(xi, y j − θ2)

+
∂3

∂y3 (βn+1 pn+1)(xi, y j + θ3) +
∂3

∂y3 (βn+1 pn+1)(xi, y j − θ4)]

At last, e5 is the correction term stemming from the alternating direction implicit
scheme

e5 =
∆t

4 + 2γn+1∆t
δ2

x(I2(pn) f 2
n+1(δ2

y(
g2

n+1 pn+1 − g2
n pn

4
) − δy(

βn+1 pn+1 − βn pn

2
)))

−
∆t

2 + γn+1∆t
δx(αn+1(δ2

y(
g2

n+1 pn+1 − g2
n pn

4
) − δy(

βn+1 pn+1 − βn pn

2
)))

Thanks to the regularity of p and of the coefficients of (22), the upper bounds
e1 ≤ K∆t2, e21 + e41 ≤ K∆x2, e23 + e42 ≤ K∆y2 and e22 ≤ K(∆y2 + ∆x3

∆y ) are
obtained. It is also easily proven that e5 ≤ K∆t2. The term that prevents us from
getting an error in O(∆t2) is e3. All we have is e3 ≤ K∆t. This concludes the
proof. �

Remark 5.2. In a case with no I(p) term, the equation is a classic linear and
parabolic one. In that case, when the off-diagonal1 term is absent (ρ = 0 for
instance), the previous scheme has an error in O(∆t2). To obtain such an error in
the general case, a second ’corrector’ step is generally used: the predicted value
qn+1 is introduced as an approximation of pn+1 in the cross-derivatives. Here, we
use it in the nonlocal term too.

The correction step is the following

p∗n+1 − pn

∆t
= δ2

x(
I2(qn+1) f 2

n+1 p∗n+1 + I2(pn) f 2
n pn

4
) + δ2

xy(ρ
( f g)n+1I(qn+1)qn+1 + ( f g)nI(pn)pn

2
)

+ δ2
y(

1
2

g2
n pn)) − δx(

αn+1 p∗n+1 + αn pn

2
) − δy(βn pn) −

γn+1 p∗n+1 + γn pn

2
pn+1 − pn

∆t
= δ2

x(
I2(qn+1) f 2

n+1 p∗n+1 + I2(pn) f 2
n pn

4
) + δ2

xy(ρ
( f g)n+1I(qn+1)qn+1 + ( f g)nI(pn)pn

2
)

+ δ2
y(

g2
n+1 pn+1 + g2

n pn

4
) − δx(

αn+1 p∗n+1 + αn pn

2
) − δy(

βn+1 pn+1 + βn pn

2
)

−
γn+1 pn+1 + γn pn

2
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Here too, one can compute p∗n+1

p∗n+1 = pn+1 −
2∆t

2 + γn+1∆t
(δ2

y(
g2

n+1 pn+1 − g2
n pn

4
) − δy(

βn+1 pn+1 − βn pn

2
))

Eventually, a Crank-Nicholson like formula appears

pn+1 − pn

∆t
= δ2

x(
I2(qn+1) f 2

n+1 pn+1 + I2(pn) f 2
n pn

4
) + δ2

xy(ρ
( f g)n+1I(qn+1)qn+1 + ( f g)nI(pn)pn

2
)

+ δ2
y(

g2
n+1 pn+1 + g2

n pn

4
) − δx(

αn+1 pn+1 + αn pn

2
) − δy(

βn+1 pn+1 + βn pn

2
)

−
γn+1 pn+1 + γn pn

2

−
∆t

4 + 2γn+1∆t
δ2

x(I2(qn+1) f 2
n+1(δ2

y(
g2

n+1 pn+1 − g2
n pn

4
) − δy(

βn+1 pn+1 − βn pn

2
)))

+
∆t

2 + γn+1∆t
δx(αn+1(δ2

y(
g2

n+1 pn+1 − g2
n pn

4
) − δy(

βn+1 pn+1 − βn pn

2
)))

Let us study the consistency of this new scheme

Proposition 5.2. The algorithm with a corrector step is also consistent. The trun-
cation error is O(∆t2) + O(∆x2) + O(∆y2) + O(∆x3

∆y ).

Proof. To prove the consistency, let qn+1 be defined as

qn+1 − pn

∆t
= δ2

x(I2(pn)
f 2
n+1qn+1 + f 2

n pn

4
) + δ2

xy(ρ fngnI(pn)pn) + δ2
y(

g2
n+1qn+1 + g2

n pn

4
)

− δx(
αn+1qn+1 + αn pn

2
) − δy(

βn+1qn+1 + βn pn

2
) −

γn+1qn+1 + γn pn

2

−
∆t

4 + 2γn+1∆t
δ2

x(I2(pn) f 2
n+1(δ2

y(
g2

n+1qn+1 − g2
n pn

4
) − δy(

βn+1qn+1 − βn pn

2
)))

+
∆t

2 + γn+1∆t
δx(αn+1(δ2

y(
g2

n+1qn+1 − g2
n pn

4
) − δy(

βn+1qn+1 − βn pn

2
)))
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The computations are almost identical to the previous proposition. This time the
error is equal to

E∗ =
pn+1 − pn

∆t
− δ2

x(
I2(qn+1) f 2

n+1 pn+1 + I2(pn) f 2
n pn

4
)

− δ2
xy(ρ

( f g)n+1I(qn+1)qn+1 + ( f g)nI(pn)pn

2
) − δ2

y(
g2

n+1 pn+1 + g2
n pn

4
)

+ δx(
αn+1 pn+1 + αn pn

2
) + δy(

βn+1 pn+1 + βn pn

2
) +

γn+1 pn+1 + γn pn

2

+
∆t

4 + 2γn+1∆t
δ2

x(I2(qn+1) f 2
n+1(δ2

y(
g2

n+1 pn+1 − g2
n pn

4
) − δy(

βn+1 pn+1 − βn pn

2
)))

−
∆t

2 + γn+1∆t
δx(αn+1(δ2

y(
g2

n+1 pn+1 − g2
n pn

4
) − δy(

βn+1 pn+1 − βn pn

2
)))

Using the same decomposition, the errors e∗1, e∗23, e∗41 and e∗42 do not change. e∗21 is
slightly different but still in O(∆x2). As for e∗22 and e∗5, we now have

e∗22 =
e22

2
+ ρ

∆y2

24
(
∂4

∂x∂y3 (( f g)n+1I(qn+1)qn+1)(xi, y j + θ1) +
∂4

∂x∂y3 (( f g)n+1I(qn+1)qn+1)(xi, y j − θ2))

+
∆x2

24∆y
(
∂3

∂x3 (( f g)n+1I(qn+1)qn+1)(xi + θ3, y j−1) −
∂3

∂x3 (( f g)n+1I(qn+1)qn+1)(xi + θ4, y j−1)

+
∂3

∂x3 (( f g)n+1I(qn+1)qn+1)(xi − θ5, y j+1) −
∂3

∂x3 (( f g)n+1I(qn+1)qn+1)(xi − θ6, y j+1))

e∗5 =
∆t

4 + 2γn+1∆t
δ2

x(I2(qn+1) f 2
n+1(δ2

y(
g2

n+1 pn+1 − g2
n pn

4
) − δy(

βn+1 pn+1 − βn pn

2
)))

−
∆t

2 + γn+1∆t
δx(αn+1(δ2

y(
g2

n+1 pn+1 − g2
n pn

4
) − δy(

βn+1 pn+1 − βn pn

2
)))

which also verify e∗22 ≤ K(∆y2 + ∆x3

∆y ) and e∗5 ≤ K∆t2. The real difference can be
seen in

e∗3 =
∂2

∂x2 [(I2(qn+1) − I2(pn+1))
f 2
n+1 pn+1

4
] +

∂2

∂x∂y
[
ρ

2
(( f g)n+1I(qn+1)qn+1 − ( f g)n+1I(pn+1)pn+1)]

The important feature of the predictor is that the difference qn+1 − pn+1 is O(∆t2).
This gives e∗3 ≤ K(∆t2) and concludes the proof. �

5.2. Time Convergence Rate of the modified ADI algorithm. In this brief sec-
tion, we compare the convergence of the algorithm with the theoretical rates com-
puted in the previous part. To do so, the calibrated value of 1-year at-the-money
vanillas is computed for different number N of time steps. We then plot the error



24 FRÉDÉRIC ABERGEL, RÉMY TACHET DES COMBES, AND RIADH ZAATOUR

between this price and the targeted value against N. The next graph is obtained
with the one-step predictor algorithm

The error is clearly in O(∆t) as was proved in Proposition 5.1. We conduct the
same experiment with this time both the predictor and the corrector steps.

This time too, numerical experiments seem to agree with theory. The error appears
to be in O(∆t2). The predictor/corrector scheme serves its purpose.

6. Instabilities of the solutions: numerical explosion for ’oscillating’
volatilities

In the previous sections, we described the algorithm used to solve the different
calibration equations concerned by our work, and also mentioned the theoretical
research performed on the subject. Though a partial existence result for equation
(4) was found, it was still impossible to prove it in the general case: a strongly
variable function b.
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This last section is devoted to the local and stochastic volatility model, from that
point of view. The numerical resolution of the calibration is performed for strongly
variable functions b.

At first, let us go back to the equation for the calibration of a local and stochastic
volatility model. For the sake of simplicity, the interest rate is assumed to be zero.
The equation is the following

∂p
∂t
−

∂2

∂S 2 (
1
2
σ2

Db2S 2

∫
pdy∫

b2 pdy
p) −

∂2

∂S ∂y
(ρσDbαS (

∫
pdy∫

b2 pdy
)

1
2 p) −

∂2

∂y2 (
1
2
α2 p) +

∂

∂y
(βp) = 0 (28)

p(0, S , y) = δS 0,y0

The existence of a solution to this equation (on a bounded domain, with regularized
boundary conditions) was previously stated under certain assumptions on b, the
essential one being: there exists a constant b∗ such that |b − b(y0)| ≤ b∗ for a given
y0. Using the algorithm described in the previous section, we are now interested
in the behavior of the numerical solution of (28) when the function b violates the
assumption.
The model chosen for this study is the mean-reverting volatility already expounded

b(y) = exp(y) α(t, y) = γ β(t, y) = κ (δ − y)

with γ, κ and δ three strictly positive constants. The values chosen in section 2 for
the different parameters of the model and of the algorithm led us to a satisfactory
calibration. Using them once again, we plot on the left (Figure 1 (a)) the density
p(T, x, y) for T = 1 year and x = ln(S/S 0) close to 0.
As expected, the solution p is perfectly smooth. Now, bouncing on the idea of
strongly variable functions b, another density is plotted on the right (Figure 1 (b))
with this time a function b equal to b(y) = exp(10y).
The solution is not smooth anymore. On the contrary, some kind of instability
seems to occur.

Remark 6.1. To check that no other numerical effects are involved in the insta-
bility, the adjoint equation of (4) was also studied. From a theoretical viewpoint,
it admits a solution without any restrictive assumption on b, see Alibaud (2007);
Tachet (2011).



26 FRÉDÉRIC ABERGEL, RÉMY TACHET DES COMBES, AND RIADH ZAATOUR

[] []

Figure 1. Solution p of the equation for b(y) = exp(y) and b(y) = exp(10y).

The adjoint equation for the local and stochastic volatility calibration is

∂p
∂t
−

1
2
σ2

Db2S 2

∫
pdy∫

b2 pdy

∂2 p
∂S 2 − ρσDbαS (

∫
pdy∫

b2 pdy
)

1
2
∂2 p
∂S ∂y

−
1
2
α2 ∂

2 p
∂y2 + β

∂p
∂y

= 0 (29)

We make the same test and plot its numerical solution for b(y) = exp(Cy) with
C = 10 and C = 15
On both these graphics (Figure 2), no sign of instability can be seen. With higher
values of C, for instance C = 20, the function p computed numerically takes mean-
ingless values (1080), but at no time does it start to oscillate.

7. Conclusion

Using methods inspired from local and stochastic volatility models, we were
able to write calibration equations for two other cases: the so-called local correla-
tion model and a hybrid local volatility and stochastic rates model.
Their numerical resolution, based upon an alternating direction implicit scheme,
produces a satisfactory fit under certain assumptions (confirmed by the theoretical
difficulties met when studying them). When those hypothesis are not verified, an
instability occurs. Explaining it brought us to consider Hadamard stability and a
certain class of integro-differential equations. Unfortunately, the criterion we found
can not be applied in the case of the local and stochastic volatility model, it remains
an open problem.
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[] []

Figure 2. Solution p of the adjoint equation for b(y) = exp(10y)
and b(y) = exp(15y).

As far as the ADI algorithm is concerned, we managed to adapt it to deal with the
nonlinearity of our equation. Its consistency was also proved, with a convergence
rate in time in O(∆t2). A result confirmed numerically.
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lution of the forwardŰbackward heat equation, Journal of Computational and
Applied Mathematics, Vol. 208(2), pp. 380-390.

Douglas, J. and Rachford, H. (1956) On the numerical solution of heat conduc-
tion problems in two and three space variables, Transactions of the American
Mathematical Society, 82, pp. 421-439.

Douglas, J. (1962) Alternating direction methods for three space variables, Numer.
Math., 4, pp. 41-63.

Douglas, J. and Gunn, J. (1964) A General Formulation of Alternating Direction
Methods, Numerische Mathematik, Vol. 6(1).

Dupire, B. (1993) Pricing and Hedging with Smiles, Proc AFFI Conf, La Baule,
France.

Gyongy, I. (1986) Mimicking the One-Dimensional Marginal Distributions of Pro-
cesses Having an Ito Differential, Probability Theory and Related Fields, 71, pp.
501-516.

Han, H. and Yin, D. (2003) A non-overlap domain decomposition method for the
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