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Frédéric Abergel, Rémy Tachet des Combes, Riadh Zaatour

November 16, 2017

Abstract

Consistently fitting vanilla option surfaces is an important issue in derivative modelling. In this
paper, we consider three different models: local and stochastic volatility, local correlation, hybrid local
volatility with stochastic rates, and address their exact, nonparametric calibration. This calibration
process requires solving a nonlinear partial integro-differential equation. A modified alternating direction
implicit algorithm is used, and its theoretical and numerical analysis is performed.

1 Introduction

One of the most important challenge for real-life applications of a model to derivatives trading is the issue
of calibration. Similar to common situations in many areas of physics and engineering, once a model has
been suggested, its parameters have to be estimated using external data. In the case of derivative modelling,
those data are the liquid (tradable) options, generally called vanilla products.
It is well-known since the pioneering work of [1] and its celebrated extension by [2] that the knowledge
of market data such as the prices of vanilla options across all strikes and maturities is equivalent to the
knowledge of the risk-neutral marginals of the underlying stock distribution. Here, we are interested in
applications of this result to three different cases.
The first one is quite classic, and is the starting point of our work: local and stochastic volatility models. Such
models are very useful in practice, since they offer both the flexibility and realistic dynamics of stochastic
volatility, and the exact calibration properties of local volatility. The problem of calibrating local and
stochastic volatility models has been dealt with for a while now, for instance by [3]. However, practitioners
seem to agree that the stability of its resolution becomes uncertain when the volatility’s volatility is too
large. We shall see that indeed some kind of instability appears, and offer explanations to the phenomenon.
The second case we focus on is the correlation between assets. Empirical measures give a certain set of
results. However, when modelling a basket on multiple underlyings, a problem occurs. If one uses local
volatility models for each underlying and correlates their brownian motions using the empirical correlation,
the basket obtained will not reproduce the vanillas quoted on the market. This raises significant issues
when hedging products on multiple underlyings. One of the solution for this problem is the known ’local
correlation’ approach: the correlation matrix for the n underlyings is deformed using a parameter, function
of the time and the basket level. Here, we use that approach to obtain a calibration equation for the basket,
relatively similar to the one appearing in the local and stochastic volatility model, and then numerically
solve said equation in a two-underlyings framework.
The last topic we shall be interested in are interest rates, we study a hybrid model: local volatility with
stochastic rates. Using a partial differential equation approach similar to the local correlation and the local
and stochastic volatility, we write a calibration equation for the vanillas of this hybrid model, solve it and
verify the accuracy of the fit.
The general form of our calibration equations is nonlinear partial and integro-differential. For their resolution,
we chose to adapt the alternating direction implicit scheme (very efficient to solve classic linear second order
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parabolic equations, [4]). Being in a nonlinear non-local framework, many questions arise. Is it relevant to
use ADI algorithms to solve the equations stemming from our calibration problems? How should we deal
with the nonlocal term? Is the finite difference scheme we chose consistent, and what is the order of the
truncation error? Can we detect an instability in certain cases? Is it possible to explain it?
The aim of this work is to address and at least partially answer these questions. The paper is organized as
follows. In Section 2, we quickly present the case of the local and stochastic volatility model. Section 3 is
devoted to the local correlation, its calibration equation and the fit we obtain in the case of a basket on two
underlyings. In Section 4, we do the same thing in the stochastic rates frame. Finally, in Section 5 and 6,
we adress the questions raised previously concerning the ADI algorithm used for the resolution, Section 7 is
a brief conclusion.

2 Local and Stochastic Volatility models

2.1 Partial Integro-Differential Equation for the calibration of LSV models

The diffusion model is assumed to be the following

dSt
St

= r(t)dt+ a(t, St)b(yt)dW
1
t (1)

dyt = µ(t, yt)dt+ ξ(t, yt)dW
2
t (2)

(St, t ≥ 0) is the stock price process and (yt, t ≥ 0) the stochastic component of the volatility. The function
b simply transforms that factor into a proper volatility. a is the local volatility part of the model, exactly
as in Dupire’s formula, its value shall be specified depending on the aimed vanillas. ξ is the volatility of the
volatility factor (commonly called ’vovol’) and µ is a drift term. W 1 and W 2 are one-dimensional standard
brownian motions with correlation ρ.
Let us now consider a surface of vanilla prices C(T,K) and the corresponding Local Volatility σD. Under
suitable regularity and ellipticity assumptions, the following proposition can be proved

Proposition 1. The diffusion model defined by (1-2) has a density p(t, S, y) with respect to Lebesgue’s
measure. Moreover, if the model fits the surface of vanillas C(T,K) then necessarily

a2(t, S) = σ2
D(t, S)

∫
R p(t, S, y)dy∫

R b
2(y)p(t, S, y)dy

(3)

Proof. The exact assumptions and the existence proof can be found in [5]. Here, the main concern is the
calibration result. Let us assume that the model fits exactly the surface C. Letting (S0, y0) denote the initial
state of the system, the joint density p(t, S, y) of the couple (St, yt) verifies Kolmogorov forward equation

∂p

∂t
− ∂2

∂S2
(
1

2
a2b2S2p)− ∂2

∂S∂y
(ρabξSp)− ∂2

∂y2
(
1

2
ξ2p)) +

∂

∂S
(rSp) +

∂

∂y
(µp) = 0

p(0, S, y) = δS0,y0

Applying Fubini, let q(t, S) =
∫
R p(t, S, y)dy be the first marginal density of our couple. It is possible to

integrate the previous equation and obtain

∂q

∂t
− ∂2

∂S2
(
1

2
a2S2(

∫
R
b2(y)p(t, S, y)dy)) +

∂

∂S
(rSq) = 0

q(0, S) = δS0

In the case of a local volatility model (b = 1 and a = σD), the density qD of the Spot process solves the
equation

∂qD
∂t
− ∂2

∂S2
(
1

2
σ2
DS

2qD) +
∂

∂S
(rSqD) = 0

qD(0, S) = δS0
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The vanillas of the LSV model being perfectly fitted, we have q = qD. Identifying the terms in the two last
formulas gives

a2(t, S) = σ2
D(t, S)

q∫
R b

2pdy
= σ2

D(t, S)

∫
R p(t, S, y)dy∫

R b
2(y)p(t, S, y)dy

Using this proposition, and reintroducing the value of a in Kolmogorov forward equation, the joint density
p(t, S, y) is then solution of the nonlinear partial integro-differential equation

∂p

∂t
− ∂2

∂S2
(
1

2
σ2
Db

2S2

∫
R pdy∫

R b
2pdy

p)− ∂2

∂S∂y
(ρσDbξS(

∫
R pdy∫

R b
2pdy

)
1
2 p) (4)

− ∂2

∂y2
(
1

2
ξ2p)) +

∂

∂S
(rSp) +

∂

∂y
(µp) = 0

p(0, S, y) = δS0,y0 (5)

There is thus equivalence between the existence of a model (1-2) that calibrates the vanillas C and the
existence of a solution p to the pide (4).

Remark 2.1. The quotient
∫
R b

2pdy∫
R pdy

is nothing but the conditional expectation of the volatility squared,

knowing the spot process. This result is not original in itself (by applying the theorem from [6] for instance),
the partial differential equation method however is unusual, and will be used on the other models as well.

The theoretical study of equation (4)-(5) can be found in [7]. Existence of solutions is proved under strong
assumptions (especially on b, which must be sufficiently close to a constant). The general resolution remains
an open problem.

2.2 Numerical results

It seems to be well-known among practitioners, that instabilities occur in their calibration when the volatil-
ity’s volatility (in the notations, function ξ) is too large. This seems to confirm the theoretical limitations
met trying to prove the global existence of a solution: when the function b oscillates too much (a change of
scale in the factor yt clearly shows the equivalence between a b that moves a lot and a large ξ), the resolution
of the equation is not guaranteed anymore. To assess these statements, we considered our problem from a
practical viewpoint.
In this section, the calibration that stems from solving the partial differential equation (4) is studied, for
two stochastic volatility models: a lognormal one and a ’Cox-Ingersoll-Ross’ process. The details of the
algorithm used for the resolution and a study of the instabilities will be treated later, in sections 5 and 6.

2.2.1 Lognormal volatility

Starting with a simple mean reverting model for the volatility factor, the function b is chosen as an expo-
nential

dSt
St

= r(t)dt+ a(t, St)exp(yt)dW
1
t (6)

dyt = κ (δ − yt) dt+ γ dW 2
t (7)

with

a2(t, S) = σ2
D(t, S)

∫
R p(t, S, y)dy∫

R exp(2y)p(t, S, y)dy
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Equation (4) is solved using the functions we just chose and the local volatility σD associated to the Eu-
roSTOXX 50 implied volatility surface of 2009/04/02. Once function p, density of the couple (St, yt), is
found, we compute the vanilla prices for different strikes and maturities using this density. To have a
point of comparison, the same prices are also computed with the local volatility σD, both of them are then
compared to the targeted prices (column TP).

Strike TP LV LSV
0.5 54.54 54.46 54.43
0.6 51.35 51.34 51.20
0.7 48.12 48.14 48.02
0.8 44.86 44.93 44.82
0.9 41.57 41.66 41.56
1.0 38.26 38.32 38.15
1.1 35.41 35.46 35.34
1.2 33.25 33.27 33.15
1.3 31.68 31.67 31.57
1.4 30.53 30.48 30.46
1.5 29.80 29.72 29.76

Strike TP LV LSV
0.5 49.82 49.79 49.71
0.6 47.23 47.22 47.15
0.7 44.61 44.60 44.56
0.8 41.97 41.98 41.92
0.9 39.30 39.32 39.29
1.0 36.63 36.61 36.59
1.1 34.31 34.30 34.29
1.2 32.35 32.38 32.36
1.3 30.75 30.77 30.75
1.4 29.43 29.44 29.44
1.5 28.41 28.42 28.40

Let us then plot the error between the original vanillas and the ones obtained with the model. The calibration
is quite efficient, the errors are equivalent to the ones of the local volatility model.

2.2.2 Cox-Ingersoll-Ross process

We also focus on the calibration of a model inspired from the interest rates framework: the volatility is
assumed to follow a CIR process.

dSt
St

= r(t)dt+ a(t, St)ytdW
1
t (8)

dyt = κ (α− yt) dt+ γ
√
yt dW

2
t (9)

Detailled properties of this process are described by [8]. In particular, as long as 2κα > γ2, yt is strictly
positive a.e. Once again, equation (4) is solved with this stochastic volatility.
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3 Application to the ’Local Correlation’ model

In this chapter, we are interested in the calibration of a market with n stocks and a basket on those stocks.
The purpose is to define a diffusion model for those underlyings that is able to reproduce their implied
volatility surface as well as the one of the basket.
The notations are the following, let (Sit)1≤i≤n denote the n stocks involved in our problem. The basket’s
value is given by

Bt =

n∑
i=1

wiS
i
t (10)

where the set (wi)1≤i≤n stands for the weights of the different underlyings. They are assumed to be constant
in the rest of our work. Let us also fix n+ 1 surfaces of vanillas (Ci(T,K))1≤i≤n and CB(T,K).

3.1 Inconsistencies between stock and basket options

The naive approach to solve this problem is simply to consider n local volatility models

dSit
Sit

= r(t)dt+ σi(t, S
i
t)dW

i
t (11)

The functions σi are easily determined to fit the surfaces (Ci(T,K))1≤i≤n with this diffusion. The correlation
matrix ρ = (ρij)1≤i,j≤n associated to the standard brownian motions W i

t of each underlying can be estimated
with historical data. The model is now entirely defined. By equation (10) of Bt, the vanilla prices for the
basket are completely determined and are equal to E[(

∑
wiS

i
T −K)+]. However, there is no particular reason

for the surface computed in this framework to be equal to CB(T,K). In fact, the skew of the basket is more
pronounced on the market than in a model with constant correlations between the underlyings, [9].

3.2 ’Local Correlation’ model

In the manner of B. Dupire who decided to let the volatility depend on the level of the spot process, a
degree of freedom is added to our model by distorting the matrix of correlation with a function of Bt. This
method appears for instance in [5, 10] where the basket level induces some feedback on the values of the
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different underlyings. In our context, the new correlation matrix is taken as a linear combination of ρ and
the constant matrix with only 1 as coefficients. This matrix ρ̃ is equal to

ρ̃ij = λ+ (1− λ)ρij = ρij + λ(1− ρij) (12)

We shall see while writing the calibration equation that λ has to be chosen as a function of the time and of
Bt. The matrix ρ̃ij can be seen as an analogous of Dupire’s local volatility, a ’Local Correlation’ so to speak.
Assuming that ρ is a proper correlation matrix (definite, positive...), and that the coefficients of the diffusion
have a sufficient regularity, our diffusion model then possesses a density in the more general case of a matrix
ρ function of the couple (t, B). It is also possible to write a condition for the vanillas of the model to be
fitted

Proposition 2. The diffusion model defined by (11) with a correlation function of the couple (t, B), has
a density p(t, S1, .., Sn) with respect to Lebesgue’s measure. Furthermore, this model calibrates the surface
CB(T,K) of Bt’s vanillas (represented by its local volatility surface σB) if and only if

σ2
B(t, B)B2

∫
p̃(t, B, S2, .., Sn)dS2..dSn =

∑
1≤i,j≤n

wiwjρij(t, B)

∫
(β̃iβ̃j p̃)(t, B, S

2, .., Sn)dS2..dSn (13)

where

p̃(t, B, S2, .., Sn) = p(t, S1, S2, .., Sn) β̃i(t, B, S
2, .., Sn) = Siσi(t, S

i)

with

S1 =
1

w1
(B −

n∑
i=2

wiS
i) (14)

Proof. The existence of the transition density p(t, S1, .., Sn) stems from the assumptions made on the reg-
ularity of the coefficients, and on ρ, for more details see [5]. We can now write the calibration problem for
the vanillas of the basket Bt. The density just defined satisfies Kolmogorov forward equation

∂p

∂t
− 1

2

∑
1≤i,j≤n

∂2

∂Si∂Sj
(ρijSiσiSjσjp) +

∑
1≤i≤n

∂

∂Si
(rSip) + rp = 0

To ease the problem, it is useful to change the coordinates (S1, ..., Sn) into (B,S2, ..., Sn) with S1 defined
by (14). After computations, the equation becomes

∂p̃

∂t
− 1

2

∑
1≤i,j≤n

wiwj
∂2

∂B2
(ρij β̃iβ̃j p̃)−

1

2

∑
2≤i,j≤n

(
∂2

∂Si∂Sj
+ wi

∂2

∂B∂Sj
+ wj

∂2

∂Si∂B
)(ρij β̃iβ̃j p̃)

−
∑

2≤i≤n

w1
∂2

∂B∂Sj
(ρ1iβ̃1β̃ip̃) +

∂

∂B
(rBp̃) +

∑
2≤i≤n

∂

∂Si
(rSip̃) + rp̃ = 0

where p̃(B,S2, ..., Sn) and β̃i(B,S
2, ..., Sn) are defined above. Integrating the equation against the variables

(S2, ..., Sn), and writing q = 1
w1

∫
p̃dS2..dSn, the density of the marginal law of B satisfies

∂q

∂t
− 1

2

∑
1≤i,j≤n

wiwj
∂2

∂B2
(ρij

∫
β̃iβ̃j p̃dS

2..dSn) +
∂

∂B
(rBq) + rq = 0

Comparing this equation to Dupire’s equation for the local volatility σB

∂q

∂t
− 1

2

∂2

∂B2
(σ2
DB

2q) +
∂

∂B
(rBq) + rq = 0
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if our model reproduces the vanillas σD, then the following equality must be verified

σ2
DB

2

∫
p̃dS2..dSn =

∑
1≤i,j≤n

wiwjρij

∫
β̃iβ̃j p̃dS

2..dSn

Reciprocally, the condition we just wrote is clearly sufficient for the options to be calibrated

Remark 3.1. Let us note that this condition is written as an equality between two functions of the time and
of B. The other variables are no longer represented.

Assuming that condition (13) is not verified, the model defined by (11) does not fit the vanillas of the basket
Bt. It has to be enriched to solve the calibration problem. Our choice is to distort the correlation matrix.
The new matrix ρ̃ is described by (12). Hence, let Θ denote the matrix Θij = 1 for all 1 ≤ i, j ≤ n. We also
notice that, the trace of ρ being equal to n, its smallest eigenvalue Kρ is smaller than 1.

Lemma 1. The matrix ρ̃ = (1− λ)ρ+ λΘ is also a correlation matrix as long as λ is in ]r, 1[ with

r = −min(max
i 6=j

1 + ρij
1− ρij

,
Kρ

n−Kρ
) < 0 (15)

Proof. Clearly, for all (ξi, ξj) ∈ R2∑
1≤i,j≤n

ξi((1− λ)ρij + λ)ξj ≥ Kρ(1− λ)|ξ|2 + λ(
∑

1≤i≤n

ξi)
2

If λ is positive, since Kρ(1 − λ) is stricty positive, the matrix remains definite positive. Now, if λ < 0,
Cauchy-Schwarz gives ∑

1≤i,j≤n

ξi((1− λ)ρij + λ)ξj ≥ (Kρ(1− λ) + λn)|ξ|2

Since Kρ ≤ 1, λ > − Kρ
n−Kρ is enough for Kρ(1− λ) + λn to be stricly positive.

The diagonal coefficients of ρ̃ are still 1. As for the other terms, thanks to the first term in relation (15),
they still belong to the interval ]− 1, 1[.

We introduce the new correlation matrix in condition (13), this gives

λ(p̃) =

σ2
DB

2
∫
p̃dS2..dSn −

∑
1≤i,j≤n

wiwjρij

∫
β̃iβ̃j p̃dS

2..dSn

∑
1≤i,j≤n

wiwj(1− ρij)
∫
β̃iβ̃j p̃dS

2..dSn
(16)

λ(p̃) is a function of B and t. It is now possible to use this value to write a pide on the density p̃. Any
solution of the following equation is a density that calibrates the vanillas of the basket

∂p̃

∂t
+ L1p̃+ L

λ(p̃)
2 (p̃) = 0 (17)

where L1 is linear and verifies

L1p̃ = −1

2

∑
1≤i,j≤n

wiwjρij
∂2

∂B2
(β̃iβ̃j p̃)−

1

2

∑
2≤i,j≤n

ρij(
∂2

∂Si∂Sj
+ wi

∂2

∂B∂Sj
+ wj

∂2

∂Si∂B
)(β̃iβ̃j p̃)

−
∑

2≤i≤n

w1ρ1i
∂2

∂B∂Sj
(β̃1β̃ip̃) +

∂

∂B
(rBp̃) +

∑
2≤i≤n

∂

∂Si
(rSip̃) + rp̃

8



and L
λ(p̃)
2 is the nonlinear part of the equation

L
λ(p̃)
2 (p̃) = −1

2

∑
1≤i,j≤n

wiwj(1− ρij)
∂2

∂B2
(λ(p̃)β̃iβ̃j p̃)−

1

2

∑
2≤i,j≤n

(1− ρij)(
∂2

∂Si∂Sj
+ wi

∂2

∂B∂Sj

+wj
∂2

∂Si∂B
)(λ(p̃)β̃iβ̃j p̃)−

∑
2≤i≤n

w1(1− ρ1i)
∂2

∂B∂Sj
(λ(p̃)β̃1β̃ip̃)

Remark 3.2. The operator L1 + L2 stems from a change of coordinates on a uniformly elliptic operator.
It is also elliptic, uniformly on any domain where the β̃i are bounded away from 0 by a strictly positive
constant.

Furthermore, the initial condition is

p̃(0, B, S2, ..., Sn) = δ(
∑

wiS
i
0, S

2
0 , ..., S

n
0 )

where Si0 is the market value at instant 0 of the i-th stock. Applying this initial condition to (16), the initial
value of λ is equal to

λ(p̃)(0, B) =

σ2
D(0, B)B2 −

∑
1≤i,j≤n

wiwjρijS
i
0σi(0, S

i
0)Sj0σj(0, S

j
0)∑

1≤i,j≤n

wiwj(1− ρij)Si0σi(0, Si0)Sj0σj(0, S
j
0)

(18)

For a theoretical study of the calibration equation, we refer the reader to [5].

3.3 Resolution of the equation for the calibration of a basket

This subsection focuses on the results of the calibration for a two-underlyings basket. Let us consider two
assets, both of them are assumed to generate the following implied volatility surface

KT 0,088 0,167 0,25 0,50 0,75 1,0 1,1
80% 48,0% 47,9% 46,5% 45,0% 43,8% 43,0% 43,0%
90% 45,0% 44,9% 44,1% 43,0% 42,0% 41,4% 41,4%
100% 43,0% 42,9% 42,2% 41,5% 40,8% 40,4% 40,4%
110% 41,5% 41,4% 40,8% 40,3% 39,9% 39,6% 39,6%
120% 41,0% 40,9% 40,6% 40,2% 39,7% 39,4% 39,4%

Using a Monte-Carlo simulation and the local volatilities stemming from those surfaces, the theoretical prices
for the basket Bt are computed, with weights w1 = w2 = 0.5 and a correlation ρ12 = −0.5

KT 0,088 0,167 0,25 0,50 0,75 1,0 1,1
80% 22,90% 22,54% 21,80% 20,72% 20,00% 19,61% 19,54%
90% 21,52% 21,21% 20,73% 19,78% 19,34% 19,03% 19,04%
100% 20,01% 19,94% 19,83% 19,15% 18,91% 18,68% 18,71%
110% 18,73% 18,43% 18,77% 18,58% 18,47% 18,26% 18,31%
120% 17,91% 17,67% 18,04% 18,11% 18,15% 18,04% 18,13%

Distorting this theoretical surface by a factor of 0.9, and thus making the prices of the basket inconsistent
with the prices of the underlyings, the calibration algorithm is applied. Solving the partial integro-differential
equation (17) gives the following vanillas (quoted in implied volatility)

9



KT 0,25 0,50 0,75 1,0
Theor. LC Theor. LC Theor. LC Theor. LC

80% 19,62% 19,77% 18,65% 19,03% 18,00% 18,55% 17,65% 18,14%
90% 18,66% 18,83% 17,80% 18,21% 17,40% 17,91% 17,13% 17,70%
100% 17,85% 17,66% 17,24% 17,18% 17,02% 17,08% 16,81% 16,99%
110% 16,89% 16,66% 16,72% 16,54% 16,63% 16,34% 16,44% 16,35%
120% 16,23% 16,02% 16,29% 16,24% 16,34% 16,11% 16,24% 16,26%

Here are some results for other tests. We calibrate a model with the following parameters ρ12 = 0, w1 = 0.3
and w2 = 0.7, the targeted surface is the theoretical one distorted with two factors: first 0.95 and second
1.05.

KT 0,25 0,50 0,75 1,0

Theor. LC Theor. LC Theor. LC Theor. LC

80% 32.17% 32.10% 30.91% 30.88% 29.99% 29.96% 29.46% 29.43%

90% 31.49% 31.40% 30.43% 32.10% 29.60% 29.52% 29.22% 29.14%

100% 30.58% 30.42% 29.86% 29.62% 29.30% 29.02% 29.02% 28.76%

110% 30.01% 29.80% 29.68% 29.36% 29.04% 28.66% 28.93% 28.56%

120% 29.92% 29.74% 29.63% 29.30% 29.08% 28.68% 28.96% 28.52%

KT 0,25 0,50 0,75 1,0

Theor. LC Theor. LC Theor. LC Theor. LC

80% 35.56% 35.36% 34.17% 34.05% 33.15% 33.01% 32.56% 32.42%

90% 34.81% 34.63% 33.64% 33.50% 32.73% 32.56% 32.30% 32.14%

100% 33.81% 33.60% 33.01% 32.75% 32.39% 32.07% 32.08% 31.75%

110% 33.17% 32.93% 32.81% 32.44% 32.10% 31.66% 31.98% 31.50%

120% 33.07% 32.81% 32.75% 32.35% 32.14% 31.65% 32.02% 31.47%

At last, a different surface for the second underlying is chosen, mutliplying the first one (described in 3.3)
by 0.9, the correlation is this time taken as 0.5.

KT 0,25 0,50 0,75 1,0

Theor. LC Theor. LC Theor. LC Theor. LC

80% 40.78% 40.35% 39.16% 38.77% 37.87% 37.49% 37.16% 36.84%

90% 39.73% 39.51% 38.39% 38.10% 37.26% 36.97% 36.74% 36.46%

100% 38.44% 38.37% 37.52% 37.27% 36.71% 36.40% 36.32% 36.01%

110% 37.54% 37.40% 37.06% 36.78% 36.20% 35.85% 36.05% 35.71%

120% 37.31% 37.24% 36.89% 36.68% 36.10% 35.81% 35.98% 35.68%

The results are rather satisfactory, especially at the money. To keep the computations to a reasonnable
duration, a sparse initial surface was used. This explains why the calibration is not better far from the
money, the fitting method is nontheless valid. Now follows an outlook of the values taken by the new
correlation ρ̃ at different maturities when the theoretical surface is distorted by factors 0.95 and 1.05. The
parameters are: ρ12 = 0.5, w1 = 0.7 and w2 = 0.3.
As expected, the Local Correlation and the distorsion factor evolve in the same direction. The underlyings
must be more correlated when the implied volatility of the basket is higher, and reciprocally. Furthermore,
it appears that in the case of the 0.95 distorsion, the correlation has to violently decrease for high values of
B: the two underlyings must be anti-correlated when they are both large.
As for the influence of the maturity, let us first state that in the computation of λ, when the denominator
is smaller than 10−6, we chose not to change the correlation, to avoid numerical errors. It appears that, as
long as B is in a zone where λ was actually computed, the framework chosen to test the calibration actually
generates a local correlation constant in time.
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4 Application to stochastic interest rates

This section is dedicated to hybrid local volatility models with stochastic rates. The interest rate is assumed
to be stochastic and to follow a diffusion equation. The volatility depends on the level of the spot process
exactly as in a local volatility model. The idea is to compute its exact value for the vanillas in this model to
be calibrated.

4.1 Calibration of the hybrid local volatility model

The risk-neutral diffusion of the model is written as

dSt
St

= r(t, yt)dt+ σ(t, St)dW
1
t (19)

dyt = µ(t, yt)dt+ λ(t, yt)dW
2
t

The two brownian motions are correlated with a constant correlation denoted by ρ. Classic regularity and
ellipticity assumptions are made on the coefficients of the diffusion (described in [5]) to get the

Proposition 3. The diffusion model defined above has a transition density with respect to Lebesgue’s mea-
sure. The value of σ that fits its vanillas is given by

σ2(t, S) = σ2
D(t, S) + 2

r(t)
∫
R
∫ +∞
S

p(t, s, y)dsdy −
∫
R
∫ +∞
S

r(t, y)p(t, s, y)dsdy

S
∫
R p(t, S, y)dy

(20)

where p(t, S, y) is the density of the couple (St, yt), and r(t) a deterministic curve of rates used in the
computation of Dupire’s local volatility σD.

Proof. The existence of the density p(t, S, y) stems from the assumptions on the coefficients. Let us prove
formula (20). The function p solves the forward parabolic equation

∂p

∂t
− ∂2

∂S2
(
1

2
σ2S2p)− ∂2

∂S∂y
(ρσλSp)− ∂2

∂y2
(
1

2
λ2p)) +

∂

∂S
(rSp) +

∂

∂y
(µp) + rp = 0

11



with the initial condition p(0, S, y) = δS0,y0 . As previously, the equation is integrated with respect to y,
writing q(t, S) =

∫
R p(t, S, y)dy

∂q

∂t
− ∂2

∂S2
(
1

2
σ2S2q) +

∂

∂S
(S

∫
R
r(t, y)p(t, S, y)dy) +

∫
R
r(t, y)p(t, S, y)dy = 0

This equation needs to be matched with

∂qD
∂t
− ∂2

∂S2
(
1

2
σ2
DS

2qD) +
∂

∂S
(rSqD) + rqD = 0

qD(0, S) = δS0

Both of them can be written as

1

2
σ2S2 =

∫ +∞
0

(s− S)+(∂q∂t + ∂
∂s (s

∫
rpdy) +

∫
rpdy)ds

q

1

2
σ2
DS

2 =

∫ +∞
0

(s− S)+(∂qD∂t + ∂
∂s (srqD) + rqD)ds

qD

Computing ∫ +∞

0

(s− S)+ ∂

∂s
(s

∫
rpdy)ds =

∫ +∞

0

(s− S)+(s
∂

∂s
(

∫
rpdy) +

∫
rpdy)ds

= −
∫ +∞

0

∂

∂s
((s− S)+)s

∫
rpdyds

= −
∫ +∞

0

s1s≥S

∫
rpdyds

where the second line stems from a simple integration by parts. Reintroducing this into the previous equa-
tions, we get

1

2
σ2S2 =

∫ +∞
0

(s− S)+ ∂q
∂t ds− S

∫ +∞
S

∫
rpdyds

q

1

2
σ2
DS

2 =

∫ +∞
0

(s− S)+ ∂qD
∂t ds− rS

∫ +∞
S

qDds

qD

In order to calibrate the vanillas, all that remains to be done is match the marginal density q with qD, giving
the necessary condition

1

2
σ2S2 +

S
∫ +∞
S

∫
rpdyds

q
=

1

2
σ2
DS

2 +
rS

∫ +∞
S

qds

q

Replacing q by
∫
R p(t, S, y)dy completes the proof.

The calibration equation for the vanillas of our hybrid model is thus

∂p

∂t
− ∂2

∂S2
(
1

2
σ2S2p)− ∂2

∂S∂y
(ρσλSp)− ∂2

∂y2
(
1

2
λ2p)) +

∂

∂S
(rSp) +

∂

∂y
(µp) + rp = 0 (21)

with σ given by formula (20). Using similar technics to the other cases, an existence result can be obtained
under certain assumptions, but this is not the scope of this paper. It is however noteworthy that one of the
necessary hypothesis is the small variation of function r with respect to the deterministic curve r.
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4.2 Numerical calibration

In this section, the theoretical results above are applied to calibrate a given diffusion model. Assuming the
instantaneous rate to obey a Vasicek model (or in other words an Ornstein-Uhlenbeck process), the diffusion
equations become

dSt
St

= rtdt+ σ(t, St)dW
1
t

drt = a(b− rt)dt+ γdW 2
t

The ADI algorithm described in section 5 is applied to equation (21) with the coefficients associated to this
diffusion. The initial condition is p0(S, r) = δS0,r0 .
As in the two previous sections, this partial integro-differential equation is solved with a variable change for
the spot process x = ln(S). The grid chosen is [−10σ

√
t, 10σ

√
t] × [−0.1, 0.2] with σ = 0.2 and r0 = 0.04.

We discretize it with 300 points in both the spot and the rate direction. The initial condition (Dirac mass
at the point (ln(S0), r0)) is approximated by a bivariate Gaussian centred at that point with a very small
variance.

The following numerical values are taken for the diffusion

a = 0.5 b = 0.7 γ = 0.01 r0 = 0.04

These values generate the interest rate

Maturity 0.5 1.0 1.5 2.0 2.5 3.0 4.0 5.0
Rate 4.344% 4.634% 4.880% 5.090% 5.269% 5.423% 5.672% 5.861%

To assess the quality of the calibration, call and put options on the spot process are computed by integration
on the grid and compared to the targeted prices (target columns). Convergence is quite satisfactory. For
instance, for 6 months and 1 year maturity vanillas, one finds

Strike Target Call Target Put

0.5 49.30 49.31 0.39 0.40

0.6 40.14 40.15 1.01 1.02

0.7 31.49 31.51 2.15 2.16

0.8 23.55 23.57 3.99 4.00

0.9 16.52 16.55 6.74 6.76

1.0 10.62 10.65 10.62 10.64

1.1 6.16 6.19 15.95 15.96

1.2 3.22 3.24 22.79 22.79

1.3 1.53 1.54 30.87 30.87

1.4 0.67 0.68 39.79 39.79

1.5 0.28 0.28 49.18 49.17

Target Call Target Put

48.95 48.97 1.25 1.26

40.63 40.66 2.47 2.48

32.89 32.91 4.27 4.28

25.80 25.83 6.72 6.74

19.45 19.48 9.91 9.93

13.94 13.96 13.94 13.95

9.46 9.48 19.00 19.02

6.07 6.09 25.15 25.16

3.68 3.70 32.31 32.31

2.12 2.13 40.28 40.29

1.17 1.18 48.87 48.87

5 Algorithm for the resolution of the calibration equation

In the previous sections, we wrote the calibration equations and gave graphs for their efficiency. In this one,
we describe the algorithm used to solve them: a classic alternating direction implicit scheme. The nonlinear
term is handled using a forward induction at first, and then a predictor-corrector method.
The strong feature of an ADI scheme is its convergence rate in time and space: O(δx2) + O(δt2). The
nonlinearity of the equation challenges this assertion. It is however possible to prove that it remains true in
this case too.
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5.1 Alternating Direction Implicit scheme

The calibration equation is a second-order parabolic equation. One of the most efficient method to solve such
equations is a finite-difference approximation with alternating direction methods. For more informations
on the subject, the reader can look into [4], numerous articles have also been published, in particular
[11, 12, 13, 14]. Let us now consider the following equation

∂p

∂t
− ∂2

∂x2
(
1

2
f2I2(p)p)− ∂2

∂x∂y
(ρfgI(p)p)− ∂2

∂y2
(
1

2
g2p)) +

∂

∂x
(αp) +

∂

∂y
(βp) + γp = 0 (22)

p(0, S, y) = δS0,y0 (23)

where f, g, α, β and γ are functions of t, x and y, ρ a constant and I(p) the quotient of integrals

I2(p)(t, x) =

∫
h2(y)p(t, x, y)dy∫
p(t, x, y)dy

(24)

Remark 5.1. We restricted ourselves to two-dimensional equations since they cover all the concrete examples
studied previously. But the computations that follow are true in the general case. The cost in time however
becomes an issue in higher dimensions.

The domain for the numerical resolution is ]0, T [×]x∗, x
∗[×]y∗, y

∗[. The first step is to take care of the initial
condition. Instead of the Dirac, the initial condition p0 is chosen as a gaussian distribution with very small
variance. It obviously approximates our initial condition. It also verifies (on any bounded domain) the
properties of regularity and strict positivity required in the theoretical study of the equation (though in the
present section, we are only interested in its numerical resolution). Let p(t, x, y) = p0(x, y) if x = x∗, x

∗ or
y = y∗, y

∗ be the boundary conditions.

The algorithm is based upon a predictor-corrector approach. Let ∆x, ∆y and ∆t be increments of the
variables x, y and t, where ∆x = x∗−x∗

I , ∆y = y∗−y∗
J and ∆t = T

N with I, J and N integers. The sets

of points in the x,y,t-plane is given by xn = x∗ + i ∆x
x∗−x∗

, yj = y∗ + j ∆y
y∗−y∗ and tn = n∆t

T , for 0 ≤ i ≤ I,
0 ≤ j ≤ J and 0 ≤ n ≤ N . We construct four sequences pn, p∗n, qn and q∗n of space-dependent functions with
n between 0 and N.

A classic alternating direction implicit scheme functions as follows: let us define the initial functions

p∗0(i, j) = q0(i, j) = q∗0(i, j) = p0(xi, yj)

and then by induction

q∗n+1 − pn
∆t

= δ2
x(I2(pn)

f2
n+1q

∗
n+1 + f2

npn

4
) + δ2

xy(ρfngnI(pn)pn) + δ2
y(

1

2
g2
npn)

− δx(
αn+1q

∗
n+1 + αnpn

2
)− δy(βnpn)−

γn+1q
∗
n+1 + γnpn

2
(25)

qn+1 − pn
∆t

= δ2
x(I2(pn)

f2
n+1q

∗
n+1 + f2

npn

4
) + δ2

xy(ρfngnI(pn)pn) + δ2
y(
g2
n+1qn+1 + g2

npn

4
)

− δx(
αn+1q

∗
n+1 + αnpn

2
)− δy(

βn+1qn+1 + βnpn
2

)− γn+1qn+1 + γnpn
2

(26)

where fn(i, j) designates f(n∆t, xi, yj) (the same thing being true for the other coefficients of the equation).
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δ is a difference operator for the space derivatives. For instance, with 1 ≤ i ≤ I − 1 and 1 ≤ j ≤ J − 1

δ2
xfn =

fn(i− 1, j)− 2fn(i, j) + fn(i+ 1, j)

∆x2

δ2
xyfn =

fn(i− 1, j − 1)− fn(i+ 1, j)− fn(i, j + 1) + fn(i+ 1, j + 1)

4∆x∆y

δxfn =
fn(i+ 1, j)− fn(i− 1, j)

2∆x
...

The equations (25) and (26) form two tridiagonal systems that can be solved very efficiently. A recursion
formula can be computed on the functions qn defined above

qn+1 − q∗n+1

∆t
= δ2

y(
g2
n+1qn+1 − g2

npn

4
)− δy(

βn+1qn+1 − βnpn
2

)− γn+1
qn+1 − q∗n+1

2

Thus

q∗n+1 = qn+1 −
2∆t

2 + γn+1∆t
(δ2
y(
g2
n+1qn+1 − g2

npn

4
)− δy(

βn+1qn+1 − βnpn
2

))

And eventually

qn+1 − pn
∆t

= δ2
x(I2(pn)

f2
n+1qn+1 + f2

npn

4
) + δ2

xy(ρfngnI(pn)pn) + δ2
y(
g2
n+1qn+1 + g2

npn

4
)

− δx(
αn+1qn+1 + αnpn

2
)− δy(

βn+1qn+1 + βnpn
2

)− γn+1qn+1 + γnpn
2

− ∆t

4 + 2γn+1∆t
δ2
x(I2(pn)f2

n+1(δ2
y(
g2
n+1qn+1 − g2

npn

4
)− δy(

βn+1qn+1 − βnpn
2

)))

+
∆t

2 + γn+1∆t
δx(αn+1(δ2

y(
g2
n+1qn+1 − g2

npn

4
)− δy(

βn+1qn+1 − βnpn
2

))) (27)

In the litterature concerning alternating direction implicit schemes, the functions qn are often called the
predicted value of the solution p, a second ’corrector’ step usually follows. In our case, the equation being
nonlinear, we start by chosing pn+1 = qn+1 and study the finite-difference approximation that results.

Proposition 4. This last finite-difference equation is consistent with the partial differential equation (22)
on a bounded domain with smooth initial condition p0, the truncation error is O(∆t) +O(∆x2) +O(∆y2) +

O(∆x3

∆y ).

Proof. Let p be a classic solution of equation (22) on a bounded domain, with p|t=0 = p0. We assume that
p is strictly positive and sufficiently differentiable for all the quantities in the sequel to be properly defined.
All the derivatives that appear are bounded as a consequence of the regularity assumptions on p. Writing
pni,j = pn(xi, yj) = p(tn, xi, yj), a simple Taylor expansion with remainder gives

pn+1
i,j − pni,j

∆t
=

∂p
∂t (tn, xi, yj) + ∂p

∂t (tn+1, xi, yj)

2
+

∆t

2
(
∂2p

∂t2
(tn + θ, xi, yj)−

∂2p

∂t2
(tn + θ∗, xi, yj))
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As for the space derivatives, clearly

δ2
xp
n =

∂2pn

∂x2
(xi, yj) +

∆x2

24
(
∂4pn

∂x4
(xi + θ1, yj) +

∂4pn

∂x4
(xi − θ2, yj))

δ2
xyp

n =
∂2pn

∂x∂y
(xi, yj) +

∆y2

12
(
∂4pn

∂x∂y3
(xi, yj + θ1) +

∂4pn

∂x∂y3
(xi, yj − θ2))

+
∆x2

24∆y
[
∂3pn

∂x3
(xi + θ3, yj−1)− ∂3pn

∂x3
(xi + θ4, yj−1)

+
∂3pn

∂x3
(xi − θ5, yj+1)− ∂3pn

∂x3
(xi − θ6, yj+1)]

δxp
n =

∂pn

∂x
(xi, yj) +

∆x2

12
(
∂3pn

∂x3
(xi + θ1, yj) +

∂3pn

∂x3
(xi − θ2, yj))

where the different constants θ are between 0 and ∆t, ∆x or ∆y depending on the context, they may change
from one formula to another. Let E denote the truncation error for scheme (27), we have

E =
pn+1 − pn

∆t
− δ2

x(I2(pn)
f2
n+1p

n+1 + f2
np

n

4
)− δ2

xy(ρfngnI(pn)pn)− δ2
y(
g2
n+1p

n+1 + g2
np
n

4
)

+ δx(
αn+1p

n+1 + αnp
n

2
) + δy(

βn+1p
n+1 + βnp

n

2
) +

γn+1p
n+1 + γnp

n

2

+
∆t

4 + 2γn+1∆t
δ2
x(I2(pn)f2

n+1(δ2
y(
g2
n+1p

n+1 − g2
np
n

4
)− δy(

βn+1p
n+1 − βnpn

2
)))

− ∆t

2 + γn+1∆t
δx(αn+1(δ2

y(
g2
n+1p

n+1 − g2
np
n

4
)− δy(

βn+1p
n+1 − βnpn

2
)))

Applying the previous expansions and using the fact that p verifies equation (22) at times tn and tn+1 gives
us

E = e1 − e21 − e22 − e23 − e3 + e41 + e42 + e5

with e1 the error coming from the time-derivative

e1 =
∆t

2
(
∂2p

∂t2
(tn + θ, xi, yj)−

∂2p

∂t2
(tn + θ∗, xi, yj))

e21, e22 and e23 come from the second order space-derivatives

e21 =
∆x2

96
[
∂4

∂x4
(I2(pn)f2

np
n)(xi + θ1, yj) +

∂4

∂x4
(I2(pn)f2

np
n)(xi − θ2, yj)

+
∂4

∂x4
(I2(pn)f2

n+1p
n+1)(xi + θ3, yj) +

∂4

∂x4
(I2(pn)f2

n+1p
n+1)(xi − θ4, yj)]

e22 =
∆y2

12
(

∂4

∂x∂y3
(ρfngnI(pn)pn)(xi, yj + θ1) +

∂4

∂x∂y3
(ρfngnI(pn)pn)(xi, yj − θ2))

+
∆x2

24∆y
(
∂3

∂x3
(ρfngnI(pn)pn)(xi + θ3, yj−1)− ∂3

∂x3
(ρfngnI(pn)pn)(xi + θ4, yj−1)

+
∂3

∂x3
(ρfngnI(pn)pn)(xi − θ5, yj+1)− ∂3

∂x3
(ρfngnI(pn)pn)(xi − θ6, yj+1))

e23 =
∆y2

96
[
∂4

∂y4
(g2
np
n)(xi, yj + θ1) +

∂4

∂y4
(g2
np
n)(xi, yj − θ2)

+
∂4

∂y4
(g2
n+1p

n+1)(xi, yj + θ3) +
∂4

∂y4
(g2
n+1p

n+1)(xi, yj − θ4)]
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e3 enables us to compensate for both the nondiagonal term and the nonlocal term I(pn) that cannot be
computed implicitely

e3 =
∂2

∂x2
[(I2(pn)− I2(pn+1))

f2
n+1p

n+1

4
] +

∂2

∂x∂y
[
ρ

2
(fngnI(pn)pn − fn+1gn+1I(pn+1)pn+1)]

e41 and e42 are the terms corresponding to the first order space-derivatives

e41 =
∆x2

24
[
∂3

∂x3
(αnp

n)(xi + θ1, yj) +
∂3

∂x3
(αnp

n)(xi − θ2, yj)

+
∂3

∂x3
(αn+1p

n+1)(xi + θ3, yj) +
∂3

∂x3
(αn+1p

n+1)(xi − θ4, yj)]

e42 =
∆y2

24
[
∂3

∂y3
(βnp

n)(xi, yj + θ1) +
∂3

∂y3
(βnp

n)(xi, yj − θ2)

+
∂3

∂y3
(βn+1p

n+1)(xi, yj + θ3) +
∂3

∂y3
(βn+1p

n+1)(xi, yj − θ4)]

At last, e5 is the correction term stemming from the alternating direction implicit scheme

e5 =
∆t

4 + 2γn+1∆t
δ2
x(I2(pn)f2

n+1(δ2
y(
g2
n+1p

n+1 − g2
np
n

4
)− δy(

βn+1p
n+1 − βnpn

2
)))

− ∆t

2 + γn+1∆t
δx(αn+1(δ2

y(
g2
n+1p

n+1 − g2
np
n

4
)− δy(

βn+1p
n+1 − βnpn

2
)))

Thanks to the regularity of p and of the coefficients of (22), the upper bounds e1 ≤ K∆t2, e21 +e41 ≤ K∆x2,

e23 + e42 ≤ K∆y2 and e22 ≤ K(∆y2 + ∆x3

∆y ) are obtained. It is also easily proven that e5 ≤ K∆t2. The

term that prevents us from getting an error in O(∆t2) is e3. All we have is e3 ≤ K∆t. This concludes the
proof.

Remark 5.2. In a case with no I(p) term, the equation is a classic linear and parabolic one. In that case,
when the off-diagonal1 term is absent (ρ = 0 for instance), the previous scheme has an error in O(∆t2). To
obtain such an error in the general case, a second ’corrector’ step is generally used: the predicted value qn+1

is introduced as an approximation of pn+1 in the cross-derivatives. Here, we use it in the nonlocal term too.

The correction step is the following

p∗n+1 − pn
∆t

= δ2
x(
I2(qn+1)f2

n+1p
∗
n+1 + I2(pn)f2

npn

4
) + δ2

xy(ρ
(fg)n+1I(qn+1)qn+1 + (fg)nI(pn)pn

2
)

+ δ2
y(

1

2
g2
npn))− δx(

αn+1p
∗
n+1 + αnpn

2
)− δy(βnpn)−

γn+1p
∗
n+1 + γnpn

2

pn+1 − pn
∆t

= δ2
x(
I2(qn+1)f2

n+1p
∗
n+1 + I2(pn)f2

npn

4
) + δ2

xy(ρ
(fg)n+1I(qn+1)qn+1 + (fg)nI(pn)pn

2
)

+ δ2
y(
g2
n+1pn+1 + g2

npn

4
)− δx(

αn+1p
∗
n+1 + αnpn

2
)− δy(

βn+1pn+1 + βnpn
2

)

− γn+1pn+1 + γnpn
2

Here too, one can compute p∗n+1

p∗n+1 = pn+1 −
2∆t

2 + γn+1∆t
(δ2
y(
g2
n+1pn+1 − g2

npn

4
)− δy(

βn+1pn+1 − βnpn
2

))
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Eventually, a Crank-Nicholson like formula appears

pn+1 − pn
∆t

= δ2
x(
I2(qn+1)f2

n+1pn+1 + I2(pn)f2
npn

4
) + δ2

xy(ρ
(fg)n+1I(qn+1)qn+1 + (fg)nI(pn)pn

2
)

+ δ2
y(
g2
n+1pn+1 + g2

npn

4
)− δx(

αn+1pn+1 + αnpn
2

)− δy(
βn+1pn+1 + βnpn

2
)

− γn+1pn+1 + γnpn
2

− ∆t

4 + 2γn+1∆t
δ2
x(I2(qn+1)f2

n+1(δ2
y(
g2
n+1pn+1 − g2

npn

4
)− δy(

βn+1pn+1 − βnpn
2

)))

+
∆t

2 + γn+1∆t
δx(αn+1(δ2

y(
g2
n+1pn+1 − g2

npn

4
)− δy(

βn+1pn+1 − βnpn
2

)))

Let us study the consistency of this new scheme

Proposition 5. The algorithm with a corrector step is also consistent. The truncation error is O(∆t2) +

O(∆x2) +O(∆y2) +O(∆x3

∆y ).

Proof. To prove the consistency, let qn+1 be defined as

qn+1 − pn

∆t
= δ2

x(I2(pn)
f2
n+1q

n+1 + f2
np

n

4
) + δ2

xy(ρfngnI(pn)pn) + δ2
y(
g2
n+1q

n+1 + g2
np
n

4
)

− δx(
αn+1q

n+1 + αnp
n

2
)− δy(

βn+1q
n+1 + βnp

n

2
)− γn+1q

n+1 + γnp
n

2

− ∆t

4 + 2γn+1∆t
δ2
x(I2(pn)f2

n+1(δ2
y(
g2
n+1q

n+1 − g2
np
n

4
)− δy(

βn+1q
n+1 − βnpn

2
)))

+
∆t

2 + γn+1∆t
δx(αn+1(δ2

y(
g2
n+1q

n+1 − g2
np
n

4
)− δy(

βn+1q
n+1 − βnpn

2
)))

The computations are almost identical to the previous proposition. This time the error is equal to

E∗ =
pn+1 − pn

∆t
− δ2

x(
I2(qn+1)f2

n+1p
n+1 + I2(pn)f2

np
n

4
)

− δ2
xy(ρ

(fg)n+1I(qn+1)qn+1 + (fg)nI(pn)pn

2
)− δ2

y(
g2
n+1p

n+1 + g2
np
n

4
)

+ δx(
αn+1p

n+1 + αnp
n

2
) + δy(

βn+1p
n+1 + βnp

n

2
) +

γn+1p
n+1 + γnp

n

2

+
∆t

4 + 2γn+1∆t
δ2
x(I2(qn+1)f2

n+1(δ2
y(
g2
n+1p

n+1 − g2
np
n

4
)− δy(

βn+1p
n+1 − βnpn

2
)))

− ∆t

2 + γn+1∆t
δx(αn+1(δ2

y(
g2
n+1p

n+1 − g2
np
n

4
)− δy(

βn+1p
n+1 − βnpn

2
)))

Using the same decomposition, the errors e∗1, e∗23, e∗41 and e∗42 do not change. e∗21 is slightly different but still
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in O(∆x2). As for e∗22 and e∗5, we now have

e∗22 =
e22

2
+ ρ

∆y2

24
(

∂4

∂x∂y3
((fg)n+1I(qn+1)qn+1)(xi, yj + θ1) +

∂4

∂x∂y3
((fg)n+1I(qn+1)qn+1)(xi, yj − θ2))

+
∆x2

24∆y
(
∂3

∂x3
((fg)n+1I(qn+1)qn+1)(xi + θ3, yj−1)− ∂3

∂x3
((fg)n+1I(qn+1)qn+1)(xi + θ4, yj−1)

+
∂3

∂x3
((fg)n+1I(qn+1)qn+1)(xi − θ5, yj+1)− ∂3

∂x3
((fg)n+1I(qn+1)qn+1)(xi − θ6, yj+1))

e∗5 =
∆t

4 + 2γn+1∆t
δ2
x(I2(qn+1)f2

n+1(δ2
y(
g2
n+1p

n+1 − g2
np
n

4
)− δy(

βn+1p
n+1 − βnpn

2
)))

− ∆t

2 + γn+1∆t
δx(αn+1(δ2

y(
g2
n+1p

n+1 − g2
np
n

4
)− δy(

βn+1p
n+1 − βnpn

2
)))

which also verify e∗22 ≤ K(∆y2 + ∆x3

∆y ) and e∗5 ≤ K∆t2. The real difference can be seen in

e∗3 =
∂2

∂x2
[(I2(qn+1)− I2(pn+1))

f2
n+1p

n+1

4
] +

∂2

∂x∂y
[
ρ

2
((fg)n+1I(qn+1)qn+1 − (fg)n+1I(pn+1)pn+1)]

The important feature of the predictor is that the difference qn+1− pn+1 is O(∆t2). This gives e∗3 ≤ K(∆t2)
and concludes the proof.

5.2 Time Convergence Rate of the modified ADI algorithm

In this brief section, we compare the convergence of the algorithm with the theoretical rates computed in
the previous part. To do so, the calibrated value of 1-year at-the-money vanillas is computed for different
number N of time steps. We then plot the error between this price and the targeted value against N. The
next graph is obtained with the one-step predictor algorithm

The error is clearly in O(∆t) as was proved in Proposition 4. We conduct the same experiment with this
time both the predictor and the corrector steps.
This time too, numerical experiments seem to agree with theory. The error appears to be in O(∆t2). The
predictor/corrector scheme serves its purpose.
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6 Instabilities of the solutions: numerical explosion for ’oscillat-
ing’ volatilities

In the previous sections, we described the algorithm used to solve the different calibration equations con-
cerned by our work, and also mentioned the theoretical research performed on the subject. Though a partial
existence result for equation (4) was found, it was still impossible to prove it in the general case: a strongly
variable function b.
This last section is devoted to the local and stochastic volatility model, from that point of view. The nu-
merical resolution of the calibration is performed for strongly variable functions b.

At first, let us go back to the equation for the calibration of a local and stochastic volatility model. For the
sake of simplicity, the interest rate is assumed to be zero. The equation is the following

∂p

∂t
− ∂2

∂S2
(
1

2
σ2
Db

2S2

∫
pdy∫
b2pdy

p)− ∂2

∂S∂y
(ρσDbαS(

∫
pdy∫
b2pdy

)
1
2 p)− ∂2

∂y2
(
1

2
α2p) +

∂

∂y
(βp) = 0 (28)

p(0, S, y) = δS0,y0

The existence of a solution to this equation (on a bounded domain, with regularized boundary conditions)
was previously stated under certain assumptions on b, the essential one being: there exists a constant b∗

such that |b− b(y0)| ≤ b∗ for a given y0. Using the algorithm described in the previous section, we are now
interested in the behavior of the numerical solution of (28) when the function b violates the assumption.
The model chosen for this study is the mean-reverting volatility already expounded

b(y) = exp(y) α(t, y) = γ β(t, y) = κ (δ − y)

with γ, κ and δ three strictly positive constants. The values chosen in section 2 for the different parameters
of the model and of the algorithm led us to a satisfactory calibration. Using them once again, we plot on
the left (Figure 1 (a)) the density p(T, x, y) for T = 1 year and x = ln(S/S0) close to 0.
As expected, the solution p is perfectly smooth. Now, bouncing on the idea of strongly variable functions b,
another density is plotted on the right (Figure 1 (b)) with this time a function b equal to b(y) = exp(10y).
The solution is not smooth anymore. On the contrary, some kind of instability seems to occur.

Remark 6.1. To check that no other numerical effects are involved in the instability, the adjoint equation
of (4) was also studied. From a theoretical viewpoint, it admits a solution without any restrictive assumption
on b, see [15, 5].
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[] []

Figure 1: Solution p of the equation for b(y) = exp(y) and b(y) = exp(10y).

[] []

Figure 2: Solution p of the adjoint equation for b(y) = exp(10y) and b(y) = exp(15y).

The adjoint equation for the local and stochastic volatility calibration is

∂p

∂t
− 1

2
σ2
Db

2S2

∫
pdy∫
b2pdy

∂2p

∂S2
− ρσDbαS(

∫
pdy∫
b2pdy

)
1
2
∂2p

∂S∂y
− 1

2
α2 ∂

2p

∂y2
+ β

∂p

∂y
= 0 (29)

We make the same test and plot its numerical solution for b(y) = exp(Cy) with C = 10 and C = 15
On both these graphics (Figure 2), no sign of instability can be seen. With higher values of C, for instance
C = 20, the function p computed numerically takes meaningless values (1080), but at no time does it start
to oscillate.

7 Conclusion

Using methods inspired from local and stochastic volatility models, we were able to write calibration equations
for two other cases: the so-called local correlation model and a hybrid local volatility and stochastic rates
model.
Their numerical resolution, based upon an alternating direction implicit scheme, produces a satisfactory fit
under certain assumptions (confirmed by the theoretical difficulties met when studying them). When those
hypothesis are not verified, an instability occurs. Explaining it brought us to consider Hadamard stability
and a certain class of integro-differential equations. Unfortunately, the criterion we found can not be applied
in the case of the local and stochastic volatility model, it remains an open problem.
As far as the ADI algorithm is concerned, we managed to adapt it to deal with the nonlinearity of our
equation. Its consistency was also proved, with a convergence rate in time in O(∆t2). A result confirmed
numerically.
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