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Abstract

Consider an open domain D on the plane, whose isoperimetric deficit is smaller than 1. This
note shows that the difference between the barycenter of D and the barycenter of its boundary is
bounded above by a constant times the isoperimetric deficit to the power 1/4. This power can be
improved to 1/2, when D is furthermore assumed to be a convex domain, in any Euclidean space
of dimension larger than 2.
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1 Introduction

Consider a plane simple closed (or Jordan) curve C of length L ă `8, bounding an open domain
D of area A. The usual isoperimetric inequality asserts that

L2 ě 4πA (1)

and that the equality is attained if and only if D is a disk.
The field of isoperimetric stability investigates what can be said about D when (1) is close to

an equality, under an appropriate renormalisation. Recently there has been a lot of progress in
this direction, see for instance the lecture notes of Fusco [5] and the references therein. Define
ρ ≔

a
A{π and the barycenter bpDq of D by

bpDq ≔ 1

A

ż

D

x dx

There are several ways to measure how far D is from BpbpDq, ρq, the disk centered at bpDq of
radius ρ, when the isoperimetric deficit

dpDq ≔ L2 ´ 4πA (2)

is small. Here, we are interested in the difference between bpDq and the barycenter bpCq of the

boundary C, defined by

bpCq ≔ 1

L

ż

C

xσpdxq (3)

where σ is the one-dimensional Hausdorff measure (so that in particular σpCq “ L).
Of course when dpDq “ 0, we have bpCq “ bpDq “ bpBpbpDq, ρqq. It seems that the isoperi-

metric stability of the boundary barycenter has not been studied before. Our primary motivation
comes from an illustrative example on the plane in [3], which investigates certain domain-valued
stochastic evolutions associated by duality with elliptic diffusions on manifolds. Nevertheless, we
found the isoperimetric stability of the boundary barycenter interesting in itself, as it contributes to
a sharp understanding of the well-balancedness of almost minimizers of the isoperimetric inequal-
ity. Furthermore it shares some features with the strong form of isoperimetric stability recently
developed by Fusco and Julin [6]. Here is the bound we needed in [3], it is the main result of this
note:

Theorem 1 There exists a constant c ą 0 such that for any domain D with dpDq ď A{π, we have

}bpDq ´ bpCq} ď cA1{4d1{4pDq

Due to the invariance by translations and homotheties of this bound, it is sufficient to show it
when ρ “ 1 and bpDq “ 0. More precisely, translating by ´bpDq and applying the homothety of
ratio

a
π{A, the above bound is equivalent to

}bpCq} ď cd1{4pDq (4)

for any domain D with dpDq ď 1 and whose barycenter is 0.
Due to Propositions 3 and 4 below, we are wondering if the exponent 1/4 in (4) could not

replaced by 1{2 (or equivalently, replace A1{4d1{4pDq by
a
dpDq in Theorem 1). It would suffice to

improve Lemma 9 below accordingly to obtain this conjecture.
We have not been very precise about the regularity assumption on the domain D, it should

be such that the Bonnesen inequality [1] holds, as it is presented e.g. in the book of Burago
and Zalgaller [2]. In particular, the above result is true if the boundary C of the open set D is
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piecewise C1. Probably it can be extended to the framework of sets of finite perimeter, as defined
in the lectures of Fusco [5]. Then one has to be more careful with the definition of the boundary
barycenter in (3): C has to be replaced by the reduced boundary B˚D and σ by the total variation
measure of the distributional derivative of the indicator function of D, see Fusco [5].

It could be tempting to extend Theorem 1 to the Euclidean spaces R
n of dimension n ě 3.

This is not possible, since the result is then wrong, as shown by the following example:

Example 2 Consider the case n “ 3 and the set D “ B Y F , with B the unit open ball centered
at 0 and

F ≔ tpx, y, zq P R
3 : x ě x0 and

a
y2 ` z2 ă fpxqu

where x0 P p0, 1q, f : rx0,`8q Ñ R` is a decreasing function with fpx0q “
a

1 ´ x2
0
andfpxq ą?

1 ´ x2 for all x ą x0. Here are the contributions of F to:
‚ the volume of D: π

ş`8
x0

f2puq du
‚ the area surface of D: 2π

ş`8
x0

fpuq du
‚ the (unnormalized) barycenter of D:

´
π

ş`8
x0

uf2puq du
¯

p1, 0, 0qt

‚ the (unnormalized) barycenter of BD:
´
2π

ş`8
x0

ufpuq du
¯

p1, 0, 0qt
Let be given α ą 0 and consider the function g:

@ u ą 0, gpuq ≔ u´α

For v ą 1, consider as function f the function g shifted by v: x0 ą 0 is the solution of x2
0

` g2pv `
x0q “ 1 and for any u ě x0, we take fpuq ≔ gpv ` uq. Since we have

ż `8

1

g2puq du ă `8
ż `8

1

gpuq du ă `8
ż `8

1

ug2puq du ă `8
ż `8

1

ugpuq du “ `8

for any α P p1, 2s, we get a counter-example to Theorem 1 by letting v go to `8.
Similar considerations with α P p1{2, 1s enable to see why the Bonnesen inequality [1], recalled

below in Theorem 5, is no longer valid in R
3. It is replaced by an upper bound on the Fraenkel

asymmetry index in Fusco, Maggi and Pratelli [4]. The above construction also highlights the
necessity of a restrictive assumption in Proposition 3 below.

These observations can easily be extended to the Euclidean spaces Rn of dimension n ě 3.
˝

To avoid the pathologies of the previous example, one may want to work in the framework of
compact Riemannian manifolds of dimension n ě 2. Then consider the subsets D with a fixed
volume and a fixed renormalized Fréchet mean bpDq (replacing the notion of barycenter, in general
bpDq will not be unique and one may have to consider their whole set). Assume that among such
D, there is a minimizer B for the pn ´ 1q-Hausdorff measure of the boundary. There is no reason
in general for the renormalized Fréchet mean bpBBq to coincide with bpBq. But, under bounds on
the total diameter and on the curvature, one could try to evaluate the difference between bpBDq
and bpBBq in terms of the isoperimetric deficit of D. This investigation is clearly out of the scope
of the present note.
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Nevertheless, in the restricted framework of nearly spherical sets, there is an extension (even
an improvement) of Theorem 1 to Euclidean spaces of dimension n ě 2. An open set D from R

n

is said to be standard if its volume is equal to the volume of the unit ball B and if its barycenter
bpDq is equal to 0. The standard set D is said to be nearly spherical if there exists a mapping
u on the unitary sphere S ≔ BB centered at 0 such that

C ≔ BD “ tp1 ` upxqqx : x P Su

Define the barycenter of C as in (3):

bpCq ≔ 1

σpCq

ż

C

xσpdxq

where σ is the pn ´ 1q-dimensional Hausdorff measure. The modified isoperimetric deficit is the
non-negative quantity given by

rdpDq ≔ σpCq ´ σpSq

When n “ 2, this quantity is similar to the isoperimetric deficit dpDq defined in (2), at least when
D is standard with dpDq P r0, 1s, in which case we have

dpDq
4π ` 1

ď rdpDq ď dpDq
2π

(5)

Indeed, we have, in one hand,

rdpDq “ L´ 2π

“ L2 ´ 4π2

L` 2π

“ L2 ´ 4πA

L` 2π

ď dpDq
2π

and on the other hand,

dpDq “ L2 ´ 4π

“ pL` 2πqpL ´ 2πq
ď p

a
dpDq ` 4π2 ` 2πqpL ´ 2πq

ď p
a
dpDq ` 2π ` 2πqpL ´ 2πq

ď p1 ` 4πq rdpDq

The interest of the (modified) isoperimetric deficit is:

Proposition 3 There exist two constants ǫpnq ą 0 and cpnq ą 0 depending only on n, such that
for any standard nearly spherical set D with }u}W 1,8pSq ď ǫpnq, we have

}bpCq} ď cpnq
b

rdpDq

Proof

This is an immediate consequence of Theorem 3.6 from Fusco [5], which finds two constants ǫ1pnq ą
0 and c1pnq ą 0 depending only on n, such that for any standard nearly spherical set D with
}u}W 1,8pSq ď ǫ1pnq, we have

}u}W 1,2pSq ď c1pnq
b

rdpDq
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Up to replacing ǫ1pnq by ǫpnq ≔ p1{2q ^ ǫ1pnq, we can assume that the mapping ψ : S Q y ÞÑ
p1 ` upyqqy P BD is one-to-one. It enables to use the change of variable formula to get

ż

C

xσpdxq “
ż

S

ψpyq Jacrψspyqσpdyq

where Jacrψspyq stands for the Jacobian of ψ at y P S. From the form of ψ, we deduce there exists
a constant c2pnq ą 0, a function w : S Ñ R and a vector field v on S such that

@ y P S,

$
’&
’%

Jacrψspyq “ 1 ` wpyqupyq ` xv,∇Suy pyq
|wpyq| ď c2pnq }u}n´1

W 1,8pSq

}vpyq} ď c2pnq }u}n´1

W 1,8pSq

It follows that there exists a constant c2pnq ą 0 depending only on n such that as soon as
}u}W 1,8pSq ď ǫpnq, we have

@ y P S, }y ´ ψpyqJacrψspyq} ď c3pnqp|upyq| ` }∇Supyq}q

Thus we get that

››››
ż

C

xσpdxq
›››› “

››››
ż

S

ψpyqJacrψspyqσpdyq ´
ż

S

yσpdyq
››››

ď c3pnq
ż

S

|upyq| ` }∇Supyq} σpdyq

ď c3pnq
a
σpSq }u}W 1,2pSq

where Cauchy-Schwarz’ inequality was used in the last bound. It remains to write that

}bpCq} “
››››

1

σpCq

ż

C

xσpdxq
››››

ď c3pnqa
σpSq

}u}W 1,2pSq

ď c1pnqc3pnqa
σpSq

b
rdpDq

to get the announced result with cpnq ≔ c1pnqc3pnq{
a
σpSq.

�

The situation of convex sets is even simpler:

Proposition 4 There exist two constants δpnq ą 0 and Cpnq ą 0 depending only on n, such that
any standard convex set D from R

n with rdpDq ď δpnq satisfies

}bpCq} ď Cpnq
b

rdpDq

Proof

From Lemmas 3.10 and 3.11 from Fusco [5], we deduce that there exists a constant δpnq ą 0 such
that any standard convex set D from R

n with rdpDq ď δpnq is nearly spherical with }u}W 1,8pSq ď
ǫpnq. Proposition 3 then shows that it is sufficient to take Cpnq ≔ cpnq to insure the validity of
the above statement.

�
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2 Proof of Theorem 1

In all this section, the set D will be as in the beginning of the introduction.
The arguments will be based on two results of the literature. The first one is quite old and is

due to Bonnesen [1] (see also Theorem 1.3.1 of Burago and Zalgaller [2]):

Theorem 5 Let r and R be the radii of the incircle and the circumcircle of D. We have

π2pR ´ rq2 ď dpDq

This result is not sufficient to deduce Theorem 1, since one can construct a set D whose boundary
is included into the centered annulus of radii 1 ´ ǫ and 1 ` ǫ, with small ǫ ą 0, with a lot of folds
in one direction, so that bpCq drifts in this direction, without bpDq moving a lot.

Thus we need a second result, due quite recently to Fusco and Julin [6]. Let us recall their
oscillation index βpDq, while referring to their paper for its motivation. To simplify the notation,
assume that ρ “ 1, i.e. A “ π. Consider

βpDq ≔ min
yPR2

dż

C

››››νCpxq ´ x´ y

}x´ y}

››››
2

σpdxq (6)

where νCpxq is the exterior unitary normal of C at x, under our assumption it is defined σ-a.s. on
C (Fusco and Julin [6] defined it more generally for the sets of finite parameter, with the caution
recalled after the statement of Theorem 1). Fusco and Julin [6] obtained the (multi-dimensional
version of the) following result

Theorem 6 Under the assumption A “ π, there exists a constant rγ ą 0 such that

βpDq ď rγ
b

rdpDq

Recalling the upper bound of (5) (which does note require dpDq ď 1), we deduce that if A “ π,

βpDq ď γ
a
dpDq (7)

with γ ≔ rγ{
?
2π.

With these ingredients at hand, we now come to the proof of Theorem 1. As already mentioned,
it is sufficient to consider a standard set D with dpDq ď 1, for which the wanted bound reduces to
(4) with a universal constant c ą 0.

Let us denote by o and O the respective centers of the incircle and the circumcircle of D. We
begin by showing that o, O and 0 are quite close when the isoperimetric deficit is small.

Lemma 7 As soon as D is a standard set with dpDq ď 1, we have

maxt}o} , }O} }O ´ o}u ă 3
a
dpDq

Proof

Consider two numbers 0 ă r1 ă R1 and two points o1, O1 P R
2. If we want the inclusion of Bpo1, r1q

into BpO1, R1q, we must have }O1 ´ o1} ď R1 ´r1. Indeed, the equality in the previous bound (which
is also its worse case) corresponds to the situation where Bpo1, r1q and BpO1, R1q are tangential at
a point p which is at the intersection of Bpo1, r1q with BpO1, R1q. Then the three points p, O1 and
o1 are on the same line and we have r ` }O1 ´ o1} ` R “ 2R, namely }O1 ´ o1} “ R1 ´ r1. Since
Bpo, rq Ă D Ă BpO,Rq, we deduce that }O ´ o} ď R ´ r ď

a
dpDq{π, according to Theorem 5.
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Since the barycenter of D is 0, we have

0 “
ż

D

x dx

“
ż

BpO,Rq
x dx´

ż

BpO,RqzD
x dx

“ πR2O ´
ż

BpO,RqzD
x dx

It follows that

πR2 }O} “
›››››

ż

BpO,RqzD
x dx

›››››

ď
ż

BpO,RqzD
}x} dx

ď p}O} `Rq
ż

BpO,RqzBpo,rq
dx

ď p}O} `RqπpR2 ´ r2q

ď p}O} `RqπpR ` rq
a
dpDq
π

“ 2p}O} `RqR
a
dpDq

We deduce that

pπR2 ´ 2R
a
dpDqq }O} ď 2R2

a
dpDq

Due to the assumption dpDq ď 1 and from the fact that R ě 1, we have pπR2 ´ 2R
a
dpDqq ě

pπ ´ 2qR2, so that finally

}O} ď 2

π ´ 2

a
dpDq

The triangle inequality enables to conclude to the last inequality:

}o} ď }O ´ o} ` }O}

ď
ˆ
1

π
` 2

π ´ 2

˙ a
dpDq

ă 3
a
dpDq

�

Our next step consists in checking that M, the set of minimizers in (6), is also close to 0.
It was remarked by Fusco and Julin [6], as a simple consequence of the divergence theorem, that
such minimizers coincide with the points y P R

2 maximizing the mapping

UD : R2 Q y ÞÑ
ż

D

1

}x´ y} dx (8)

It leads us to study the function f defined by

R` Q t ÞÑ fptq ≔
ż

B

1

}x´ te1}dx

where B is the unit disk centered at 0 and e1 is the usual horizontal unit vector.
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Lemma 8 The mapping f is decreasing and as t goes to 0`,

fptq ´ fp0q „ π

2
t2

Proof

For any t ě 0, we have

fptq “
ż

1

´1

dx2

ż ?
1´x2

2

´
?

1´x2

2

1a
px1 ` tq2 ` x2

2

dx1

“ 2

ż
1

0

gx2
ptq dx2

with for any x2 P r0, 1s,

@ t ě 0, gx2
ptq ≔

ż ?
1´x2

2
`t

´
?

1´x2

2
`t

1a
x2
1

` x2
2

dx1

Differentiating with respect to t ě 0, for fixed x2 P p0, 1q, we get

g1
x2

ptq

“ 1b
p
a

1 ´ x2
2

` tq2 ` x2
2

´ 1b
p´

a
1 ´ x2

2
` tq2 ` x2

2

“ 1b
1 ` 2

a
1 ´ x2

2
t` t2

´ 1b
1 ´ 2

a
1 ´ x2

2
t` t2

“ 1 ´ 2
a

1 ´ x2
2
t` t2 ´ p1 ` 2

a
1 ´ x2

2
t` t2q

b
1 ` 2

a
1 ´ x2

2
t` t2

b
1 ´ 2

a
1 ´ x2

2
t` t2

ˆb
1 ` 2

a
1 ´ x2

2
t` t2 `

b
1 ´ 2

a
1 ´ x2

2
t` t2

˙

“ ´4
a

1 ´ x2
2
t

b
1 ` 2

a
1 ´ x2

2
t` t2

b
1 ´ 2

a
1 ´ x2

2
t` t2

ˆb
1 ` 2

a
1 ´ x2

2
t` t2 `

b
1 ´ 2

a
1 ´ x2

2
t` t2

˙

ă 0

The last expression is bounded uniformly in x2 P r0, 1s and for t in a compact of R`zt1u. It follows
that we can differentiate under the integral to get that for t ě 0, t ­“ 1,

f 1ptq “ 2

ż
1

0

g1
x2

ptq dx2
ă 0

This is sufficient to insure that f is decreasing on R`.
Furthermore the above computation shows that uniformly over x2 P r0, 1s, we have as t goes to

0`,

g1
x2

ptq „ ´2
b

1 ´ x2
2
t

This implies that as t goes to 0`,

f 1ptq „ ´4t

ż
1

0

b
1 ´ x2

2
dx2 “ ´πt
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and next the last assertion of the lemma.
�

Note that by homothety and rotation, we have for any ̺ ą 0 and y P R
2,

ż

Bp0,̺q

1

}z ´ y} dz “
ż

Bp0,1q

̺2

}̺z ´ y} dz “ ̺

ż

Bp0,1q

1

}z ´ y{̺} dz “ ̺fp}y} {̺q (9)

In conjunction with the previous lemma, we deduce the following upper bound on the elements
from M:

Lemma 9 There exists a constant c ą 0 such that for any standard set D with dpDq ď 1, we have

@ y P M, }y} ď cd1{4pDq

Proof

It is sufficient to show that there exists ǫ P p0, 1s such that for any standard set D satisfying
dpDq ď ǫ, we have

@ y P R
2, }y} ě cd1{4pDq ñ UDpyq ă UDp0q (10)

where UD was defined in (8).
Note that

UDp0q ě
ż

Bpo,rq

1

}x}dx

ą
ż

Bp0,r´3

?
dpDqq

1

}x}dx

since the bound }o} ă 3
a
dpDq from Lemma 7 implies that Bp0, r ´ 3

a
dpDqq is strictly included

into Bpo, rq. From (9) we deduce that

UDp0q ą pr ´ 3
a
dpDqq`fp0q

“ pr ´ 3
a
dpDqq`2π

ż
1

0

s{s ds

“ 2πpr ´ 3
a
dpDqq`

Recall that r ď 1 ď R, so from Theorem 5 we have that r ě 1 ´
a
dpDq{π. It follows that ǫ can

be chosen sufficiently small so that r ´ 3
a
dpDq ě 1 ´ p3 ` 1{πq

a
dpDq ą 0.

Next let us find an upper bound on UDpyq, for y P R
2 not too small. We have

UDpyq ď
ż

BpO,Rq

1

}x ´ y}dx

“
ż

Bp0,Rq

1

}x`O ´ y}dx

“ Rfp}y ´O} {Rq

where (9) was taken into account. Assume that for some constant c1 ą 0, }y} ě pc1 ` 3qd1{4pDq,
so that we are insured of

}y} ě c1d
1{4pDq ` 3d1{2pDq ě c1d

1{4pDq ` }O}

9



Then we deduce from Lemmas (8) and (7) that for ǫ ą 0 chosen small enough,

Rfp}y ´O} {Rq ď Rfp}y} {R´ }O} {Rq
ď Rfp0q ´ π

4
R p}y} {R ´ }O} {Rq2

ď 2πR ´ c2
a
dpDq{R

with c2 ≔ πc2
1
{4. Note that R ď 1 `

a
dpDq{π, so that (10) amounts to find c2 large enough (i.e.

c1 large enough) so that

@ d P r0, ǫq, 2πp1 `
?
d{πq ´ c2

?
d{p1 `

?
d{πq ď 2πp1 ´ p3 ` 1{πq

?
dq

where ǫ P p0, 1s has been chosen above. An elementary computation shows that this is true with
c2 ≔ 2p1 ` πqp3 ` 2{πq.

�

The end of the proof of Theorem 1 is immediate. Remark that by an application of the
divergence theorem, we have

ş
C
νCpxq dx “ 0, so that for any standard set D,

}bpCq} “ 1

L

››››
ż

C

xσpdxq
››››

“ 1

L

››››
ż

C

x ´ νCpxqσpdxq
››››

ď 1

L

ż

C

}x ´ νCpxq} σpdxq

Consider y P M and write

}νCpxq ´ x} ď
››››νCpxq ´ x´ y

}x´ y}

›››› `
››››
x ´ y

}x ´ y} ´ px ´ yq
›››› ` }y}

The middle term of the r.h.s. can be treated as follows:››››
x ´ y

}x ´ y} ´ px ´ yq
›››› “

ˇ̌
ˇ̌ 1

}x ´ y} ´ 1

ˇ̌
ˇ̌ }x´ y}

“ |1 ´ }x´ y}|
ď }y} ` |}x} ´ 1|

Concerning the last term, use Theorem 5 and Lemma 7 to see that for x P C, if dpDq ď 1, on one
hand,

}x} ď }x´O} ` }O}
ď R ` 3

a
dpDq

ď 1 ` p3 ` 1{πq
a
dpDq

and on the other hand,

}x} ě }x´O} ´ }O}
ě r ´ 3

a
dpDq

ě 1 ´ p3 ` 1{πq
a
dpDq

It follows that |}x} ´ 1| ď p3 ` 1{πq
a
dpDq. Putting together the above considerations, we get

}bpCq} ď 1

L

ż

C

››››νCpxq ´ x´ y

}x´ y}

›››› ` 2 }y} ` p3 ` 1{πq
a
dpDq σpdxq

ď

dż

C

››››νCpxq ´ x ´ y

}x ´ y}

››››
2
σpdxq
L

` }y} ` p3 ` 1{πq
a
dpDq

ď βpDq?
2π

` Cd1{4pDq ` p3 ` 1{πq
a
dpDq
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where we used Lemma 9. From (7) and the fact that dpDq ď 1, we conclude that

}bpCq} ď
ˆ

γ?
2π

` C ` 3 ` 1

π

˙
d1{4pDq

as wanted.
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