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Une revue des principales méthodes de génération d'une série temporelle stationnaire, colorée non-Gaussienne, avec leurs limitations, est présentée. Quelques compléments sont apportés selon le problème à résoudre.

Introduction

Generating pseudo-random numbers which have both a prescribed marginal distribution and a non Dirac autocovariance becomes a need which appears as a milestone in the application of Monte Carlo methods of simulation. Indeed, many stationary time series observed in various contexts (engineering, economics, earthsciences. . .) are clearly non-Gaussian and exhibit internal correlation. This correlation may have short range or long range extent. The main part of this work deals with the first, but some topics will be given on the last one.

Preliminaries : what is to be solved ?

The title of this paper, which is closed to the point of view of an observer, deserves explanations for clarifying the aim of this work. Some classical definitions and results have to be recalled in order to well state our approach. A real random sequence X n , n = -∞, . . . ∞ is said strictly stationary if the distribution of the sequence X k , X k+1 , . . . X k+m does not depend upon k ∈ Z whatever m ∈ Z + . The stationarity implies the invariance with respect of time translation, or in other words the independance upon the time origin, a situation which is mostly encountered in practical situations. A sequence which has finite second-moments is said a second-order sequence. In this case, if the mean m = E(X k ) is independant upon k and the covariance matrix is such than ∀i, j Cov(X j , X i ) = Σ j,i = Σ 0,|j-i| , the sequence is said second-order stationary or stationary in wide sense according to the scientific community. A sequence is Gaussian if all of its finite-dimensional marginal distribution are Gaussian. A Gaussian sequence is stationary if and only if it is second-order stationary, then the sequence is completely characterized by m and Σ j,i . When the sequence is not Gaussian, it is thus clear that even if it is identically distributed, the knowledge of Σ j,i is insufficient to completely characterize the sequence. Therefore there exist many time series, with different finite-dimensional marginal distributions but the first-order, which exhibit the same Σ j,i . The most evident consequence is (c.f. infra) that they look at different. Three points may be drawn from these considerations i) Additional constraints are necessary in order to build an algorithm and according to the choice of them the result is various [START_REF] Popescu | A survey on computer generation of some classes of stochastic processes[END_REF][START_REF] Chiaw-Hock | Simulation of weibull and gamma autoregressive stationnary process[END_REF][START_REF] Bladel | Génération de nombres aléatoires corrélés[END_REF].

ii) It must be well understood that the fact to succeed in generating a sequence which has both a prescribed marginal distribution and covariance does not grant the quality of the simulation of a practical situation. It is not the aim of this paper to go further in this direction, each practical case being different. A check of suitability has to be made before using any algorithm. Theses tests are not the main purpose of this paper. However, for example, a test of linearity of the process [START_REF] Blanc-Lapierre | Fonctions Aléatoires[END_REF] may be very useful to confirm the so-called linear method (cf infra).

iii) Nevertheless, the most numerous algorithms are suitable, the most we will have the chance to get a « good » time series, that is to say, which are close to the phenomena we would simulate.

General considerations on the various methods

To be complete, underline that the properties of non-negativity and symmetry are necessary and sufficient for a matrix being an autocovariance one [START_REF] Blanc-Lapierre | Fonctions Aléatoires[END_REF]. In real situation, one only gets a few of realizations of the defined sequence that prevents estimating its autocovariance. The assumption of second-order ergodicity allows to avoid this drawback and one uses the mean times autocorrelation in place of autocovariance with the probabilistic equivalence

lim n→∞ n -n 1 2n E(X n X n+k ) = Σ 0,|k| + m 2 almost surely
The relevance of this hypothesis is not the matter of this work.

This paper deals with different algorithms convenient for our goal. The presentation is a little bit didactic, even if our purpose is not to achieve a pure mathematical derivation, but only to emphasize some milestones in the various mechanisms we can imagine. In some sens, its are variations on a same subject. Many ideas were already pointed out, their authors are cited in the right place. One can find at the end of the reference book [START_REF] Devroye | Non Uniform Random Variate Generation[END_REF] general considerations related to the matter.

General considerations on the various methods

In the Gaussian case, the problem was deeply investigated for a long time. Almost all of the methods use the fact that the Gaussian character of a sequence is maintained throughout linear system and that moreover, a Gaussian sequence obeys a linear recurrence finite or infinite. By the way, filtering a Gaussian white noise (a Gaussian sequence iid 1 ) is the basis of most of the technics. Before entering in details, let us remind that filtering a discrete process relies upon output y and input x, by a convolution :

y = x h (1) 
and that consequently :

R yy = R xx R hh (2) 
where the R .. are respectively the autocorrelation of the output, the input, and the impulse response. The simple law (2) suggests the three first tracks for solving our problem.

i) If x is a white noise, then the output has the color of the filter. It just remains to find the right pdf 2 for x, which leads to the wanted pdf of y. This is the essence of the linear method. For a Gaussian noise, as previously mentioned, only the color of the filter has to be determined. ii) In a dual way, assuming that the input signal has the wanted color, we can therefore filter by a white random signal. Now, we have to choose a good pdf for h in order to get the wanted pdf for the output. The difficulty is the same as previously.

As moreover the algorithms for random filtering are much more complex, this method is not attractive and therefore will not analyzed more further. iii) Any transform g(x) of a time series changes both the autocorrelation and the statistic. First one determines g(x) for getting the desired output pdf from a Gaussian one. By a backward computation, one can deduce the autocorrelation of this Gaussian process which gives, throughout the transform g(x), the wanted R yy . We are thus brung back to a classical problem. We refer this method as the non-linear one. The pioneer works are those of [START_REF] Gugar | Generation of random signals with specified probability density functions and power density spectra[END_REF][START_REF] Li | Generation of pseudo-random numbers with specified univariate distributions and correlation coefficients[END_REF]. iv) When two variables are said to be correlated in common sense, this means that their values are « close »together. In other words, the correlation is concerned more by the relative order than by the absolute values. This observation leads to the method which consists in transfering the order of a time series having the good color on to a well distributed one. We refer this method as « decalcomania ». This idea was first explored by [START_REF] Polge | Generation of pseudo-random set with desired correlation and probability distribution[END_REF] and later by [START_REF] Lakhan | Generating autocorrelation pseudo-random numbers with specific distributions[END_REF]. v) A complete heuristic approach belonging to stochastic-swap methods has been proposed by [START_REF] Hunter | Generation of random sequences with jointly specified probability density and autocorrelation functions[END_REF], is very efficient and robust. After presenting these methods we study additionnal tools allowing some combining of autocorrelation functions. Using these tools, one can decompose an autocorrelation function in simpler functions for which the previous methods are easier to implement.

The red thread

In order to compare the different methods an example will be used throughout this work, it acts as a « red thread ». Originating in the study of rain properties [START_REF] Lavergnat | A stochastic raindrop time distribution model[END_REF], it deals with the successive diameters of rain drops falling on a small defined area. Figure 1 shows the observed (near Paris) histogram of the diameters which can be considered as issue from a shifted gamma law, the probability density of which being

p(x) = b -a Γ(a) (x -S) a-1 exp(- x -S b ) (3) 
with a = 0.69; b = 0.41; S = 0.2 for x in mm Figure 2 shows the autocorrelation which is quite a weighted sum of pulse and triangle. In order to achieve our goal we use the technic of combination already mentioned. Therefore we firstly deal with a triangular shape for the autocorrelation. 2 The non-linear method

Principles

Let us take X a sequence of iid random variables, the pdf of which being f 1 (x). Let g(x) be a regular transformation (g (x) = 0). The new sequence Y = g(X) has the following pdf :

p(y) = f 1 (x) g (x) (4) 
The inversion of (4) is easy to obtained, analytically or numerically.

The autocorrelation of Y reads : In (5), f 2 is the second order probability density function. If f 2 depends only upon f 1 and the autocovariance R xx of X, therefore (5) can be inverted and once upon a time g has been determined, one gets R xx (k) function of R yy which is the wanted color.

R yy (k) = E[y(i)y(i + k)] = g(x(i))g(x(i + k))f 2 [x(i), x(i + k))]dx(i)dx(i + k) (5)
In some way, we have transpose our problem to an other probability distribution modifying accordingly, the color of the sequence.

It is therefore advantageous to choose a distribution for which the problem is solvable. Gaussian distribution is clearly a must. Figure 3 sketches the method which is achieved when g and h are known. Without any restriction, one can choose :

f 1 (x) = 1 √ 2π e -x 2 /2 f 2 (x , x", k) = 1 2π 1 -ρ 2 xx (k) exp [- x 2 -2ρ xx (k)x x" + x" 2 2(1 -ρ 2 xx (k)) ] (6) 
where ρ .. (k) = R .. (k)/σ 2 denotes the normalized autocorrelation function. If F is the cumulative distribution function of the wanted time sequence, inversion of (4) gives

g(x) = F -1 ( 1 + erf(x/ √ 2) 2 ) (7) 
The autocorrelation R xx is now obtained through inversion of

R yy (k) = g(x )g(x") 2π 1 -ρ 2 xx (k) exp [- x 2 -2ρ xx (k)x x" + x" 2 2(1 -ρ 2 xx (k))
]dx dx"

(8) One checks that -1 ≤ ρ xx ≤ 1 ⇒ m 2 1 ≤ R yy ≤ m 2 ,
as expected, where m n is the n e order moment of Y . In some cases, the inversion of ( 8) can be performed analytically. For example, if Y has to be uniformly distributed over (0, 1) one computes [START_REF] Li | Generation of pseudo-random numbers with specified univariate distributions and correlation coefficients[END_REF] :

ρ xx (k) = 2 sin πρ yy (k) 6 (9) 
In most of the cases, as for our red thread, the inversion must be numerically executed.

Determination of h

The main drawback of the method is that it fails in some cases when R xx (k) is not well behaved. Indeed, R xx (k) has to be definite non-negative [START_REF] Blanc-Lapierre | Fonctions Aléatoires[END_REF] and this property is not guaranteed. A simple counter-example is developed in Appendice A.

It is very difficult to find the conditions prevailing this phenomenon. In fact, we have observed its removal when R yy (k) is sufficiently concave. Fortunately in a lot of questions, the accuracy of the correlation is not mandatory. In such a case, one can take this opportunity for escaping the difficulty by modifying slightly R yy (k). When the objective R xx (k) is well behaved, it remains to determine the impulse response h of the filter. At this point, it is worthwhile to recall that classical methods such AR, MA or ARMA do not operates in all cases. As previously, a trade off may be to loose accuracy in order to get tractability. Nevertheless, the most appropriate technics seems to be MA because AR leads often to an unstable filter and ARMA requires AR as a first step.

Example

MA technics consists in finding the zeros of the following polynomial Φ(z) in order to get a factorized form :

Φ(z) = z N [R xx (N )z N +. . . R xx (0) • • •+R xx (N )z -N ] = B(z)B(z-1)
The zeros inside the unit circle generates B(z) and the zeros outside B(z -1). When zeros are on the unit circle, the factorization is impossible with real values. This constraint is different from the non-negativity one. In our red thread example, the correlation may extend to 1000 lags. The polynomial Φ(z) is thus of order 2000 and they are numerical difficulties in finding its zeros. To remove this trouble, we have restrict this polynomial at a less degree (e.g. 20). Once the corresponding B r (z) is known, it is expanded by interpolation over the desired maximum lag (here 1000). Let b(i), i = 1, . . . N , be the coefficients of B(z). The normal time sequence with normalized autocovariance R xx (k) is obtained by

R xx (k) = N i=0 b(i)ν(k -i)
where ν is a white normal noise. As a first step, what is intended is to simulate a pure triangular correlation (without the impulse at the origin). As already quoted, the shifted gamma law (3) does not lead to a well-behaved R xx . Therefore, a new form has been chosen, which is close to a triangle but suitable for the method :

R yy (k) = 1 -0.001|k| 1 + |k|/750
Figure 4 shows the results of the simulation over 500 000 points. They are very good except the fact we had slightly modify the autocorrelation according to the formula above. 3 The linear method

Principles

In essence, the linear method filters a white time sequence, the first order statistical distribution of which is matched with the desired distribution of the output. For the same reasons quoted above, the filtering resorts to MA technics. Thus the output reads :

y(k) = N i=0 b(i)x(k -i) (10) 
The coefficients b(i) are computed as mentioned in the previous section and with the same limitations. X is an iid. sequence whose probability density function has to be specified. From [START_REF] Hunter | Generation of random sequences with jointly specified probability density and autocorrelation functions[END_REF] it follows that the pdf of Y is a multiple convolution :

g(y) = N i=0 1 b(i) f ( y b(i) ) (11) 
For solving [START_REF] Lavergnat | A stochastic raindrop time distribution model[END_REF], we use the generating functions of the first and second order 3 . From [START_REF] Lavergnat | A stochastic raindrop time distribution model[END_REF], we deduce (with self-explained notations) :

ĝ(u) = N i=0 f (ub(i)) (12) 
g(u) = N i=0 f (ub(i)) (13) 
When [START_REF] Devroye | On random variate generation when only moments or fourier coefficients are known[END_REF] or ( 13) are inverted, the problem is solved. Moreover, even if one does not know invert generating functions their knowledge is sometimes sufficient for drawing [START_REF] Devroye | On random variate generation when only moments or fourier coefficients are known[END_REF].

Example : the red thread

In this case, the correlation being triangular the N coefficients b(i) are equal. We can specify b(i) = 1/ √ N . As g(y) is infinitely divisible, ∀n ∈ Z + , ĝ(u) 1/n exists and is a generating function. Therefore, the solution of ( 12) is simply

f (u) = ĝ(u √ N ) 1/N which corresponds to the pdf f (x) = 1 Γ(a/N )(b √ N ) a/N ) (x -S/ √ N ) a N -1 exp(- x -S/N b √ N ) (14) 
Figure 5 shows the results of the simulation accordingly to this method. Very efficient for the autocorrelation, this method is poorer than the non linear one as pdf is concerned. It is noticeable and must be underlined that the time series look very different in both method, linear and non-linear. Figure 6 gives an extract of the simulated sequence obtained in the two methods. This difference is clearly a confirmation of the discussion of the introduction. One does not would be satisfied with getting only the good distribution and correlation. It is mandatory to check more (e.g. third moment) depending upon the simulation uses. 

Further considerations

Our example is so particular than one can wonder if it is the only one for which the linear method is completely achievable ! The conjunction of a particular shape of autocorrelation and a infinitely divisible distribution is however not unique. The following deals with two approaches allowing to extend the application's field of the linear method.

The Mellin transform approach

We will restrict ourself to the distributions defined on + . Indeed, the Mellin transform of a real function h(t) reads :

H(s) = ∞ 0 h(t)t s-1 dt for α < Real(s) < β
The inverse transform is

∀α < c < β h(t) = 1 2iπ c+i∞ c-i∞ H(s)t -s ds
Apart of the linearity, the Mellin transform has the useful property :

∀a > 0 ⇒ h(at) T M --→ a -s H(s) (15) 
If we consider a pdf f (x) defined over + , its generating function f (u) = E[e ux ] is real. Its second order generating function is thus real and non positive. Therefore one gets from (13) :

g(u) = N i=0 f (ub(i)) T M --→ G(s) = F (s) N i=0 b(i) -s (16) 
Formally, the solution of ( 19) reads

F (s) = G(s) N i=0 b(i) -s (17) 
In order to achieve the resolution, it just remains to take the inverse Mellin transform of [START_REF] Lombardo | Rainfall downscaling in time : Theoretical and empirical comparison between multifractal and hurst-kolmogorov discrete random cascades[END_REF], that is often not very easy.

It is worthwhile to recognize N i=0 b(i) -s as a Dirichlet series, some of them are summable in a closed expression. In some cases the inversion of (17) may thus be achieved easier. For instance, when b(i) = b = cte, (17) becomes F (s) = G(s)/N b -s , thus f (u) = g(u/b)/N and f (u) = ĝ(u/b) 1/N . We recover the previous solution for an infinitely divisible distribution. Therefore, one can build family of autocorrelation functions for which the linear method is available. Among them, one can cite an important class.

Autocorrelation of exponential type

With b(i) = α i , 0 < α < 1 and N = ∞, one gets successively 4 R yy (k) = α k and ∞ i=0 b(i) -s = 1 1 -α -s
from which one has

F (s) = (1 -α -s )G(s) ⇒ f (u) = g(u) -g(αu) ⇒ f (u) = ĝ(u) ĝ(αu)
Specifying the pdf of Y as an exponential one as g(y) = λe -λy and ĝ(u) = λ λ-u . Therefore it comes

f (u) = λ -αu λ -u ⇒ f (x) = (1 -α)λe -λx + αδ(x)

The cumulant approach

When the inversion of ( 17) is not possible, one can use an another method for simulation purposes. The cumulants of a distribution having a second order moment generating function g(u) are given by the derivations

κ j = d j g du j u=0 (18) 
Therefore ( 13) leads to the relationship

κ k = ∞ j=0 b k j χ k ( 19 
)
where κ k and χ k are respectively the cumulant of order k of the distributions g and f . The moment problem [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF] deals with the existence and unicity of a distribution having a given sequence of moments (or cumulants).

It is beyond the scope of this paper to give an extensive discussion about the existence of a distribution having a sequence of cumulants given by [START_REF] Vervaat | Properties of general self-similar processes[END_REF]. It has been established some conditions for the existence but there exists some examples for which the unicity is not fulfilled. However, in view of simulation, the unicity is not mandatory due to the fact that the target is not the distribution f but the distribution g.

Nevertheless caution is required and each case must be carefully controlled.

Since the cumulants are known, one is able to generate a lot of distribution functions either using the Edgeworth expansion [START_REF] Kendall | The advanced Theory of Statistics[END_REF][START_REF] Blinnikov | Expansions for nearly gaussian distributions[END_REF] or orthogonal development [START_REF] Devroye | On random variate generation when only moments or fourier coefficients are known[END_REF]. Appendice D gives some details about this technic and a corresponding algorithm. Nevertheless, as explain in the appendice there is no certainty about the convergence of the used expansion.

A counter-example The sequence b(i) = (i + 1) -m , i = 0, . . . ∞, where m is a positive real, generates a family of normalized autocovariance functions which read after straightforward calculations :

R yy (k) = ∞ i=1 [i(i + k)] -m ζ(2m)
where ζ is the Riemann zeta function.

As ∞ i=0 b(i) k = ∞ j=1 j -mk = ζ(mk), (19) 
is easily reducible to :

χ k = κ k ζ(mk)
For instance, it is worthwhile to note that, for 0.5 < m < 1, this family of autocorrelation functions includes long range of correlation ( k R yy (k) = ∞), but this method fails trivially when the target distribution has not a null mean. Indeed, ∞ j=1 j -m diverges when m < 1 and thus [START_REF] Vervaat | Properties of general self-similar processes[END_REF] implies κ 1 = χ 1 = 0.

4 Probability mixing and the decalcomania method

Preliminaries

Let us take two sequences and perform a probability mixing of them. If the first order statistical properties are identical for the two sequences one keeps it after mixing. However it is not the case for the autocorrelation. We take advantage of this behavior for solving our problem. For fixing the ideas let us take A and B two stationary sequences independent and identically distributed with normalized autocorrelations α(k) and β(k). Let U be a new time sequence of zeros and ones, following an « head and tail » law of parameter p with normalized autocorrelation C(k). Let us define the time sequence Z by the relationship :

Z(n) = U (n)A(n) + (1 -U (n))B(n) (20) 
The normalized autocorrelation of Z reads with q = 1 -p :

ρ Z (k) = q 2 α(k) + p 2 β(k) + pqC(k)[α(k) + β(k)] (21) 
From ( 21), it appears that the autocorrelation includes now a Dirac at the origin. That means the probability mixing whiten the sequences by increasing the disorder. At first glance probability mixing is thus not a good tool for building a colored noise. However, generalization of this mixing open new possibilities of transformation of the autocorrelation without changing the first order statistic.

Let us take n times sequences identically distributed and mutually independent. Aggregate them with the vectorial symbol X.

Let A be a sequence of random vectors of dimension n whose only one coordinate is equal to 1, the others being 0. The following sequence is created :

Z(k) = X • A = n i=1 x i (k)a i (k) (22) 

Probability mixing and the decalcomania method

There is a direct equivalence between the multi-dimensionnal sequence A and a sequence U , the domain of definition of which being the rationnals from 1/n to 1 by step of 1/n. Using the different normalization relationships and introducing the normalized autocorrelation of U , R uu (m), straightforward calculations (Appendice B) gives

R zz (m) = [ n -1 n R uu (m) + 1 n ]R xx (m) (23) 
If ∀k R xx (k) = 1, that means the sequence X are constant, then in the limit n → , one gets :

R zz (m) = R uu (m) (24) 
By construction the series Z has the same distribution than X.

But, here, (24) carries out the transfer of the color from U to Z. This result gives mathematical foundations to the ideas introduced by [START_REF] Polge | Generation of pseudo-random set with desired correlation and probability distribution[END_REF].

Implementation

Outline of the method, which is well named decalcomania, consists in random drawing a sequence of uniform variable U over (0, 1) with prescribed color, then taking F -1 (u) where F is the wanted distribution function. Evidently, the construction of U requires another method. The non linear one is particularly attractive taking into account the simplicity of the function 2 sin[πR zz /6] -see ( 9) -. Unfortunately we are not guaranteed that this function has the well autocorrelation behavior as noted above in section 2. Nevertheless, whatever our tests are, the results are particularly Besides, it appears that this technic may be useful when simulating long range memory processes (see below).

The swap method

This method is a purely heuristic one. It is often use when the sequence is not too long [START_REF] Hunter | Generation of random sequences with jointly specified probability density and autocorrelation functions[END_REF]. Since, generally, one intends to simulate a real situation the idea is to start with a sequence identically distributed which follows the prescribed probability distribution. One postulates that, by rearranging the sequence (among the N ! possibilities if N is the length of the sequence) one can find a permutation, the autocorrelation of which is close to the desired one. The question which arises immediately deals with the duration of such a process, because a « bruteforce » is in N ! and there is no way a priori to find a short path. Oneway to proceed is to use the following algorithm which starts from the iid sequence X 0 of length N . Let us d i the distance between the autocorrelation R X i and the desired autocorrelation R ; we will come back on the choice of this distance. is the upper distance we would reach. In the work presented below the distance has been chosen as

m (R X i (m) -R(m)) 2 /N .
The figure 8 shows, for our red thread, the result obtained after 10 7 iterations which last 318 sec whereas one got better approximations with the previous methods (linear and non-linear) in a few seconds with the same computer (see above). The figure 9 shows how the the computing time is in a power dependence upon the accuracy. Despite the lack of a thorough theoretical explanation, it is pretty sure that the length of the simulated sequence is very penalizing. In our red thread, this length is of 500 000 and the swap of only two elements modifies slightly the autocorrelation. An improvement of this algorithm may be found in generalizing the method by performing a random permutation over a random sampling of S points. One can use the « Latin Hypercube Sampling » for the choice of these points.

Nevertheless, when one deals with moderate length, the method is very efficient. The following example where the length is 10000 gives a good result (accuracy ≈ 5.10 -2 ) in 2 sec. The figure 10 shows the simulated autocorrelation.

Splitting of autocorrelation

In our full red thread the autocorrelation is compound and may be split in to more simple functions. It is quite general and consequently useful to examine how one is able to combine autocorrelations. It is not a new method in itself but an easier way to solve practical problems. Let us take X 1 and X 2 two independent time sequences with variances and normalized autocorrelations, σ 1 , σ 2 and R X 1 X 1 , R X 2 X 2 respectively. Making the linear combination Y = X 1 + X 2 we obtain a new time sequence. Its normalized autocorrelation is easily computed as :

R Y Y = σ 2 1 R X 1 X 1 + σ 2 2 R X 2 X 2 σ 2 1 + σ 2 2 (25) 
By this process, it is thus possible to combine autocorrelation so long as their concavity are up.

The generating function of Y is

ĝ(u) = ĝ1 (u)ĝ 2 (u) (26) 
If the target Y has an infinitely divisible pdf, equation (26) would be simply used.

Application

In our red thread

ĝ(u) = e uS (1 + bu) -a
which is easily decomposable into two functions of the same type.

Elementary calculation shows that one of the possible choices is :

(1 + bu) -ap e uS (1 + bu) -a(1-p) ⇒ R Y Y = pR X 1 X 1 + (1 -p)R X 2 X 2 (27) 
Figures 11 show the results of simulation using this technics for getting an autocorrelation made of two triangles. 7 Self-similar and long range correlation processes

Background

Processes exhibiting long range correlation (the absolute value of its autocorrelation is not summable) and/or self-similar behavior seem play an more and more important role in many technical and scientific area [START_REF] Cappé | Long-range dependence and heavy-tail modeling for teletraffic data[END_REF][START_REF] Lombardo | Rainfall downscaling in time : Theoretical and empirical comparison between multifractal and hurst-kolmogorov discrete random cascades[END_REF][START_REF] Emmanoulopoulos | Generating artificial light curves : Revisited and updated[END_REF]. It is thus worthwhile to investigate if our approach could be useful in their domain. Let us take a strictly self-similar continuous process of Hurst parameter H > 0 (e.g [START_REF] Vervaat | Properties of general self-similar processes[END_REF]). By definition, its marginal distribution obeys at

Y t d = t H Y 1 for t > 0 (28) where d 
= means equality in the sense of probability distributions. Among them, processes with stationary increments are of particular interest because they are good candidate for representing a lot of practical situations. In such cases, one can write

E[(Y t -Y s ) 2 ] = E[(Y t-s -Y 0 ) 2 ] = E[Y 2 t + Y 2 s -2Y t Y s ] (29) 
If one notes m = E[Y 1 -Y 0 ] and σ 2 = E[(Y 1 -Y 0 -m) 2 ], formu- las (29) allows to get Cov(Y t , Y s ) = E[Y t Y s ]-E[Y t ]E[Y s ] = σ 2 2 [t 2H -(t-s) 2H +s 2H ] (30)
Then, a straightforward computation stands that the autocorrelation of the sequence of the increments

X i = Y i -Y i-1 is given by R XX (k) = 1 2 [(k + 1) 2H -2k 2H + (k -1) 2H ] (31) 
The asymptotic behavior of R XX is

R XX (k) ≈ k→∞ H(2H -1)k 2H-2 (32) 
When 1 2 < H < 1, R XX (k) is slowly decreasing with k, and we can talk about a long range memory ( k R XX (k) = ∞) This slowness is the more large since H is close to 1. Clearly, the discussion of the introduction still stands and the previous results do not mean that the simulation of a self-similar process with stationary increments is equivalent to the simulation of a sequence having prescribed distribution and correlation. Particularly, one has to take caution because the marginal distribution of Y 1 must have some peculiar properties : absence of atoms, support connected. . . [START_REF] O'brien | Marginal distributions of selfsimilar processes with stationary increments[END_REF]. An important class [START_REF] Lamperti | Semi-stable stochastic processes[END_REF] is constituted by the strictly stable process of index α 5 , and its Hurst parameter H = α -1 . However, as for other types of process, it may be suitable to perform a simulation although not exactly self-similar is nevertheless « close »to the experimental data.

Simulation

Generalities

Unfortunately, even if the filter leading to the Riemann family (cf. page 12) holds an autocorrelation presenting a great similarity (see appendice E) with (31), this way is a dead end as quoted above in the same page (non-convergence of the expansion of the distribution function). When considering that many algorithms have been proposed for simulating self-similar Gaussian noise, the idea is therefore to use the non-linear method (section 2) for transforming in a self-similar uniform process and then to apply the decalcomania method (section 4). This approach is very attractive because formula [START_REF] Lakhan | Generating autocorrelation pseudo-random numbers with specific distributions[END_REF] shows that ρ yy (k) ≈ πρ xx (k)/3 when ρ xx (k) is close to 0, if ρ yy is like (31). It is therefore natural to search if ρ xx is close to a similar function but with a different parameter H. Figure 12 exhibits, first the autocorrelation after non linear transformation g(x) when the initial one is of type (31) with parameter H = 0.8, second the autocorrelation of type (31) with parameter H = 0.805. The difference between both curves measured as the maximum of their absolute difference up to a lag of 2 10 6 is only 6.4 10 -3 . This result remains true for other values of H. Consequently, the proposed method is composed of three steps.

1. Determine the value of H corresponding to H 2. Draw a self-similar Gaussian process of Hurst parameter H 3. Transform the values of the sequence in order that both of corresponding distribution functions -Gaussian and objective -are equal.

5. A process the marginal distribution Y 1 of which is stable is said to be stable with the same index. Stable distributions are subset of infinitely divisible ones. 

Example

One takes as an artificial example the challenge to build a long memory process the marginal distribution of which being an exponential one with parameter 1. As the « persistence »becomes very important when H is close to 1, a very long sequence is mandatory in order to perform a meaningful statistical work. This requirement leads to some computational difficulties. Therefore we have chosen the value H = 0.8 which can be easily managed with a sequence of 2 17 length. The three steps of the technic are 1. As previously determined H = 0.805 2. The drawing of a standard fractional Gaussian noise uses the method of circulant embedding matrix [START_REF] Wood | Simulation of stationary gaussian process in [0, 1] d[END_REF] 3. The transformation of the normal values of the sequence into an exponential ones via the cumulative distribution function.

Figure 13 shows the results of a simulation following the quoted process. The extract of the sequence is just aimed for illustration. One sees clearly that the initial requirements are fullfiled : the marginal distribution and the autocorrelation are those which has been searched. The method is thus satisfactory. 

Conclusion

Clearly this paper deals with the possibility of simulate experimental processes and not modeling them. Not any of the four methods which have been studied is suitable in any situation. The table 1 sums up the main possibilities inherent to each of them. Nevertheless, each method has its own limitations described in the corresponding section. For instance, the decalcomania technic assumes a simulated uniform distribution : it can be only approximated in the case of long memory. Decalcomania method is thus Short memory √ √ √ √

Long memory √ Table 1 -Behavior of the methods along different point of view

The red marks emphasize the most efficient way to proceed. It has to be recall (1.1) that, in any case, marginal distribution and autocorrelation are insufficient to characterize a random process. Therefore even if these both requirements are fullfiled it must be care that the resulting sequence look like the experimental one.

Appendice A: Counter-example for the non-linear method Restrict ourselves to an autocorrelation function R, the z transform of which being

Φ(z) = R(2)z 2 + R(1)z + R(0) + R(1)z -1 + R(2)z -2 R, real, is non-negative if and only if ∀u i , u j ∈ i,j u i u j R(|j -i|) ≥ 0 This condition is equivalent, in the present case, to R(0) R(1) R(2) R(1) R(0) R(1) R(2) R(1) R(0) ≥ 0 which reads [R(0) -R(2)][R(0)(R(0) + R(2)) -2R(1) 2 ] ≥ 0 With R(0) = 1 ≥ R(2) the condition becomes simply 1 + R(2) -2R(1) 2 ≥ 0 (33) 
Therefore, using formula (9), one gets R yy satisfies the condi- 

R yy (0) = 1 R xx (0) = 1 R yy (1) = 0.781 R xx (1) = 0.82 R yy (2) = 0.247 R xx (2) = 0.3 R yy (k > 2) = 0 R xx (k > 2) = 0
xx (1) = -0.045 < 0, that implies R xx is not an autocorrelation function. Consequently the non-linear method does not work in this example.

Appendice B: Autocorrelation of mixing sequences

Taking the notations of section 4, we have due to the independance of different sequences

E(Z) =E(X) • E(A) = m n i=1 p i = m (34) E(Z 2 ) =E(X • X t )E(A • A t ) (35) 
where m = E(X i ), ∀i and

p i = Prob[a i = 1].
By construction, the matrix A • A t is the identity matrix and therefore E(Z

2 ) = E(X 2 i ) n i=1 p i = E(X 2 i ) whatever i. Similarly E[Z(k)Z(k + m)] = E[X(k) • X t (k + m)]E[A(k) • A t (k + m)]
The matrix A(k) • A t (k + m) has only one element different of 0 and equal to 1. Its probability will be noted

π m ij (k) = Prob[a i (k) = 1 and a j (k + m) = 1] (36) 
According to our hypothesis, this probability does not depend upon k and we have

n i=1 π m ij = p j n j=1 π m ij = p i n i,j=1 π m ij = 1 (37) 
As

i = j ⇒ E(X i X j ) = m 2 i = j ⇒ E(X i (k)X i (k + m)) = Corr(X i ) + m 2 it results E[Z(k)Z(k + m)] = n i,j=1 π m ij m 2 + n i=1 π m ii Corr(X)(m) (38) 
Therefore the autocorrelation of Z reads

R zz = n i=1 π m ii R xx (39) 
Assuming that U (k) is an exchangeable sequence, it comes

p i = 1/n π m ii = α(m) π m i =j = β(m) with the normalization i,j π m ij = nα + n(n -1)β = 1 Then, one computes E(U ) = n + 1 2n Var(U ) = n 2 -1 12n 2 Var(U )R uu = E(U (k)U (k + m)) -E(U ) 2 As E(U (k)U (k + m)) = α n i=1 1 i 2 + 2 1 -nα n(n -1) n i>j 1 ij one deduces α = n -1 n 2 R uu + 1 n 2 (40) 
Therefore (39) reads

R zz = [ n -1 n R uu + 1 n ]R xx (41) 
This expansion of f (x) is an asymptotic one when it converges because the coefficients are independent of the truncation order. From (47) it appears that a i depends upon the first i moments of f (x), hence the first i cumulants.

Let us take µ k the moment of order k of the distribution f . Moments µ n and cumulants κ n are related to the moment generating functions as

f (u) = ∞ k=0 µ k u k k! = exp[ f (u)] = exp[ ∞ k=1 κ k u k k! ]
The moments et cumulants are thus linked by the Bell polynomials [START_REF] Comtet | Advanced Combinatorics[END_REF].

µ n = B n (κ 1 , . . . , κ n ) (48) 
B n (x 1 , . . . , x n ) = (50) After computing the value of the coefficients a i , we have to check the convergence of the expansion n i=0 a i which implies the one of n i=0 a i w(x)P i (x). At this stage it is noticeable that some computation difficulties arise for large i. In fact we are generally obliged to stop the expansion at a moderate order over which the numerical errors induce too important errors. If it is true, we construct a dominating function g(x) of f (x) along the circumstances. Then we apply the following acceptancerejection algorithm repeat generate X with density proportional to g generate a uniform [0, 1] random variate U set T ← U g(X), n ← 0, S ← 0 repeat S ← S + a n w(X)P n (X), n ← n + 1 until |S -T | > R n-1 (X) until T < S return X First example : (α, β) = (0, ∞) One can chose the Laguerre polynomials associated with the weight 6. When considering in B n the monomial including at least one x j , the remaining is based only on x 1 to x n-j . There are Let us write c k = µ k /k!, simple calculation from (50) leads to

c k = k-1 j=0 c j κ k-j k(k -1 -j))! (51) 
and now from (47), a i reads

a i = i k=0 (-1) k i i -k c k (52)
Second example : (α, β) = (-1, 1) Many bases of polynomials are convenient. The most simple are the Legendre polynomials associated with the weight function w(x) = 1.

P i (x) =2 -i [i/2] k=0 (-1) k (2i -2k)! k!(i -k)!(i -2k)! x i-2k =2 -i [i/2] k=0 (-1) k i k 2i -2k i x i-2k
where [x] is the integer part of x. These polynomials follow the recurrence (i + 1)P i+1 (x) = (2i + 1)xP n (x) -iP n-1 (x)

and the orthogonality relation Therehore, a i reads now

a i = 2 -(i+1) (2i + 1) [i/2] k=0 (-1) k (2i -2k)! k!(i -k)! c i-2k (53) 
where c k has the same meaning than in (51).
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 1 Figure 1 -Histogram of raindrop size observed near Paris(France) in 1993
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 2 Figure 2 -Example of autocorrelation of the same sequence as figure 1
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 3 Figure 3 -Sketch of the non-linear method
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 4 Figure 4 -Example of the non-linear method
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 6 Figure 6 -Extract of simulated sequence for both methods
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 7 Figure 7 -Examples of decalcomania method

  X iSwap two values x i , x j . The couple (i, j) is uniformly distributed over (0, N ) × (0, N ). This transformation gives a new sequence X i+1 . If d i+1 ≥ d i return to the beginning. If d i+1 < d i substitute X i+1 for X i and start again but d i+1 < where one stops. In order to decrease the computing time, it is advised to compute
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 8 Figure 8 -Autocorrelation obtained after 10 7 iterations for the red thread
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 9 Figure 9 -Computing time versus accuracy of the swap method
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 10 Figure 10 -Simulation of the autocorrelation of a sequence of 10000 points following a shifted gamma distribution. Swap method.
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 11 Figure 11 -Simulation of the autocorrelation formed by two triangles. The simulation is obtained by the non linear method
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 12 Figure 12 -Curve 1 : 2 sin(πρ/6) with ρ given by (31) where H = 0.8 Curve 2 : ρ given by (31) where H = 0.805

Figure 13 -

 13 Figure 13 -The three parts are respectively an extract of the simulated sequence, the marginal density distribution compared with the target one and the autocorrelation of the sequence together with the desired one. The last figure is just a zoom near the origin. 21
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 1 •••+kn=k≤n 1k 1 +•••+nkn=n n!x k 1 1 . . . x kn n k 1 ! . . . k n !(1!) k 1 . . . (n!) kn(49)A direct computation is very involved. It is thus more convenient to use the recurrence 6B n (x 1 , . . . , x n ) = n-1 k=0 n -1 k B k (x 1 , . . . , x k )x n-k with B 0 = 1
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 1 ways to chose such a disposition among n factors. Therefore one gets easily the recurrenceB n = n j=0 n-1 jB n-j x j which is the same as noted in the main corpusfunction e -x L n (x) = e x n! d n dx n [e -xx n ] = the recurrence relationnL n (x) = (2n -1 -x)L n-1 (x) -(n -1)L n-2 (x) n ≥ 2with L 0 = 1 and L 1 = 1 -x.

  

  

Table 2 -

 2 Example of relation between R xx and R yy tion (33) and therefore is definite non-negative, while 1 + R xx (2) -2R

The non-linear method

We use the definitions f (u) = E[e ux ] and f (u) = log[ f (u)]

Notice that this filtering is equivalent to the ARMA recurrence -αy(n)+ y(n -1) = x(n -1)

Appendice C: Computation of the autocorrelation in the swap method

The autocorrelation of a sequence X i , i = 1, . . . n is given for a second order stationary sequence by

Its estimation for a finite sequence of N length is

If we swap X l and X s the new estimation of autocorrelation reads now

Formula ( 44) is valid under the condition

In the most common situations, the autocorrelation is specified over a range M N . It is thus convenient to discard the swaps which do not satisfy this condition over the range M .

Appendice D: Generation of positive random variables given their cumulants

We do not present here the method based upon Edgeworth expansion due to its more involved implementation. Following [START_REF] Devroye | On random variate generation when only moments or fourier coefficients are known[END_REF], one assumes that the distribution has a continuous density f (x) defined over (α, β), α, β ∈ (-∞, ∞) with finite moments at all orders. Over this interval, one presumes to develop f (x) on a complete closed orthogonal base of polynomials, P i (x), i = 0, . . . , ∞ with weight function w(x) such that

a i are the coefficients of the expansion and lim n→∞ R n (x) = 0 almost everywhere. Due to the classical identity :

The coefficients a i read

Appendice E: Estimation of expression (32)

One starts from the identity

The term A is an alternating series, thus simple to compute with a given accuracy : the value of the last retained term is less than the desired accuracy. Therefore, from x, every ∞ i=1 [i(i + 2 n x)] -m can be computed by iteration and thus, it just remains to evaluate the value for x < 1. In this case, the classical expansion of (1

where the binomial coefficient is

The expansion (55) is also an alternating series, and it is thus easy to control the accuracy of an extracted limited series. Figure 14 shows that for moderate lags (<1000) the Riemann family presents autocorrelations close to the self-similar ones. In this example the value of the Hurst parameter has been evaluated for minimizing the distance between the two autocorrelations. The chosen distance is the maximum of absolute difference between the two functions up to a lag of 1000. The gotten distance is 0.036 which is a small value. Moreover, making the same work on ≈ 4 10 6 lags, it is noticeable that the Hurst parameter and the distance are nearly identical as those obtained for 1000 lags. In fact H is 0.954 in place of 0.953 and the distance increases up to 0.0367. Figure 15 shows the two functions.