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Abstract

Accuracy may be dramatically reduced when the boundary domain is curved and numerical
schemes require a specific treatment of the boundary condition to preserve the optimal order. In the
finite volume context, Ollivier-Gooch and Van Altena (2002) has proposed a technique to overcome
such limitation and restore the high-order accuracy which consists in specific restrictions considered
in the least-squares minimization associated to the polynomial reconstruction. The method suffers
of several drawbacks, particularly, the use of curved elements that requires sophisticated meshing
algorithms. We propose a new method where the physical domain and the computational domain
are distinct and introduce the Reconstruction of Off-site Data (ROD) where polynomial recon-
struction are carried out on the mesh using data localized outside of the computational domain,
namely the Dirichlet condition situated on the physical domain. A series of numerical tests assess
the accuracy, convergence rates, robustness, and efficiency of the new method and show that the
boundary condition is fully integrated in the scheme with a high-order accuracy and the optimal
convergence rate is achieved.

Key words: High-order finite volume method, curved boundaries, Reconstruction of Off-site Data
(ROD)

1. Introduction

Very high-order finite volume methods require supplemental attention to achieve the optimal
order. One of the major difficulties is the boundary treatment when dealing with curved boundary
domains, since polygonal meshes do not exactly fit the physical domain. Without special attention
we observe a dramatic reduction of the accuracy and the method turns out to be a second-order
accurate one [7, 18]. Reaching the nominal convergence order of very high-order methods then
requires additional efforts and is of paramount importance nowadays [26, 28]. Several critical issues
motivate the use of very high-order approximations with curved boundaries. For the Euler system,
it is difficult to compute asymptotic solutions when using piecewise linear approximations of the
geometries [19] even for very fine meshes. Moreover, non-physical approximations may be obtained
when curved boundaries are substituted with piecewise linear straight lines [7, 18].

Several technologies to recover the optimal order have then been proposed and extensively
tested. Deriving from the Finite Element approach [14, 11, 29, 30], the Discontinuous Galerkin
(DG) method [12] handles curved boundaries with isoparametric elements first introduced by Bassi
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and Rebay [7]. A similar approach has also been developed for the Spectral Volume (SV) method
[27, 28]. In short, the technology is based on two major ingredients: the mesh considers curved
elements such that the boundary of the computational domain fits with the physical boundary (at
least up to a given error Ophkq), and, the introduction of nonlinear transformations to map the
curved elements to the reference one.

The method is efficient and provides optimal order of convergence but suffers of several draw-
backs. The element mapping introduces the Jacobian transformations in the volume and interface
integrals that we evaluate in the local basis (the reference element coordinates). Such expressions
become cumbersome when dealing with high polynomial degrees and lead to an additional compu-
tational effort. Moreover a change of sign of the Jacobian mapping, i.e folded or tangled elements,
may occur and disqualifies the transformation [15, 16]. The second and more critical drawback is the
meshing procedure with curved elements, that reveals impractical for complex geometries especially
for three-dimension configurations [18]. Curved mesh generation is a today’s challenge [26] and is
far from being completely solved [17]. Meshing genuinely complex geometries with unstructured
hybrid grids has still not reached the level of commercial grid generators.

Alternative methods have been then proposed to avoid the nonlinear mapping and the curved
mesh generation. In [18], the authors use the computational polygonal domain in place of the
physical domain but modify the normal vector involved in the wall boundary condition (see also
[4]). Accuracy improvement is obtained but, unfortunately, the method has only been tested with
quadratic boundaries and seems to be, at most, a third-order approximation since it considers local
curvature approximations, i.e. second derivatives in the Taylor expansion. Another promising
method is the so-called “Extensions from Subdomains” introduced by [9, 10, 25]. The idea is to
derive a new Dirichlet condition on the computational domain edge from the one evaluated on the
physical boundary. An additional contribution is obtained from the integration of the solution over
a path linking points xcomp and xphys lying on their respective borders. The main advantage is that
no local mapping or curved element is required but an extension of the numerical approximation
has to be evaluated in order to perform the integration of the approximation gradient outside the
computational domain. Unfortunately, the method is only available for second-order operators
with diffusion or viscosity term. The second drawback is the necessity to define path families
between the edges of the computational mesh boundary and the physical one. Such procedure
introduces constrained local minimization operations to define local one-to-one mappings xÑ apxq
from the boundary edges and the associated pieces of the physical boundary. Then, the paths
are derived from linear interpolation rx, apxqs. At last, numerical integrations over the paths are
required to compute the additional contributions to update the associate Dirichlet condition on the
computational boundary.

In the context of the finite volume method involving k-exact polynomial reconstructions, the
pioneer work of Ollivier-Gooch and Van Altena [24] gives rise to a very high-order finite volume
method dealing with curved boundary for the convection-diffusion equation and Euler and Navier-
Stokes systems [21, 22, 23]. The method does not require any geometrical transformation but the
mesh has to be composed with curved cells that fits the physical boundary. Likewise for the DG
method, it represents a severe drawback due to the difficulties to provide such curved elements for
complex geometries. Moreover, the method suffers of other problems. Indeed, one has to perform
numerical integrations over the curved elements to evaluate any source term or the initial condition
mean-values and on the bended boundaries to calculate the numerical fluxes. Integration on a piece
of curves boundary for the two-dimensional situation requires an extra-effort for localizing the Gauss
points, but, the problem turns out to be cumbersome when dealing with a three-dimensional domain
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[3]. Integration over the cell is a major difficulty. Indeed, while Gaussian points are well-located
for simple geometries, it seems almost impossible to derive numerical quadratures rules for generic
curved element except for special situations such as pieces of circles or spheres [22].

We propose a new and simple treatment of Dirichlet conditions in the context of very high-order
finite volume methods with a curved boundary domain. Because this paper is a proof of concept,
we choose the simplest situation, namely the steady-state convection diffusion with Dirichlet con-
dition on two-dimensional curved domain. Future extensions such as three-dimensional geometries,
Neumann or mixed condition, non-stationary systems will be considered.

As in [9, 3], we consider two distinct regions: the physical domain where the continuous problem
takes place and the computational polygonal domain onto which the discretization is designed and
the numerical solution is evaluated. Obviously, Dirichlet conditions prescribed on the physical
boundary have to be transfered in some way to the computational domain. The corner-stone of our
work is the design of a specific polynomial reconstruction that takes the real boundary condition
into account. Therefore we perform a reconstruction with data that are not all localized on the
mesh and name the method: Reconstruction of Off-site Data (ROD) to highlight that data are not
supported by the computational domain.

In some way, isoparametric element method involves two polynomials: one for the curved bound-
ary and, one for the solution approximation. Conversely, the method proposed in this work uses
a unique polynomial for the two associated operations Despite [3] presents some fundamental in-
gredients for the polynomial reconstructions under curved boundary, the present paper proposes a
simpler approach where all the integration procedures are performed on the polygonal domain.

This document is divided in seven sections. After the introduction, we formulate in section 2
the problem consider and the mesh notations, while we present the polynomial reconstructions in
section 3. The fourth section is dedicated to the curved boundary where we detail the inclusion of
the Dirichlet condition prescribed on the physical boundary. In section 5, the very high-order finite
volume is presented and we present the numerical experiments in section 6. We end the document
with the conclusions of this work.

2. Problem formulation and geometry

Let Ω be an open bounded domain of R2 with boundary BΩ. We assume that the boundary is a
regular Jordan curve which admits local parametrizations. We seek function φ ” φpxq, x ” px1, x2q,
solution of the steady-state convection-diffusion equation

∇ ¨ puφ´ κ∇φq “ f, in Ω, (1)

where u “ pu1, u2q ” pu1pxq, u2pxqq is a velocity field, κ ” κpxq is a diffusion coefficient, and
f ” fpxq is a regular source term in Ω, and where a Dirichlet condition is prescribed on the
boundary BΩ with a given regular function φD ” φDpxq.

A mesh M is a set of I non-overlapping convex polygonal cells ci, without gap, i P CM “

t1, . . . , Iu, and we denote by

Ω∆ “
ď

iPCM

ci,

the computational domain and by BΩ∆ the computational boundary associated to the meshM. Ω∆

should be a representative domain approximation of Ω and BΩ∆ is the associated approximation
of BΩ. To this end, we assume that the nodes on BΩ∆ also belong to BΩ. We adopt the notations
detailed hereafter (see Fig. 1):
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• for any cell ci we denote by Bci its boundary and by |ci| its area; the reference cell point is
denoted by mi which can be any point in ci (in the present work we consider the centroid);

• two different cells ci and cj share a common edge eij whose length is denoted by |eij | and
nij “ pn1,ij , n2,ijq is the unit normal vector to eij outward to ci, i.e. nij “ ´nji; the reference
edge point is mij which can be any point on eij (in the present work we consider the midpoint);
if an edge of ci belongs to the boundary BΩ∆, the index j is replaced by letter D;

• for any edge eij , we denote by qij,r, r “ 1, . . . , R, the Gaussian integration points and ζr the
associated weights;

• for any cell ci we associate the index set of neighbor cells νpiq Ă t1, ¨ ¨ ¨ , Iu Y tDu such that
j P νpiq if eij is a common edge between cells ci and cj or with the boundary BΩ∆ if j “ D.

qiD,1

miD

qiD,2 qi j,1

mi j

qi j,2

mi m j

niD
ni jci c j

eiD ei j

∂Ω

Figure 1: Mesh notation with edge and cell reference points (blue dots), Gauss points (red dots associated to a
two-point quadrature rule), and unit normal vectors (dashed lines).

We enhance that Ω is not a polygonal domain. So, the physical domain Ω and its polygonal
approximation Ω∆ do not coincide, and this usually leads to a significant accuracy degradation of
the numerical approximation.

3. Polynomial reconstruction

The polynomial reconstruction is a powerful tool to provide an accurate local representation
of the underlying solution, see [1, 2] for unstructured grids and hyperbolic problems. In [8] a
methodology was proposed in the context of convection-diffusion problems to achieve high accurate
approximations of the gradient fluxes and take into account boundary conditions. The authors
introduced different types of polynomial reconstructions namely the conservative reconstruction in
cell and on boundary edge, and, the non-conservative reconstruction on inner edge, in order to
compute approximations of the convective and the diffusive fluxes. In this work we mainly follows
this methodology of reconstruction but apply in the specific but important case of curved boundary.

3.1. Stencil and data

A stencil is a collection of cells situated in the vicinity of a reference geometrical entity, for
instance an edge or a cell, where the number of elements of the stencil shall depend on the degree
d of the polynomial function we intend to construct. So, for each edge eij and cell ci we associate
the stencils Sij and Si, respectively, consisting of the indices of neighbour cells.
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Remark 3.1. A polynomial reconstruction of degree d requires nd “ pd` 1qpd` 2q{2 coefficients in
2D. So, in practice, a stencil consists of the Nd closest cells to each geometrical entity (edge or cell)
with Nd ě nd (we consider Nd « 1.5nd for the sake of robustness).

To compute the polynomial reconstructions we need the data associated to each cell of the stencil.
To this end, we assume that vector Φ “ pφiqiPCM

gathers the approximation of the mean-value of
φ over each cell, i.e.

φi «
1

|ci|

ż

ci

φ dx.

3.2. Conservative reconstruction for cells

For each cell ci, the local d-th degree polynomial approximation of the underlying solution φ,
based on vector Φ, is defined as

φipxq “ φi `
ÿ

1ď|α|ďd

Rαi rpx´miq
α ´Mα

i s , (2)

where α “ pα1, α2q with |α| “ α1 ` α2 and the convention xα “ xα1
1 xα2

2 . Vector Ri “ pRαi q1ď|α|ďd
gathers the polynomial coefficients, and Mα

i “ 1
|ci|

ş

ci
px ´ miq

α dx in order to guarantee the
conservation property

1

|ci|

ż

ci

φipxq dx “ φi. (3)

For a given stencil Si, we consider the quadratic functional

EipRiq “
ÿ

qPSi

«

1

|cq|

ż

cq

φipxq dx´ φq

ff2

. (4)

We denote by pRi the unique vector which minimizes the quadratic functional (4) and we set pφipxq
the polynomial which corresponds to the best approximation in the least squares sense.

3.3. Non-conservative reconstruction for inner edges

For each inner edge eij , the local d-th degree polynomial approximation of the underlying
solution φ, based on vector Φ, is defined as

φijpxq “
ÿ

0ď|α|ďd

Rαijpx´mijq
α,

where vector Rij “ pRαijq0ď|α|ďd gathers the polynomial coefficients (notice that in this case |α|
starts with 0). For a given stencil Sij with #Sij elements and vector ωij “ pωij,qqq“1,...,#Sij

of
positive weights of the reconstruction, we consider the quadratic functional

EijpRijq “
ÿ

qPSij

ωij,q

«

1

|cq|

ż

cq

φijpxq dx´ φq

ff2

. (5)

We denote by rRij the unique vector which minimizes the quadratic functional (5) and we set rφijpxq
the polynomial which corresponds to the best approximation in the least squares sense.
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3.4. Conservative reconstruction for computational boundary edges

We treat the boundary edges in a particular way to take into account the prescribed Dirichlet
condition. For each boundary edge eiD on BΩ∆, the local d-th degree polynomial approximation of
the underlying solution φ is defined as

φiDpx;ψiDq “ ψiD `
ÿ

1ď|α|ďd

RαiD rpx´miDq
α ´Mα

iDs ,

where vector RiD “ pRαiDq1ď|α|ďd gathers the polynomial coefficients, ψiD P R is a free parameter
which shall be set later, and Mα

iD “ ppiD ´miDq
α in order to guarantee the conservation property

ψiD “ φiDppiD;ψiDq, (6)

with piD a given collocation point. The crucial point is that piD will be a distinct point from
midpoint miD P eiD. For a given stencil SiD with #SiD elements and vector ωiD “ pωiD,qqq“1,...,#SiD

of positive weights of the reconstruction, we consider the quadratic functional

EiDpRiDq “
ÿ

qPSiD

ωiD,q

«

1

|cq|

ż

cq

φiDpx;ψiDq dx´ φq

ff2

. (7)

We denote by pRiD the unique vector which minimizes the quadratic functional (7) and we set
pφiDpx;ψiDq the polynomial which corresponds to the best approximation in the least squares sense
for the given parameter ψiD and point piD.

Remark 3.2. The motivation for introducing the weights either for the case of a non-conservative
polynomial reconstruction or for a conservative polynomial reconstruction for computational bound-
ary edges is presented in [8] as well as the importance to set larger values for the adjacent cells. We
refer the reader to [8] for more details.

4. Reconstructions for Off-site Data (ROD)

4.1. The Ollivier-Gooch and Van Altena method

An accurate approximation of boundary conditions on curved boundaries is of paramount im-
portance when dealing with very high-order methods, since to approximate a curved boundary
with a polygonal mesh generally leads to a second-order approximation [26]. The seminal paper
of Ollivier-Gooch and Van Altena [24] introduces a technique for constraining the least-squares
problem associated to the polynomial reconstructions on the boundary elements. Such approach
requires that the reconstructed solution satisfies the boundary condition exactly at the flux inte-
gration points (collocation points) [22]. In order to properly represent the boundary condition, the
mesh has to fit with the physical boundary, that is, the edges of the mesh are curved for matching
the real boundary (see Figure 2). As mentioned in the introduction, this approach brings several
drawbacks: one has to carefully design Gauss quadrature procedures to take into account curved
boundaries for preserving the accuracy [23], and, designing boundary-fitted mesh for non polygonal
domain is still nowadays a difficult task [26]. In this work we avoid the difficult construction of
boundary-fitted mesh, and, solely work on the easy to construct polygonal mesh.
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qiD,1
miD

qiD,2eiD

ci∂Ω qiD,1 miD qiD,2

biD

eiD

ci

∂Ω

Figure 2: The physical boundary BΩ and the curved boundary edge eiD with reference points on the cell (blue dot),
Gauss points (red dots associated to a two-point quadrature rule) and the edge mid-point miD — Left: situation
when curved cells are considered — Right: situation considered in this work with straight-edge cell and an associated
collocation point biD to miD.

4.2. The ROD method

We propose a different technique to prescribe Dirichlet conditions on curved boundaries.The
main idea is to keep separated the computational domain from the physical one, and, perform all
computations on the polygonal cells, but taking into account the information located on the physical
boundary via the polynomial reconstructions. “Off-site Data” method is meant to remind that the
scheme and the solutions are acting on the computational domain Ω∆, but including information
which is not associated to any geometrical entity of Ω∆ (cell, edge, or point). The main advantages
are:

• numerical integration of flux or functions are only carried out on a polygonal domain and not
on the complex physical domain;

• no curved elements are required, only the computational polygonal mesh is necessary;

• no geometrical transformations are required involving possibly complex Jacobian functions
for the integrals;

• no Gaussian points on the physical boundary BΩ are required;

• the method design does not depend on the number of spacial dimensions.

The technique is intrinsically associated to the conservative polynomial reconstruction given
in section 3.4 where, for a given edge eiD of the computational boundary BΩ∆, we define the
polynomial approximation pφiDpx;ψiDq depending on parameter ψiD and point piD which satisfies
the conservation property (6). We also mention that biD stands for a point on the physical boundary
BΩ, somewhere facing edge eiD as depicted in Figure 2-right whilemiD stands for the edge mid-point.

The Dirichlet condition will be enforced via a clever choice of the values of free parameter ψiD
and point piD. As a consequence one has to design a procedure to compute the free parameter such
that we simultaneously satisfy the conservation and provide a very-high order approximation of the
boundary condition.

4.2.1. Second-order approximation

A simple approach consists in using piD “ miD and in setting the free parameter as ψiD “

φDpmiDq. Such a choice provides no more than a second-order convergence rate since miD does not
represent properly the physical boundary. Moreover, we need an extension of function φD in the
neighbor of the boundary to guarantee that φDpmiDq makes sense since miD R BΩ.
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4.2.2. Very high-order approximation: ROD1

In order to enforce the Dirichlet condition more accurately, we now set piD “ biD and the
free parameter ψiD “ φDpbiDq. Notice that the flux integration will nonetheless be computed on
the straight edge of the computational mesh as presented in section 5.2 and not on the physical
boundary as in [24]. We expect a high-order accuracy since the reconstruction satisfies the Dirichlet
condition on one point associated to the true physical boundary.

4.2.3. Very high-order approximation: ROD2

The major drawback of the method ROD1 is that the least-squares problem (7) is based on
point piD that depends on the physical domain boundary and if the physical boundary evolves, for
instance for time dependent moving domains or interface tracking problems, one has to rebuild the
whole reconstruction procedure for boundary cells/edges. We improve the previous technique by
decoupling the Dirichlet condition from the interpolation problem still preserving the high-order of
accuracy. We start again by setting the collocation point piD “ miD as in the second-order method.
Hence the least-squares procedure (7) no longer depends on the physical boundary position. Next
the free parameter ψiD is computed in a special way. To this end, let us introduce the functional

ψiD Ñ BiDpbiD;ψiDq “ pφiDpbiD;ψiDq ´ φDpbiDq. (8)

Notice that BiD is affine with respect to ψiD. We now seek for ψ˚iD as the unique solution which
satisfies the affine problem

BiDpbiD;ψiDq “ 0, (9)

the solution of which is obtained by taking two values ψ0
iD and ψ0

iD ` 1. After some algebraic
simplifications one get

ψ˚iD “ ψ0
iD ´

BiDpbiD;ψ0
iDqpψ

0
iD ´ 1q

BiDpbiD;ψ0
iDq ´ BiDpbiD;ψ0

iD ` 1q
, (10)

with ψ0
iD is some real value. In other words, we adjust the free parameter on point miD to satisfy

the Dirichlet condition on biD. In practice, we take ψ0
iD “ φDpmiDq since ψ˚iD is supposed to be

close to φDpmiDq for regular solutions.

Remark 4.1. The methods ROD1 and ROD2 mainly differ in the structure of the matrix that
compute the polynomial coefficients with respect to the data and the Dirichlet condition. In the
first case, the matrix depends on the position of the point where the Dirichlet is evaluated but does
not require the additional treatment given in relation (10). On the contrary, the ROD2 method
provides a matrix that does not depend of the position of the Dirichlet condition but an extra-
computational effort is necessary to fix the free parameter with (10). To sum-up, if one considers a
fix curved domain, the ROD1 method is more efficient whereas the ROD2 technique is well-adapted
to situations where the physical boundary changes with the time or during an iterative process.

Remark 4.2. The coefficients pRiD of the polynomial function pφiDpx;ψiDq are obtained as the matrix-
vector product between the Moore-Penrose matrix associated to the least-square problem and the
vector of cell values in the stencil [8]. The matrix structure does not depend on the physical
boundary position by construction but only depends on the computational mesh. The Dirichlet
condition is only prescribed via functional (8) and satisfies condition (9).
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5. High-order finite volume scheme

5.1. Generic finite volume scheme

To obtain a finite volume scheme, equation (1) is integrated over each cell ci and applying the
divergence theorem we get

ż

Bci

puφ´ κ∇φq ¨ nids “
ż

ci

fdx, (11)

where Bci is the cell boundary and ni is the associated outward unit vector. Considering the
Gaussian quadrature with R P N˚ points for the line integrals, i.e. of order 2R, we get the residual
expression

ÿ

jPνpiq

|eij |

«

R
ÿ

r“1

ζr
`

FC
ij,r ` FD

ij,r

˘

ff

´ fi|ci| “ Oph2R
i q, (12)

with the physical fluxes given by

FC
ij,r “ upqij,rq ¨ nijφpqij,rq and FD

ij,r “ ´κpqij,rq∇φpqij,rq ¨ nij ,

and with hi “ maxjPνpiq |eij |, while fi stands for an approximation of order 2R of the mean value
of f over cell ci. Notice that if cell ci is not triangular, we split it into sub-triangles which share
the cell centroid as a common vertex and apply the quadrature rule on each sub-triangle as in
[13]. Using the different polynomial reconstructions see previous sections, we design the numerical
scheme with two main ingredients: the flux computation and the solver. We use a similar technique
proposed in [8, 3], particularly the matrix-free approach is adopted, based on the residual operator
construction.

5.2. Numerical fluxes

Numerical fluxes are computed with respect to the edges:

• for the inner edges eij , the fluxes at the quadrature point qij,r write

FC
ij,r “ rupqij,rq ¨ nijs

`
pφipqij,rq ` rupqij,rq ¨ nijs

´
pφjpqij,rq,

FD
ij,r “ ´κpqij,rq∇ rφijpqij,rq ¨ nij ;

• for the boundary edges eiD, the fluxes at the quadrature point qiD,r write

FC
iD,r “ rupqiD,rq ¨ niDs

`
pφipqiD,rq ` rupqiD,rq ¨ niDs

´
pφiDpqiD,rq,

FD
iD,r “ ´κpqiD,rq∇ pφiDpqiD,rq ¨ niD.

Notice that all the fluxes are computed on the edges of the computational domain without any
reference to the physical domain. The Dirichlet condition on BΩ is implicitly contained in the
polynomial reconstructed function pφiD.

9



5.3. Residual operator and solver

For any vector Φ in RI , we define the residual operators for cells ci, i “ 1, . . . , I, as

GipΦq “
ÿ

jPνpiq

|eij |

«

R
ÿ

r“1

ζr
`

FC
ij,r ` FD

ij,r

˘

ff

´ fi|ci|, (13)

which corresponds to the finite volume scheme (12) cast in residual form. Gathering all the com-
ponents of the residuals provides a global affine operator GpΦq “ pGipΦqqiPCM

and we seek vector

Φ‹ P RI , solution of the problem GpΦq “ 0. The GMRES method, powered by a preconditioning
matrix, is carried out to compute an approximation of Φ‹ as in [8, 3].

6. Numerical results

In order to validate the implementation of the methods and assess the accuracy and the con-
vergence rates, we manufacture several analytical solutions on specific domains which require the
computation of an associated source term to satisfy equation (1). Vector Φ‹ “ pφ‹i qiPCM gathers
the numerical approximations of the mean values of φ while vector Φ “ pφiqiPCM gathers the exact
mean values φi of φ, that is φi “ p1{|ci|q

ş

ci
φ dx.

The normalized L1- and L8-norm errors, denoted by E1 and E8, are computed respectively as

E1pMq “

ÿ

iPCM

|φ‹i ´ φi||ci|

ÿ

iPCM

|φi||ci|
and E8pMq “

max
iPCM

|φ‹i ´ φi|
ÿ

iPCM

|φi||ci|
.

The convergence rate for the normalized L1- and L8-norm errors between two different meshes
M1 and M2, with DOF1 and DOF2 degrees of freedom, respectively, where DOF1 ‰ DOF2, is
evaluated as

OαpM1,M2q “ 2
| logpEαpM1q{EαpM2qq|

| logpDOF1{DOF2q|
, α P t1,8u.

In all the simulations, the weights in functionals (5) and (7) are set to ωij,q “ 3, i P CM, j P νpiq,
q P Sij , if eij is an edge of cq and ωij,q “ 1, otherwise.

For the sake of simplicity, we name the method given in section 4.2.1 as “second-order method”,
the one given in section 4.2.2 as “ROD1 method”, and the proposed method, presented in section
4.2.3, as “ROD2 method”. The methodology of validation consists in observing the rates of con-
vergence under mesh refinement when high-order polynomial reconstructions (Pk, k “ 1, 3, 5) are
employed for different strategies dealing with Dirichlet boundary conditions defined on the physical
curved domains. Only smooth solutions of the steady-state two-dimensional convection-diffusion
equation are considered. The different curved physical domains are

• An annulus domain in section 6.1. We simulate with triangular (possibly refined) grids low
Péclet number, high Péclet number and pure convection problems.

• A rose-shaped domain in section 6.2. A deformation of the annulus permits to define branches
on the interior and exterior boundaries. We simulation with triangular and quadrangular grids
two cases, a rose with three-three branches and a five-three rose both.
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6.1. Annulus domain

In this first set of numerical tests we consider an annulus domain with center at p0, 0q charac-
terized by the interior and exterior circumferences ΓI and ΓE, respectively with radius rI “ 0.5 and
rE “ 1. For the convection-diffusion problem (1), we prescribe a constant radial velocity u and
κ “ 1. We then seek for a manufactured solution, invariant by rotation, given be

φpx1, x2q “ a
`

exppur1q ` expp´ur1q ` b
˘

, r1 ” r1prq “
p2r ´ prE ` rIqq

prE ´ rIq
,

with r2 “ x2
1 ` x2

2 such that r1 P r´1, 1s. We also prescribe homogeneous Dirichlet conditions on
the two boundaries ΓI and ΓE and deduce that b “ ´ exppuq ´ expp´uq while a “ 1{pexppuq `
expp´uq ´ 2q guarantees the property φ P r´1, 0s in Ω. The associated source term f is obtained
after substituting the solution into equation (1).

Low Péclet number. We first address the low Péclet number situation setting u “ 1. We plot
in Figure 3 the manufactured solution and the source term. The simulations were carried out
with successive refined uniform triangular Delaunay meshes (see Figure 4). Observe that boundary
vertices belong to the true physical domain boundary.

Figure 3: Manufactured solution (left panel) and source term (right panel) for the low Péclet number test case.
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Figure 4: Coarse uniform triangular Delaunay mesh prescribed for the annulus domain.

We report in Table 1 the errors and the convergence rates for the second-order, and the two ROD
methods. The second-order approach provides at most a second-order convergence for both error
norms, whatever the degree of the polynomial reconstruction. These results are expected since the
Dirichlet condition is affected with a mismatch of order Oph2q due to the erroneous location with
respect to the physical boundary. The two other methods recover the optimal order and achieve
an effective second-, fourth-, and sixth-order convergence rates for P1, P3, and P5 polynomial
reconstructions, respectively, while no oscillations are reported. The accuracy of both methods are
quite comparable and clearly overcome the second-order limitation expected when dealing with the
curved boundary with non-fitted cells.
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Table 1: Annulus problem for low Péclet number — Errors and convergence rates for the second-order, the ROD1
and ROD2 methods with uniform triangular Delaunay meshes.

Second-order method (section 4.2.1)

P1 P3 P5
DOF E1 O1 E8 O8 E1 O1 E8 O8 E1 O1 E8 O8

736 2.17E´02 — 4.56E´02 — 3.87E´03 — 9.88E´03 — 3.84E´03 — 9.82E´03 —

2828 6.62E´03 1.77 1.24E´02 1.94 1.04E´03 1.95 2.79E´03 1.88 1.04E´03 1.94 2.81E´03 1.86

11500 1.52E´03 2.10 3.59E´03 1.76 2.63E´04 1.97 7.11E´04 1.95 2.63E´04 1.97 7.12E´04 1.96

45248 4.07E´04 1.93 1.01E´03 1.84 6.74E´05 1.99 1.85E´04 1.97 6.74E´05 1.99 1.85E´04 1.97

177880 1.35E´04 1.61 3.08E´04 1.74 1.71E´05 2.01 4.71E´05 2.00 1.71E´05 2.01 4.71E´05 2.00

Reconstruction of Off-side Data (ROD1) method (section 4.2.2)

P1 P3 P5
DOF E1 O1 E8 O8 E1 O1 E8 O8 E1 O1 E8 O8

736 2.06E´02 — 4.55E´02 — 1.55E´04 — 9.14E´04 — 5.06E´05 — 2.22E´04 —

2828 6.21E´03 1.78 1.21E´02 1.97 9.63E´06 4.13 6.51E´05 3.93 3.30E´07 7.48 4.95E´06 5.65

11500 1.43E´03 2.10 3.49E´03 1.77 4.92E´07 4.24 3.93E´06 4.00 5.43E´09 5.85 9.15E´08 5.69

45248 3.82E´04 1.93 1.02E´03 1.80 3.72E´08 3.77 4.13E´07 3.29 9.38E´11 5.93 2.84E´09 5.07

177880 1.28E´04 1.59 3.27E´04 1.66 3.76E´09 3.35 2.44E´08 4.14 1.76E´12 5.81 4.21E´11 6.15

Reconstruction of Off-side Data (ROD2) method (section 4.2.3)

P1 P3 P5
DOF E1 O1 E8 O8 E1 O1 E8 O8 E1 O1 E8 O8

736 2.07E´02 — 4.56E´02 — 1.54E´04 — 9.01E´04 — 4.74E´05 — 2.13E´04 —

2828 6.22E´03 1.78 1.21E´02 1.97 9.67E´06 4.11 6.47E´05 3.91 3.25E´07 7.40 4.91E´06 5.60

11500 1.43E´03 2.10 3.50E´03 1.77 4.92E´07 4.25 3.92E´06 4.00 5.39E´09 5.84 9.17E´08 5.68

45248 3.82E´04 1.93 1.02E´03 1.80 3.71E´08 3.77 4.13E´07 3.29 9.43E´11 5.91 2.84E´09 5.07

177880 1.28E´04 1.59 3.27E´04 1.66 3.76E´09 3.35 2.44E´08 4.13 1.76E´12 5.82 4.21E´11 6.15

High Péclet number. Large Péclet number is prescribed taking u “ 10 and we plot in Figure 5
the manufactured solution and the source term. This test addresses the scheme robustness and
accuracy to preserve the boundary condition when dealing with small boundary layers with respect
to the dimension of the whole geometry. The simulations were carried out with successive refined
Delaunay meshes plotted in Figure 6 where, again, the boundary vertices belong to the physical
boundary.The meshes are refined close to the boundaries to better capture the boundary layers.

Figure 5: Manufactured solution (left panel) and source term (right panel) for the high Péclet number test case.
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Figure 6: Coarse non-uniform triangular Delaunay mesh prescribed for the annulus domain for the high Péclet
number test case.

In Table 2, we report the errors and the convergence rates for the three methods. As for
the low Péclet problem the second-order method reaches at most a second-order convergence for
both error norms while the two ROD methods achieve an effective second-, fourth-, and sixth-order
convergence rates for P1, P3, and P5 polynomial reconstructions, respectively. We conclude that the
high-order methods effectively handle large Péclet number situations achieving optimal convergence
rates without any oscillation.
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Table 2: Annulus problem for high Péclet number — Errors and convergence rates for the second-order and the two
ROD methods with adapted triangular Delaunay meshes.

Second-order method (section 4.2.1)

P1 P3 P5
DOF E1 O1 E8 O8 E1 O1 E8 O8 E1 O1 E8 O8

4292 1.16E´02 — 3.63E´02 — 6.36E´04 — 4.04E´03 — 1.20E´03 — 2.07E´03 —

16398 2.73E´03 2.16 1.32E´02 1.51 2.11E´04 1.64 6.15E´04 2.81 2.48E´04 2.36 4.67E´04 2.22

63364 3.57E´04 3.01 4.30E´03 1.66 5.74E´05 1.93 1.28E´04 2.32 6.10E´05 2.08 1.16E´04 2.06

250732 1.17E´04 1.62 1.20E´03 1.86 1.53E´05 1.93 3.00E´05 2.11 1.53E´05 2.01 2.93E´05 2.01

996002 8.10E´05 0.53 3.07E´04 1.98 3.85E´06 2.00 7.38E´06 2.03 3.85E´06 2.01 7.35E´06 2.00

Reconstruction of Off-side Data (ROD2) method (section 4.2.2)

P1 P3 P5
DOF E1 O1 E8 O8 E1 O1 E8 O8 E1 O1 E8 O8

4292 1.08E´02 — 3.46E´02 — 9.47E´04 — 2.43E´03 — 2.93E´04 — 5.83E´04 —

16398 2.52E´03 2.17 1.27E´02 1.49 5.61E´05 4.22 2.14E´04 3.63 5.88E´06 5.83 1.48E´05 5.48

63364 3.17E´04 3.07 4.19E´03 1.65 4.92E´06 3.60 1.68E´05 3.77 8.08E´08 6.34 2.69E´07 5.93

250732 1.25E´04 1.35 1.17E´03 1.85 1.23E´07 5.36 1.42E´06 3.60 1.10E´09 6.24 5.65E´09 5.62

996002 8.39E´05 0.58 3.01E´04 1.97 7.15E´09 4.13 8.87E´08 4.02 1.00E´11 6.82 8.52E´11 6.08

Reconstruction of Off-side Data (ROD2) method (section 4.2.3)

P1 P3 P5
DOF E1 O1 E8 O8 E1 O1 E8 O8 E1 O1 E8 O8

P1 P3 P5
DOF E1 O1 E8 O8 E1 O1 E8 O8 E1 O1 E8 O8

4292 1.08E´02 — 3.46E´02 — 9.47E´04 — 2.43E´03 — 2.92E´04 — 5.83E´04 —

16398 2.52E´03 2.17 1.27E´02 1.49 5.61E´05 4.22 2.14E´04 3.63 5.88E´06 5.83 1.48E´05 5.48

63364 3.17E´04 3.07 4.19E´03 1.65 4.92E´06 3.60 1.68E´05 3.77 8.08E´08 6.34 2.69E´07 5.93

250732 1.25E´04 1.35 1.17E´03 1.85 1.23E´07 5.36 1.42E´06 3.60 1.10E´09 6.24 5.65E´09 5.62

996002 8.39E´05 0.58 3.01E´04 1.97 7.15E´09 4.13 8.87E´08 4.02 1.00E´11 6.82 8.52E´11 6.08

Pure convection. We address the pure convection situation setting κ “ 0 and u “ 1 and plot in
Figure 7 the manufactured solution and the source term. The simulations were carried out with
successive refined uniform triangular Delaunay meshes presented in Figure 4 and, as in the previous
tests, the boundary vertices belong to the boundary curves.

Figure 7: Manufactured solution (left panel) and source term (right panel) for the pure convection test case.

We report in Table 3, the errors and the convergence rates for the three methods. As in the
previous situations, the second-order boundary approach is doomed to a second-order of accuracy
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while the two other methods efficiently handle the convection problem with curved boundaries with
no oscillations and no artificial diffusion.

Table 3: Annulus problem for pure convection — Errors and convergence rates for the second-order and the ROD
methods with uniform triangular Delaunay meshes.

Second-order method (section 4.2.1)

P1 P3 P5
DOF E1 O1 E8 O8 E1 O1 E8 O8 E1 O1 E8 O8

736 1.01E´02 — 4.43E´02 — 6.78E´03 — 1.07E´02 — 6.88E´03 — 1.01E´02 —

2828 3.62E´03 1.52 2.35E´02 0.94 1.92E´03 1.88 2.92E´03 1.93 1.93E´03 1.89 2.85E´03 1.88

11500 8.67E´04 2.04 1.07E´02 1.12 4.81E´04 1.97 7.19E´04 2.00 4.82E´04 1.98 7.18E´04 1.97

45248 2.23E´04 1.98 1.91E´03 2.51 1.24E´04 1.98 1.86E´04 1.98 1.24E´04 1.98 1.86E´04 1.98

177880 6.85E´05 1.72 4.07E´03 1.11 3.15E´05 2.00 4.72E´05 2.00 3.15E´05 2.00 4.72E´05 2.00

Reconstruction of Off-side Data (ROD1) method (section 4.2.2)

P1 P3 P5
DOF E1 O1 E8 O8 E1 O1 E8 O8 E1 O1 E8 O8

736 8.75E´03 — 3.87E´02 — 2.35E´04 — 1.26E´03 — 3.48E´05 — 1.32E´04 —

2828 3.45E´03 1.38 2.15E´02 0.87 2.47E´05 3.35 1.09E´04 3.63 1.25E´06 4.95 5.26E´06 4.79

11500 8.07E´04 2.07 1.03E´02 1.05 1.58E´06 3.91 9.50E´06 3.48 2.34E´08 5.67 1.14E´07 5.46

45248 2.06E´04 2.00 1.81E´03 2.54 1.21E´07 3.76 8.04E´07 3.61 5.04E´10 5.60 3.11E´09 5.26

177880 6.49E´05 1.69 4.05E´03 1.17 8.45E´09 3.89 9.60E´08 3.10 8.65E´12 5.94 5.76E´11 5.83

Reconstruction of Off-side Data (ROD2) method (section 4.2.3)

P1 P3 P5
DOF E1 O1 E8 O8 E1 O1 E8 O8 E1 O1 E8 O8

736 8.75E´03 — 3.87E´02 — 2.36E´04 — 1.26E´03 — 3.57E´05 — 1.33E´04 —

2828 3.45E´03 1.38 2.15E´02 0.87 2.47E´05 3.35 1.10E´04 3.63 1.25E´06 4.98 5.27E´06 4.80

11500 8.07E´04 2.07 1.03E´02 1.05 1.59E´06 3.91 9.50E´06 3.49 2.34E´08 5.68 1.14E´07 5.47

45248 2.06E´04 2.00 1.81E´03 2.54 1.21E´07 3.76 8.04E´07 3.61 5.04E´10 5.60 3.11E´09 5.26

177880 6.49E´05 1.69 4.05E´03 1.17 8.45E´09 3.89 9.61E´08 3.10 8.64E´12 5.94 5.76E´11 5.83

6.2. Rose-shaped domain

We now consider a more complex geometry where the annulus is transformed by a diffeomor-
phism mapping which consists in a periodic transformation of the boundaries in the following way:

ΓI :

„

x1

x2



“ RIpθ;αIq

„

cospθq
sinpθq



and ΓE :

„

x1

x2



“ REpθ;αEq

„

cospθq
sinpθq



,

where pr, θq are the polar coordinates and RIpθ;αIq and REpθ;αEq, αI, αE P R, are given by

RIpθ;αIq “ rI

ˆ

1`
1

10
sinpαIθq

˙

and REpθ;αEq “ rE

ˆ

1`
1

10
sinpαEθq

˙

.

The global mapping from the Rose-shaped domain onto the annulus then reads
„

y1

y2



Ñ

„

x1

x2



“ T py1, y2q “

ˆ

RE ´ r

RE ´RI
RIpθ;αIq `

r ´RI
RE ´RI

REpθ;αEq

˙„

cospθq
sinpθq



.

The manufactured solution on the Rose-shaped domain is then given by

ψpx1, x2q “ φpT´1px1, x2qq.

Notice that we recover the annulus geometry with αI “ αE “ 0. The associated source term f is
obtained from equation (1) while homogeneous Dirichlet boundary condition still holds on the new
boundaries ΓI and ΓE. All the simulations have been carried out with κ “ 1 and u “ 1
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First test. The transformation is parametrized with αI “ 3 and αE “ 3 and we plot in Figure 8
the manufactured solution and the source term in the new domain.

Figure 8: Manufactured solution (left panel) and source term (right panel).

We carried out the simulations with successive refined regular triangular Delaunay meshes and
also with quadrilateral meshes, see Figure 9, to show the ability of the method to handle different
cell shapes.
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Figure 9: Coarse uniform triangular Delaunay mesh (left panel) and uniform quadrilateral mesh (right panel) pre-
scribed for the rose-shaped domain.

We report in Table 4 the errors and the convergence rates obtained with the ROD2 method
(Delaunay meshes) while Table 5 reports the same informations for the quadrangular meshes. We
obtain the optimal convergence orders and no oscillation is reported. Computations have also been
carried out with the second-order boundary approximation (not presented here) and we observe a
second-order of convergence due to an inadequate treatment of the boundary condition.
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Table 4: Rose-shaped problem — Test 1 — Errors and convergence rates for the ROD method with uniform triangular
Delaunay meshes.

P1 P3 P5
DOF E1 O1 E8 O8 E1 O1 E8 O8 E1 O1 E8 O8

667 2.21E´02 — 4.91E´02 — 3.59E´04 — 3.56E´03 — 2.20E´04 — 1.52E´03 —

2590 6.23E´03 1.86 1.40E´02 1.85 1.85E´05 4.38 2.30E´04 4.04 2.77E´06 6.45 3.04E´05 5.77

10274 1.48E´03 2.09 4.49E´03 1.65 1.17E´06 4.00 2.02E´05 3.53 5.58E´08 5.67 1.12E´06 4.79

41367 3.29E´04 2.16 1.21E´03 1.88 9.17E´08 3.66 1.53E´06 3.71 7.02E´10 6.28 2.07E´08 5.73

165599 6.96E´05 2.24 3.45E´04 1.81 6.58E´09 3.80 1.07E´07 3.83 1.37E´11 5.68 3.85E´10 5.74

Table 5: Rose-shaped problem — Test 1 — Errors and convergence rates for the ROD2 method with uniform
quadrilateral meshes.

P1 P3 P5
DOF E1 O1 E8 O8 E1 O1 E8 O8 E1 O1 E8 O8

660 6.42E´02 — 8.73E´02 — 1.41E´03 — 7.86E´03 — 9.75E´04 — 4.73E´03 —

2760 1.61E´02 1.93 2.23E´02 1.91 2.56E´04 2.39 8.45E´04 3.12 1.20E´05 6.15 8.33E´05 5.65

11280 4.02E´03 1.97 5.60E´03 1.96 2.00E´05 3.62 8.48E´05 3.27 1.66E´07 6.08 1.08E´06 6.17

46080 9.87E´04 2.00 1.38E´03 1.99 1.14E´06 4.07 5.93E´06 3.78 2.76E´09 5.83 2.00E´08 5.68

185280 2.47E´04 1.99 3.45E´04 1.99 7.50E´08 3.91 3.84E´07 3.93 7.72E´11 5.14 3.42E´10 5.85

Second test. The second test deals with a more wavy boundary setting αI “ 3 and αE “ 5. We
plot in Figure 10 the manufactured solution and the source term.

Figure 10: Manufactured solution (left panel) and source term (right panel).
As in the previous case, simulations with successive refined regular Delaunay meshes or quadri-

lateral meshes have been carried out, see Figure 11.
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Figure 11: Coarse uniform triangular Delaunay mesh (left panel) and uniform quadrilateral mesh (right panel)
prescribed for the rose-shaped domain.

We report in Tables 6 and 7 the errors and the convergence rates obtained with the ROD2
method and confirm the ability of the scheme to preserve the optimal order in function of the
polynomial degree used for the reconstruction procedure.

Table 6: Rose-shaped problem — Test 2 — Errors and convergence rates for the ROD method with uniform triangular
Delaunay meshes.

P1 P3 P5
DOF E1 O1 E8 O8 E1 O1 E8 O8 E1 O1 E8 O8

645 2.71E´02 — 6.97E´02 — 6.80E´04 — 8.76E´03 — 5.12E´04 — 5.86E´03 —

2550 7.56E´03 1.86 2.30E´02 1.61 4.49E´05 3.95 7.62E´04 3.55 1.29E´05 5.36 2.45E´04 4.62

10244 1.89E´03 2.00 7.30E´03 1.65 3.71E´06 3.59 1.28E´04 2.57 2.98E´07 5.42 1.39E´05 4.12

40789 4.10E´04 2.21 1.97E´03 1.89 2.53E´07 3.89 6.70E´06 4.27 9.53E´09 4.98 4.91E´07 4.84

162011 9.63E´05 2.10 5.92E´04 1.75 1.89E´08 3.76 9.37E´07 2.85 1.20E´10 6.34 1.07E´08 5.55

Table 7: Rose-shaped problem — Test 2 — Errors and convergence rates for the ROD2 method with uniform
quadrilateral meshes.

P1 P3 P5
DOF E1 O1 E8 O8 E1 O1 E8 O8 E1 O1 E8 O8

660 6.91E´02 — 1.11E´01 — 5.06E´03 — 3.27E´02 — 5.37E´03 — 3.60E´02 —

2760 1.74E´02 1.93 2.85E´02 1.90 3.94E´04 3.57 3.57E´03 3.10 1.33E´04 5.17 1.61E´03 4.35

11280 4.37E´03 1.96 7.13E´03 1.97 4.70E´05 3.02 3.83E´04 3.17 2.27E´06 5.78 5.07E´05 4.91

46080 1.08E´03 1.99 1.77E´03 1.98 3.36E´06 3.75 2.50E´05 3.88 4.85E´08 5.47 1.07E´06 5.48

185280 2.71E´04 1.99 4.42E´04 1.99 2.05E´07 4.02 1.57E´06 3.98 1.11E´09 5.42 1.41E´08 6.22

7. Conclusions

We have presented a high-order finite volume scheme to solve the steady-state bi-dimensional
convection-diffusion problem based on a new class of polynomial reconstructions. Two approaches
were proposed to overcome the second-order accuracy limitation when dealing with non polyg-
onal domain and Dirichlet boundary conditions. The first one consists in analytically constrain
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the boundary element reconstructions in order to satisfy the boundary condition at a point on the
physical domain boundary. Such approach differs from the Olliver-Gooch and Van Altena approach
in the sense that the flux calculation is performed on the straight edge and no curved element is
necessary. The proposed ROD method consists in constraining the boundary reconstructions by
a posteriori computing the associated free parameter such that the reconstructions satisfy appro-
priately the boundary condition. This procedure relies on the fact that the least-squares matrix
associated to the reconstruction is decoupled from the boundary parameterization and, therefore,
is less sensitive to the boundary location.

Several numerical tests considering simple and complex curved domains were simulated to ob-
serve that we achieve effective optimal order of accuracy both for structured and unstructured
meshes for the two-dimensional linear steady-state convection-diffusion problem. A pure convec-
tion problem (hyperbolic scalar equation) was also tested and optimal order accuracy rates were
achieved without any reported oscillation.

This work represents a proof of concept showing that very high-order of accuracy Finite Volume
scheme on unstructured can handle curved boundary conditions at the optimal order of accuracy
without the need for a boundary fitted mesh or complex transformations. For future works we plan
to extend this approach to other boundary conditions (Neumann, Robin), to unsteady systems
(Euler, Navier-Stokes) with time evolving domain (piston, pulsating interfaces, etc.). We also plan
to investigate the extension of ROD to unstructured 3D mesh. Even if, conceptually speaking, the
ROD method does not depend on the space dimension, the machinery needed in three-dimensional
will demand delicate validation and verification.
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