Ricardo Costa 
  
Stéphane Clain 
  
Raphaël Loubère 
  
Gaspar J Machado 
  
High-order accurate finite volume scheme on curved boundaries for the two-dimensional steady-state convection-diffusion equation with Dirichlet condition

Keywords: High-order finite volume method, curved boundaries, Reconstruction of Off-site Data (ROD)

 has proposed a technique to overcome such limitation and restore the high-order accuracy which consists in specific restrictions considered in the least-squares minimization associated to the polynomial reconstruction. The method suffers of several drawbacks, particularly, the use of curved elements that requires sophisticated meshing algorithms. We propose a new method where the physical domain and the computational domain are distinct and introduce the Reconstruction of Off-site Data (ROD) where polynomial reconstruction are carried out on the mesh using data localized outside of the computational domain, namely the Dirichlet condition situated on the physical domain. A series of numerical tests assess the accuracy, convergence rates, robustness, and efficiency of the new method and show that the boundary condition is fully integrated in the scheme with a high-order accuracy and the optimal convergence rate is achieved.

Introduction

Very high-order finite volume methods require supplemental attention to achieve the optimal order. One of the major difficulties is the boundary treatment when dealing with curved boundary domains, since polygonal meshes do not exactly fit the physical domain. Without special attention we observe a dramatic reduction of the accuracy and the method turns out to be a second-order accurate one [START_REF] Bassi | High-order accurate discontinuous finite element solution of the 2D Euler equations[END_REF][START_REF] Krivodonova | High-order accurate implementation of solid wall boundary conditions in curved geometries[END_REF]. Reaching the nominal convergence order of very high-order methods then requires additional efforts and is of paramount importance nowadays [START_REF] Wang | High-order computational fluid dynamics tools for aircraft design[END_REF][START_REF] Wang | High-order methods for the Euler and Navier-Stokes equations on unstructured grids[END_REF]. Several critical issues motivate the use of very high-order approximations with curved boundaries. For the Euler system, it is difficult to compute asymptotic solutions when using piecewise linear approximations of the geometries [START_REF] Mavriplis | Results from the 3rd drag prediction workshop using the NSU3D unstructured mesh solver[END_REF] even for very fine meshes. Moreover, non-physical approximations may be obtained when curved boundaries are substituted with piecewise linear straight lines [START_REF] Bassi | High-order accurate discontinuous finite element solution of the 2D Euler equations[END_REF][START_REF] Krivodonova | High-order accurate implementation of solid wall boundary conditions in curved geometries[END_REF].

Several technologies to recover the optimal order have then been proposed and extensively tested. Deriving from the Finite Element approach [START_REF] Ergatoudis | quadrilateral" elements for finite element analysis[END_REF][START_REF] Ciarlet | Interpolation over curved elements, with applications to finite element methods, Corn-put[END_REF][START_REF]Curved elements in the finite element method. I[END_REF][START_REF]Curved elements in the finite element method. II[END_REF], the Discontinuous Galerkin (DG) method [START_REF] Cockburn | Discontinuous Galerkin Methods[END_REF] handles curved boundaries with isoparametric elements first introduced by Bassi and Rebay [START_REF] Bassi | High-order accurate discontinuous finite element solution of the 2D Euler equations[END_REF]. A similar approach has also been developed for the Spectral Volume (SV) method [START_REF] Wang | Extension of the spectral volume method to high-order boundary representation[END_REF][START_REF] Wang | High-order methods for the Euler and Navier-Stokes equations on unstructured grids[END_REF]. In short, the technology is based on two major ingredients: the mesh considers curved elements such that the boundary of the computational domain fits with the physical boundary (at least up to a given error Oph k q), and, the introduction of nonlinear transformations to map the curved elements to the reference one.

The method is efficient and provides optimal order of convergence but suffers of several drawbacks. The element mapping introduces the Jacobian transformations in the volume and interface integrals that we evaluate in the local basis (the reference element coordinates). Such expressions become cumbersome when dealing with high polynomial degrees and lead to an additional computational effort. Moreover a change of sign of the Jacobian mapping, i.e folded or tangled elements, may occur and disqualifies the transformation [START_REF] Gordon | Construction of curvilinear co-ordinate systems and applications to mesh generation[END_REF][START_REF] Gordon | Transfinite element methods: Blending-function interpolation over arbitrary curved element domains[END_REF]. The second and more critical drawback is the meshing procedure with curved elements, that reveals impractical for complex geometries especially for three-dimension configurations [START_REF] Krivodonova | High-order accurate implementation of solid wall boundary conditions in curved geometries[END_REF]. Curved mesh generation is a today's challenge [START_REF] Wang | High-order computational fluid dynamics tools for aircraft design[END_REF] and is far from being completely solved [START_REF] Geuzaine | Gmsh: a three-dimensional Finite Element mesh generator with built-in pre-and post-processing facilities[END_REF]. Meshing genuinely complex geometries with unstructured hybrid grids has still not reached the level of commercial grid generators.

Alternative methods have been then proposed to avoid the nonlinear mapping and the curved mesh generation. In [START_REF] Krivodonova | High-order accurate implementation of solid wall boundary conditions in curved geometries[END_REF], the authors use the computational polygonal domain in place of the physical domain but modify the normal vector involved in the wall boundary condition (see also [START_REF] Balakrishnan | Wall boundary conditions for inviscid compressible flows on unstructured meshes[END_REF]). Accuracy improvement is obtained but, unfortunately, the method has only been tested with quadratic boundaries and seems to be, at most, a third-order approximation since it considers local curvature approximations, i.e. second derivatives in the Taylor expansion. Another promising method is the so-called "Extensions from Subdomains" introduced by [START_REF] Cockburn | Solving Dirichlet boundary-value problems on curved domains by extensions from subdomains[END_REF][START_REF] Cockburn | Solving Convection-Diffusion Problems on Curved Domains by Extensions from Subdomains[END_REF][START_REF] Qiu | A High Order HDG Method for Curved-Interface Problems Via Approximations from Straight Triangulations[END_REF]. The idea is to derive a new Dirichlet condition on the computational domain edge from the one evaluated on the physical boundary. An additional contribution is obtained from the integration of the solution over a path linking points x comp and x phys lying on their respective borders. The main advantage is that no local mapping or curved element is required but an extension of the numerical approximation has to be evaluated in order to perform the integration of the approximation gradient outside the computational domain. Unfortunately, the method is only available for second-order operators with diffusion or viscosity term. The second drawback is the necessity to define path families between the edges of the computational mesh boundary and the physical one. Such procedure introduces constrained local minimization operations to define local one-to-one mappings x Ñ apxq from the boundary edges and the associated pieces of the physical boundary. Then, the paths are derived from linear interpolation rx, apxqs. At last, numerical integrations over the paths are required to compute the additional contributions to update the associate Dirichlet condition on the computational boundary.

In the context of the finite volume method involving k-exact polynomial reconstructions, the pioneer work of Ollivier-Gooch and Van Altena [START_REF] Ollivier-Gooch | A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation[END_REF] gives rise to a very high-order finite volume method dealing with curved boundary for the convection-diffusion equation and Euler and Navier-Stokes systems [START_REF] Michalak | Unstructured high-order accurate finite volume solutions of the Navier-Stokes equations 47th[END_REF][START_REF] Ollivier-Gooch | On Obtaining High-Order Finite-Volume Solutions to the Euler Equations on Unstructured Meshes[END_REF][START_REF] Ollivier-Gooch | On Obtaining and Verifying High-Order Unstructured Finite Volume Solutions to the Euler Equations[END_REF]. The method does not require any geometrical transformation but the mesh has to be composed with curved cells that fits the physical boundary. Likewise for the DG method, it represents a severe drawback due to the difficulties to provide such curved elements for complex geometries. Moreover, the method suffers of other problems. Indeed, one has to perform numerical integrations over the curved elements to evaluate any source term or the initial condition mean-values and on the bended boundaries to calculate the numerical fluxes. Integration on a piece of curves boundary for the two-dimensional situation requires an extra-effort for localizing the Gauss points, but, the problem turns out to be cumbersome when dealing with a three-dimensional domain [START_REF] Boularas | A sixth-order finite volume method for diffusion problem with curved boundaries[END_REF]. Integration over the cell is a major difficulty. Indeed, while Gaussian points are well-located for simple geometries, it seems almost impossible to derive numerical quadratures rules for generic curved element except for special situations such as pieces of circles or spheres [START_REF] Ollivier-Gooch | On Obtaining High-Order Finite-Volume Solutions to the Euler Equations on Unstructured Meshes[END_REF].

We propose a new and simple treatment of Dirichlet conditions in the context of very high-order finite volume methods with a curved boundary domain. Because this paper is a proof of concept, we choose the simplest situation, namely the steady-state convection diffusion with Dirichlet condition on two-dimensional curved domain. Future extensions such as three-dimensional geometries, Neumann or mixed condition, non-stationary systems will be considered.

As in [START_REF] Cockburn | Solving Dirichlet boundary-value problems on curved domains by extensions from subdomains[END_REF][START_REF] Boularas | A sixth-order finite volume method for diffusion problem with curved boundaries[END_REF], we consider two distinct regions: the physical domain where the continuous problem takes place and the computational polygonal domain onto which the discretization is designed and the numerical solution is evaluated. Obviously, Dirichlet conditions prescribed on the physical boundary have to be transfered in some way to the computational domain. The corner-stone of our work is the design of a specific polynomial reconstruction that takes the real boundary condition into account. Therefore we perform a reconstruction with data that are not all localized on the mesh and name the method: Reconstruction of Off-site Data (ROD) to highlight that data are not supported by the computational domain.

In some way, isoparametric element method involves two polynomials: one for the curved boundary and, one for the solution approximation. Conversely, the method proposed in this work uses a unique polynomial for the two associated operations Despite [START_REF] Boularas | A sixth-order finite volume method for diffusion problem with curved boundaries[END_REF] presents some fundamental ingredients for the polynomial reconstructions under curved boundary, the present paper proposes a simpler approach where all the integration procedures are performed on the polygonal domain.

This document is divided in seven sections. After the introduction, we formulate in section 2 the problem consider and the mesh notations, while we present the polynomial reconstructions in section 3. The fourth section is dedicated to the curved boundary where we detail the inclusion of the Dirichlet condition prescribed on the physical boundary. In section 5, the very high-order finite volume is presented and we present the numerical experiments in section 6. We end the document with the conclusions of this work.

Problem formulation and geometry

Let Ω be an open bounded domain of R 2 with boundary BΩ. We assume that the boundary is a regular Jordan curve which admits local parametrizations. We seek function φ " φpxq, x " px 1 , x 2 q, solution of the steady-state convection-diffusion equation

∇ ¨puφ ´κ∇φq " f, in Ω, (1) 
where u " pu 1 , u 2 q " pu 1 pxq, u 2 pxqq is a velocity field, κ " κpxq is a diffusion coefficient, and f " f pxq is a regular source term in Ω, and where a Dirichlet condition is prescribed on the boundary BΩ with a given regular function φ D " φ D pxq.

A mesh M is a set of I non-overlapping convex polygonal cells c i , without gap, i P C M " t1, . . . , Iu, and we denote by Ω ∆ "

ď iPC M c i ,
the computational domain and by BΩ ∆ the computational boundary associated to the mesh M. Ω ∆ should be a representative domain approximation of Ω and BΩ ∆ is the associated approximation of BΩ. To this end, we assume that the nodes on BΩ ∆ also belong to BΩ. We adopt the notations detailed hereafter (see Fig. 1):

• for any cell c i we denote by Bc i its boundary and by |c i | its area; the reference cell point is denoted by m i which can be any point in c i (in the present work we consider the centroid);

• two different cells c i and c j share a common edge e ij whose length is denoted by |e ij | and n ij " pn 1,ij , n 2,ij q is the unit normal vector to e ij outward to c i , i.e. n ij " ´nji ; the reference edge point is m ij which can be any point on e ij (in the present work we consider the midpoint); if an edge of c i belongs to the boundary BΩ ∆ , the index j is replaced by letter D;

• for any edge e ij , we denote by q ij,r , r " 1, . . . , R, the Gaussian integration points and ζ r the associated weights;

• for any cell c i we associate the index set of neighbor cells νpiq Ă t1, ¨¨¨, Iu Y tDu such that j P νpiq if e ij is a common edge between cells c i and c j or with the boundary BΩ ∆ if j " D.
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Figure 1: Mesh notation with edge and cell reference points (blue dots), Gauss points (red dots associated to a two-point quadrature rule), and unit normal vectors (dashed lines).

We enhance that Ω is not a polygonal domain. So, the physical domain Ω and its polygonal approximation Ω ∆ do not coincide, and this usually leads to a significant accuracy degradation of the numerical approximation.

Polynomial reconstruction

The polynomial reconstruction is a powerful tool to provide an accurate local representation of the underlying solution, see [START_REF] Barth | Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction[END_REF][START_REF] Barth | Recent developments in high order k-exact reconstruction on unstructured meshes[END_REF] for unstructured grids and hyperbolic problems. In [START_REF] Clain | A sixth-order finite volume method for the convection-diffusion problem with discontinuous coefficients[END_REF] a methodology was proposed in the context of convection-diffusion problems to achieve high accurate approximations of the gradient fluxes and take into account boundary conditions. The authors introduced different types of polynomial reconstructions namely the conservative reconstruction in cell and on boundary edge, and, the non-conservative reconstruction on inner edge, in order to compute approximations of the convective and the diffusive fluxes. In this work we mainly follows this methodology of reconstruction but apply in the specific but important case of curved boundary.

Stencil and data

A stencil is a collection of cells situated in the vicinity of a reference geometrical entity, for instance an edge or a cell, where the number of elements of the stencil shall depend on the degree d of the polynomial function we intend to construct. So, for each edge e ij and cell c i we associate the stencils S ij and S i , respectively, consisting of the indices of neighbour cells. To compute the polynomial reconstructions we need the data associated to each cell of the stencil. To this end, we assume that vector Φ " pφ i q iPC M gathers the approximation of the mean-value of φ over each cell, i.e.

φ i « 1 |c i | ż ci φ dx.

Conservative reconstruction for cells

For each cell c i , the local d-th degree polynomial approximation of the underlying solution φ, based on vector Φ, is defined as

φ i pxq " φ i `ÿ 1ď|α|ďd R α i rpx ´mi q α ´M α i s , (2) 
where α " pα 1 , α 2 q with |α| " α 1 `α2 and the convention x α " x α1 1 x α2 2 . Vector R i " pR α i q 1ď|α|ďd gathers the polynomial coefficients, and M α i " 1 |ci| ş ci px ´mi q α dx in order to guarantee the conservation property

1 |c i | ż ci φ i pxq dx " φ i . (3) 
For a given stencil S i , we consider the quadratic functional

E i pR i q " ÿ qPSi « 1 |c q | ż cq φ i pxq dx ´φq ff 2 . (4) 
We denote by p R i the unique vector which minimizes the quadratic functional (4) and we set p φ i pxq the polynomial which corresponds to the best approximation in the least squares sense.

Non-conservative reconstruction for inner edges

For each inner edge e ij , the local d-th degree polynomial approximation of the underlying solution φ, based on vector Φ, is defined as

φ ij pxq " ÿ 0ď|α|ďd R α ij px ´mij q α ,
where vector R ij " pR α ij q 0ď|α|ďd gathers the polynomial coefficients (notice that in this case |α| starts with 0). For a given stencil S ij with #S ij elements and vector ω ij " pω ij,q q q"1,...,#Sij of positive weights of the reconstruction, we consider the quadratic functional

E ij pR ij q " ÿ qPSij ω ij,q « 1 |c q | ż cq φ ij pxq dx ´φq ff 2 . ( 5 
)
We denote by r R ij the unique vector which minimizes the quadratic functional (5) and we set r φ ij pxq the polynomial which corresponds to the best approximation in the least squares sense.

Conservative reconstruction for computational boundary edges

We treat the boundary edges in a particular way to take into account the prescribed Dirichlet condition. For each boundary edge e iD on BΩ ∆ , the local d-th degree polynomial approximation of the underlying solution φ is defined as

φ iD px; ψ iD q " ψ iD `ÿ 1ď|α|ďd R α iD rpx ´miD q α ´M α iD s ,
where vector R iD " pR α iD q 1ď|α|ďd gathers the polynomial coefficients, ψ iD P R is a free parameter which shall be set later, and M α iD " pp iD ´miD q α in order to guarantee the conservation property

ψ iD " φ iD pp iD ; ψ iD q, (6) 
with p iD a given collocation point. The crucial point is that p iD will be a distinct point from midpoint m iD P e iD . For a given stencil S iD with #S iD elements and vector ω iD " pω iD,q q q"1,...,#SiD of positive weights of the reconstruction, we consider the quadratic functional

E iD pR iD q " ÿ qPSiD ω iD,q « 1 |c q | ż cq φ iD px; ψ iD q dx ´φq ff 2 . ( 7 
)
We denote by p R iD the unique vector which minimizes the quadratic functional ( 7) and we set p φ iD px; ψ iD q the polynomial which corresponds to the best approximation in the least squares sense for the given parameter ψ iD and point p iD .

Remark 3.2. The motivation for introducing the weights either for the case of a non-conservative polynomial reconstruction or for a conservative polynomial reconstruction for computational boundary edges is presented in [START_REF] Clain | A sixth-order finite volume method for the convection-diffusion problem with discontinuous coefficients[END_REF] as well as the importance to set larger values for the adjacent cells. We refer the reader to [START_REF] Clain | A sixth-order finite volume method for the convection-diffusion problem with discontinuous coefficients[END_REF] for more details.

4. Reconstructions for Off-site Data (ROD)

The Ollivier-Gooch and Van Altena method

An accurate approximation of boundary conditions on curved boundaries is of paramount importance when dealing with very high-order methods, since to approximate a curved boundary with a polygonal mesh generally leads to a second-order approximation [START_REF] Wang | High-order computational fluid dynamics tools for aircraft design[END_REF]. The seminal paper of Ollivier-Gooch and Van Altena [START_REF] Ollivier-Gooch | A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation[END_REF] introduces a technique for constraining the least-squares problem associated to the polynomial reconstructions on the boundary elements. Such approach requires that the reconstructed solution satisfies the boundary condition exactly at the flux integration points (collocation points) [START_REF] Ollivier-Gooch | On Obtaining High-Order Finite-Volume Solutions to the Euler Equations on Unstructured Meshes[END_REF]. In order to properly represent the boundary condition, the mesh has to fit with the physical boundary, that is, the edges of the mesh are curved for matching the real boundary (see Figure 2). As mentioned in the introduction, this approach brings several drawbacks: one has to carefully design Gauss quadrature procedures to take into account curved boundaries for preserving the accuracy [START_REF] Ollivier-Gooch | On Obtaining and Verifying High-Order Unstructured Finite Volume Solutions to the Euler Equations[END_REF], and, designing boundary-fitted mesh for non polygonal domain is still nowadays a difficult task [START_REF] Wang | High-order computational fluid dynamics tools for aircraft design[END_REF]. In this work we avoid the difficult construction of boundary-fitted mesh, and, solely work on the easy to construct polygonal mesh.
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The ROD method

We propose a different technique to prescribe Dirichlet conditions on curved boundaries.The main idea is to keep separated the computational domain from the physical one, and, perform all computations on the polygonal cells, but taking into account the information located on the physical boundary via the polynomial reconstructions. "Off-site Data" method is meant to remind that the scheme and the solutions are acting on the computational domain Ω ∆ , but including information which is not associated to any geometrical entity of Ω ∆ (cell, edge, or point). The main advantages are:

• numerical integration of flux or functions are only carried out on a polygonal domain and not on the complex physical domain;

• no curved elements are required, only the computational polygonal mesh is necessary;

• no geometrical transformations are required involving possibly complex Jacobian functions for the integrals;

• no Gaussian points on the physical boundary BΩ are required;

• the method design does not depend on the number of spacial dimensions.

The technique is intrinsically associated to the conservative polynomial reconstruction given in section 3.4 where, for a given edge e iD of the computational boundary BΩ ∆ , we define the polynomial approximation p φ iD px; ψ iD q depending on parameter ψ iD and point p iD which satisfies the conservation property [START_REF] Baghapour | A Framework for Curved Boundary Representation in 2D Discontinuous Galerkin Euler Solvers[END_REF]. We also mention that b iD stands for a point on the physical boundary BΩ, somewhere facing edge e iD as depicted in Figure 2-right while m iD stands for the edge mid-point.

The Dirichlet condition will be enforced via a clever choice of the values of free parameter ψ iD and point p iD . As a consequence one has to design a procedure to compute the free parameter such that we simultaneously satisfy the conservation and provide a very-high order approximation of the boundary condition.

Second-order approximation

A simple approach consists in using p iD " m iD and in setting the free parameter as ψ iD " φ D pm iD q. Such a choice provides no more than a second-order convergence rate since m iD does not represent properly the physical boundary. Moreover, we need an extension of function φ D in the neighbor of the boundary to guarantee that φ D pm iD q makes sense since m iD R BΩ.

Very high-order approximation: ROD1

In order to enforce the Dirichlet condition more accurately, we now set p iD " b iD and the free parameter ψ iD " φ D pb iD q. Notice that the flux integration will nonetheless be computed on the straight edge of the computational mesh as presented in section 5.2 and not on the physical boundary as in [START_REF] Ollivier-Gooch | A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation[END_REF]. We expect a high-order accuracy since the reconstruction satisfies the Dirichlet condition on one point associated to the true physical boundary.

Very high-order approximation: ROD2

The major drawback of the method ROD1 is that the least-squares problem ( 7) is based on point p iD that depends on the physical domain boundary and if the physical boundary evolves, for instance for time dependent moving domains or interface tracking problems, one has to rebuild the whole reconstruction procedure for boundary cells/edges. We improve the previous technique by decoupling the Dirichlet condition from the interpolation problem still preserving the high-order of accuracy. We start again by setting the collocation point p iD " m iD as in the second-order method. Hence the least-squares procedure [START_REF] Bassi | High-order accurate discontinuous finite element solution of the 2D Euler equations[END_REF] no longer depends on the physical boundary position. Next the free parameter ψ iD is computed in a special way. To this end, let us introduce the functional

ψ iD Ñ B iD pb iD ; ψ iD q " p φ iD pb iD ; ψ iD q ´φD pb iD q. ( 8 
)
Notice that B iD is affine with respect to ψ iD . We now seek for ψ iD as the unique solution which satisfies the affine problem B iD pb iD ; ψ iD q " 0,

the solution of which is obtained by taking two values ψ 0 iD and ψ 0 iD `1. After some algebraic simplifications one get

ψ iD " ψ 0 iD ´BiD pb iD ; ψ 0 iD qpψ 0 iD ´1q B iD pb iD ; ψ 0 iD q ´BiD pb iD ; ψ 0 iD `1q , (10) 
with ψ 0 iD is some real value. In other words, we adjust the free parameter on point m iD to satisfy the Dirichlet condition on b iD . In practice, we take ψ 0 iD " φ D pm iD q since ψ iD is supposed to be close to φ D pm iD q for regular solutions.

Remark 4.1. The methods ROD1 and ROD2 mainly differ in the structure of the matrix that compute the polynomial coefficients with respect to the data and the Dirichlet condition. In the first case, the matrix depends on the position of the point where the Dirichlet is evaluated but does not require the additional treatment given in relation [START_REF] Cockburn | Solving Convection-Diffusion Problems on Curved Domains by Extensions from Subdomains[END_REF]. On the contrary, the ROD2 method provides a matrix that does not depend of the position of the Dirichlet condition but an extracomputational effort is necessary to fix the free parameter with [START_REF] Cockburn | Solving Convection-Diffusion Problems on Curved Domains by Extensions from Subdomains[END_REF]. To sum-up, if one considers a fix curved domain, the ROD1 method is more efficient whereas the ROD2 technique is well-adapted to situations where the physical boundary changes with the time or during an iterative process.

Remark 4.2. The coefficients p R iD of the polynomial function p φ iD px; ψ iD q are obtained as the matrixvector product between the Moore-Penrose matrix associated to the least-square problem and the vector of cell values in the stencil [START_REF] Clain | A sixth-order finite volume method for the convection-diffusion problem with discontinuous coefficients[END_REF]. The matrix structure does not depend on the physical boundary position by construction but only depends on the computational mesh. The Dirichlet condition is only prescribed via functional [START_REF] Clain | A sixth-order finite volume method for the convection-diffusion problem with discontinuous coefficients[END_REF] and satisfies condition (9).

High-order finite volume scheme

Generic finite volume scheme

To obtain a finite volume scheme, equation ( 1) is integrated over each cell c i and applying the divergence theorem we get ż Bci puφ ´κ∇φq ¨ni ds "

ż ci f dx, (11) 
where Bc i is the cell boundary and n i is the associated outward unit vector. Considering the Gaussian quadrature with R P N ˚points for the line integrals, i.e. of order 2R, we get the residual expression

ÿ jPνpiq |e ij | « R ÿ r"1 ζ r `FC ij,r `FD ij,r ˘ff ´fi |c i | " Oph 2R i q, (12) 
with the physical fluxes given by F C ij,r " upq ij,r q ¨nij φpq ij,r q and F D ij,r " ´κpq ij,r q∇φpq ij,r q ¨nij , and with h i " max jPνpiq |e ij |, while f i stands for an approximation of order 2R of the mean value of f over cell c i . Notice that if cell c i is not triangular, we split it into sub-triangles which share the cell centroid as a common vertex and apply the quadrature rule on each sub-triangle as in [START_REF] Ern | Theory and Practice of Finite Elements[END_REF]. Using the different polynomial reconstructions see previous sections, we design the numerical scheme with two main ingredients: the flux computation and the solver. We use a similar technique proposed in [START_REF] Clain | A sixth-order finite volume method for the convection-diffusion problem with discontinuous coefficients[END_REF][START_REF] Boularas | A sixth-order finite volume method for diffusion problem with curved boundaries[END_REF], particularly the matrix-free approach is adopted, based on the residual operator construction.

Numerical fluxes

Numerical fluxes are computed with respect to the edges:

• for the inner edges e ij , the fluxes at the quadrature point q ij,r write F C ij,r " rupq ij,r q ¨nij s `p φ i pq ij,r q `rupq ij,r q ¨nij s ´p φ j pq ij,r q, F D ij,r " ´κpq ij,r q∇ r φ ij pq ij,r q ¨nij ;

• for the boundary edges e iD , the fluxes at the quadrature point q iD,r write F C iD,r " rupq iD,r q ¨niD s `p φ i pq iD,r q `rupq iD,r q ¨niD s ´p φ iD pq iD,r q, F D iD,r " ´κpq iD,r q∇ p φ iD pq iD,r q ¨niD .

Notice that all the fluxes are computed on the edges of the computational domain without any reference to the physical domain. The Dirichlet condition on BΩ is implicitly contained in the polynomial reconstructed function p φ iD .

Residual operator and solver

For any vector Φ in R I , we define the residual operators for cells c i , i " 1, . . . , I, as

G i pΦq " ÿ jPνpiq |e ij | « R ÿ r"1 ζ r `FC ij,r `FD ij,r ˘ff ´fi |c i |, (13) 
which corresponds to the finite volume scheme [START_REF] Cockburn | Discontinuous Galerkin Methods[END_REF] cast in residual form. Gathering all the components of the residuals provides a global affine operator GpΦq " pG i pΦqq iPC M and we seek vector Φ ‹ P R I , solution of the problem GpΦq " 0. The GMRES method, powered by a preconditioning matrix, is carried out to compute an approximation of Φ ‹ as in [START_REF] Clain | A sixth-order finite volume method for the convection-diffusion problem with discontinuous coefficients[END_REF][START_REF] Boularas | A sixth-order finite volume method for diffusion problem with curved boundaries[END_REF].

Numerical results

In order to validate the implementation of the methods and assess the accuracy and the convergence rates, we manufacture several analytical solutions on specific domains which require the computation of an associated source term to satisfy equation [START_REF] Barth | Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction[END_REF]. Vector Φ ‹ " pφ ‹ i q iPC M gathers the numerical approximations of the mean values of φ while vector Φ " pφ i q iPC M gathers the exact mean values φ i of φ, that is φ i " p1{|c i |q ş ci φ dx. The normalized L 1 -and L 8 -norm errors, denoted by E 1 and E 8 , are computed respectively as

E 1 pMq " ÿ iPC M |φ ‹ i ´φi ||c i | ÿ iPC M |φ i ||c i | and E 8 pMq " max iPC M |φ ‹ i ´φi | ÿ iPC M |φ i ||c i | .
The convergence rate for the normalized L 1 -and L 8 -norm errors between two different meshes M 1 and M 2 , with DOF 1 and DOF 2 degrees of freedom, respectively, where DOF 1 ‰ DOF 2 , is evaluated as

O α pM 1 , M 2 q " 2 | logpE α pM 1 q{E α pM 2 qq| | logpDOF 1 {DOF 2 q| , α P t1, 8u.
In all the simulations, the weights in functionals ( 5) and ( 7) are set to ω ij,q " 3, i P C M , j P νpiq, q P S ij , if e ij is an edge of c q and ω ij,q " 1, otherwise.

For the sake of simplicity, we name the method given in section 4.2.1 as "second-order method", the one given in section 4.2.2 as "ROD1 method", and the proposed method, presented in section 4.2.3, as "ROD2 method". The methodology of validation consists in observing the rates of convergence under mesh refinement when high-order polynomial reconstructions (P k , k " 1, 3, 5) are employed for different strategies dealing with Dirichlet boundary conditions defined on the physical curved domains. Only smooth solutions of the steady-state two-dimensional convection-diffusion equation are considered. The different curved physical domains are

• An annulus domain in section 6.1. We simulate with triangular (possibly refined) grids low Péclet number, high Péclet number and pure convection problems.

• A rose-shaped domain in section 6.2. A deformation of the annulus permits to define branches on the interior and exterior boundaries. We simulation with triangular and quadrangular grids two cases, a rose with three-three branches and a five-three rose both.

Annulus domain

In this first set of numerical tests we consider an annulus domain with center at p0, 0q characterized by the interior and exterior circumferences Γ I and Γ E , respectively with radius r I " 0.5 and r E " 1. For the convection-diffusion problem (1), we prescribe a constant radial velocity u and κ " 1. We then seek for a manufactured solution, invariant by rotation, given be φpx 1 , x 2 q " a `exppur 1 q `expp´ur 1 q `b˘, r 1 " r 1 prq " p2r ´pr E `rI qq pr E ´rI q , with r 2 " x 2 1 `x2 2 such that r 1 P r´1, 1s. We also prescribe homogeneous Dirichlet conditions on the two boundaries Γ I and Γ E and deduce that b " ´exppuq ´expp´uq while a " 1{pexppuq èxpp´uq ´2q guarantees the property φ P r´1, 0s in Ω. The associated source term f is obtained after substituting the solution into equation [START_REF] Barth | Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction[END_REF].

Low Péclet number. We first address the low Péclet number situation setting u " 1. We plot in Figure 3 the manufactured solution and the source term. The simulations were carried out with successive refined uniform triangular Delaunay meshes (see Figure 4). Observe that boundary vertices belong to the true physical domain boundary. We report in Table 1 the errors and the convergence rates for the second-order, and the two ROD methods. The second-order approach provides at most a second-order convergence for both error norms, whatever the degree of the polynomial reconstruction. These results are expected since the Dirichlet condition is affected with a mismatch of order Oph 2 q due to the erroneous location with respect to the physical boundary. The two other methods recover the optimal order and achieve an effective second-, fourth-, and sixth-order convergence rates for P 1 , P 3 , and P 5 polynomial reconstructions, respectively, while no oscillations are reported. The accuracy of both methods are quite comparable and clearly overcome the second-order limitation expected when dealing with the curved boundary with non-fitted cells.

Table 1: Annulus problem for low Péclet number -Errors and convergence rates for the second-order, the ROD1 and ROD2 methods with uniform triangular Delaunay meshes.

Second-order method (section 4.2.1) Reconstruction of Off-side Data (ROD1) method (section 4.2.2) Reconstruction of Off-side Data (ROD2) method (section 4.2.3) High Péclet number. Large Péclet number is prescribed taking u " 10 and we plot in Figure 5 the manufactured solution and the source term. This test addresses the scheme robustness and accuracy to preserve the boundary condition when dealing with small boundary layers with respect to the dimension of the whole geometry. The simulations were carried out with successive refined Delaunay meshes plotted in Figure 6 where, again, the boundary vertices belong to the physical boundary.The meshes are refined close to the boundaries to better capture the boundary layers. In Table 2, we report the errors and the convergence rates for the three methods. As for the low Péclet problem the second-order method reaches at most a second-order convergence for both error norms while the two ROD methods achieve an effective second-, fourth-, and sixth-order convergence rates for P 1 , P 3 , and P 5 polynomial reconstructions, respectively. We conclude that the high-order methods effectively handle large Péclet number situations achieving optimal convergence rates without any oscillation.

P 1 P 3 P 5 DOF E 1 O 1 E8 O8 E 1 O 1 E8 O8 E 1 O 1 E8 O8 736 
P 1 P 3 P 5 DOF E 1 O 1 E8 O8 E 1 O 1 E8 O8 E 1 O 1 E8 O8 736 
P 1 P 3 P 5 DOF E 1 O 1 E8 O8 E 1 O 1 E8 O8 E 1 O 1 E8 O8 736 
Table 2: Annulus problem for high Péclet number -Errors and convergence rates for the second-order and the two ROD methods with adapted triangular Delaunay meshes.

Second-order method (section 4.2.1) Reconstruction of Off-side Data (ROD2) method (section 4.2.2) Reconstruction of Off-side Data (ROD2) method (section 4.2.3) Pure convection. We address the pure convection situation setting κ " 0 and u " 1 and plot in Figure 7 the manufactured solution and the source term. The simulations were carried out with successive refined uniform triangular Delaunay meshes presented in Figure 4 and, as in the previous tests, the boundary vertices belong to the boundary curves. We report in Table 3, the errors and the convergence rates for the three methods. As in the previous situations, the second-order boundary approach is doomed to a second-order of accuracy while the two other methods efficiently handle the convection problem with curved boundaries with no oscillations and no artificial diffusion.

P 1 P 3 P 5 DOF E 1 O 1 E8 O8 E 1 O 1 E8 O8 E 1 O 1 E8 O8 4292 
P 1 P 3 P 5 DOF E 1 O 1 E8 O8 E 1 O 1 E8 O8 E 1 O 1 E8 O8 4292 
P 1 P 3 P 5 DOF E 1 O 1 E8 O8 E 1 O 1 E8 O8 E 1 O 1 E8 O8 P 1 P 3 P 5 DOF E 1 O 1 E8 O8 E 1 O 1 E8 O8 E 1 O 1 E8 O8 4292 
Table 3: Annulus problem for pure convection -Errors and convergence rates for the second-order and the ROD methods with uniform triangular Delaunay meshes.

Second-order method (section 4.2.1) Reconstruction of Off-side Data (ROD1) method (section 4.2.2) 

P 1 P 3 P 5 DOF E 1 O 1 E8 O8 E 1 O 1 E8 O8 E 1 O 1 E8 O8 736 
P 1 P 3 P 5 DOF E 1 O 1 E8 O8 E 1 O 1 E8 O8 E 1 O 1 E8 O8 736 

Rose-shaped domain

We now consider a more complex geometry where the annulus is transformed by a diffeomorphism mapping which consists in a periodic transformation of the boundaries in the following way:

Γ I : " x 1 x 2



" R I pθ; α I q " cospθq sinpθq  and Γ E :

" x 1 x 2  " R E pθ; α E q " cospθq sinpθq  ,
where pr, θq are the polar coordinates and R I pθ; α I q and R E pθ; α E q, α I , α E P R, are given by

R I pθ; α I q " r I ˆ1 `1 10 sinpα I θq ˙and R E pθ; α E q " r E ˆ1 `1 10 sinpα E θq ˙.
The global mapping from the Rose-shaped domain onto the annulus then reads

" y 1 y 2  Ñ " x 1 x 2  " T py 1 , y 2 q " ˆRE ´r R E ´RI R I pθ; α I q `r ´RI R E ´RI R E pθ; α E q ˙"cospθq sinpθq  .
The manufactured solution on the Rose-shaped domain is then given by ψpx 1 , x 2 q " φpT ´1px 1 , x 2 qq.

Notice that we recover the annulus geometry with α I " α E " 0. The associated source term f is obtained from equation (1) while homogeneous Dirichlet boundary condition still holds on the new boundaries Γ I and Γ E . All the simulations have been carried out with κ " 1 and u " 1

First test. The transformation is parametrized with α I " 3 and α E " 3 and we plot in Figure 8 the manufactured solution and the source term in the new domain. We carried out the simulations with successive refined regular triangular Delaunay meshes and also with quadrilateral meshes, see Figure 9, to show the ability of the method to handle different cell shapes. We report in Table 4 the errors and the convergence rates obtained with the ROD2 method (Delaunay meshes) while Table 5 reports the same informations for the quadrangular meshes. We obtain the optimal convergence orders and no oscillation is reported. Computations have also been carried out with the second-order boundary approximation (not presented here) and we observe a second-order of convergence due to an inadequate treatment of the boundary condition. Table 5: Rose-shaped problem -Test 1 -Errors and convergence rates for the ROD2 method with uniform quadrilateral meshes. Second test. The second test deals with a more wavy boundary setting α I " 3 and α E " 5. We plot in Figure 10 the manufactured solution and the source term. As in the previous case, simulations with successive refined regular Delaunay meshes or quadrilateral meshes have been carried out, see Figure 11 We report in Tables 6 and7 the errors and the convergence rates obtained with the ROD2 method and confirm the ability of the scheme to preserve the optimal order in function of the polynomial degree used for the reconstruction procedure. 

P 1 P 3 P 5 DOF E 1 O 1 E8 O8 E 1 O 1 E8 O8 E 1 O 1 E8 O8 660 

Conclusions

We have presented a high-order finite volume scheme to solve the steady-state bi-dimensional convection-diffusion problem based on a new class of polynomial reconstructions. Two approaches were proposed to overcome the second-order accuracy limitation when dealing with non polygonal domain and Dirichlet boundary conditions. The first one consists in analytically constrain the boundary element reconstructions in order to satisfy the boundary condition at a point on the physical domain boundary. Such approach differs from the Olliver-Gooch and Van Altena approach in the sense that the flux calculation is performed on the straight edge and no curved element is necessary. The proposed ROD method consists in constraining the boundary reconstructions by a posteriori computing the associated free parameter such that the reconstructions satisfy appropriately the boundary condition. This procedure relies on the fact that the least-squares matrix associated to the reconstruction is decoupled from the boundary parameterization and, therefore, is less sensitive to the boundary location.

Several numerical tests considering simple and complex curved domains were simulated to observe that we achieve effective optimal order of accuracy both for structured and unstructured meshes for the two-dimensional linear steady-state convection-diffusion problem. A pure convection problem (hyperbolic scalar equation) was also tested and optimal order accuracy rates were achieved without any reported oscillation. This work represents a proof of concept showing that very high-order of accuracy Finite Volume scheme on unstructured can handle curved boundary conditions at the optimal order of accuracy without the need for a boundary fitted mesh or complex transformations. For future works we plan to extend this approach to other boundary conditions (Neumann, Robin), to unsteady systems (Euler, Navier-Stokes) with time evolving domain (piston, pulsating interfaces, etc.). We also plan to investigate the extension of ROD to unstructured 3D mesh. Even if, conceptually speaking, the ROD method does not depend on the space dimension, the machinery needed in three-dimensional will demand delicate validation and verification.

Remark 3 . 1 .

 31 A polynomial reconstruction of degree d requires n d " pd `1qpd `2q{2 coefficients in 2D. So, in practice, a stencil consists of the N d closest cells to each geometrical entity (edge or cell) with N d ě n d (we consider N d « 1.5n d for the sake of robustness).

Figure 2 :

 2 Figure 2: The physical boundary BΩ and the curved boundary edge e iD with reference points on the cell (blue dot), Gauss points (red dots associated to a two-point quadrature rule) and the edge mid-point m iD -Left: situation when curved cells are considered -Right: situation considered in this work with straight-edge cell and an associated collocation point b iD to m iD .

Figure 3 :Figure 4 :

 34 Figure 3: Manufactured solution (left panel) and source term (right panel) for the low Péclet number test case.

Figure 5 :Figure 6 :

 56 Figure 5: Manufactured solution (left panel) and source term (right panel) for the high Péclet number test case.

Figure 7 :

 7 Figure 7: Manufactured solution (left panel) and source term (right panel) for the pure convection test case.

Figure 8 :

 8 Figure 8: Manufactured solution (left panel) and source term (right panel).

Figure 9 :

 9 Figure 9: Coarse uniform triangular Delaunay mesh (left panel) and uniform quadrilateral mesh (right panel) prescribed for the rose-shaped domain.

Figure 10 :

 10 Figure 10: Manufactured solution (left panel) and source term (right panel).

  .

Figure 11 :

 11 Figure 11: Coarse uniform triangular Delaunay mesh (left panel) and uniform quadrilateral mesh (right panel) prescribed for the rose-shaped domain.

Table 4 :

 4 Rose-shaped problem -Test 1 -Errors and convergence rates for the ROD method with uniform triangular Delaunay meshes.

			P 1				P 3				P 5		
	DOF	E 1	O 1	E8	O8	E 1	O 1	E8	O8	E 1	O 1	E8	O8
	667	2.21E´02 -	4.91E´02 -	3.59E´04 -	3.56E´03 -	2.20E´04 -	1.52E´03 -
	2590	6.23E´03 1.86 1.40E´02 1.85	1.85E´05 4.38 2.30E´04 4.04	2.77E´06 6.45 3.04E´05 5.77
	10274	1.48E´03 2.09 4.49E´03 1.65	1.17E´06 4.00 2.02E´05 3.53	5.58E´08 5.67 1.12E´06 4.79
	41367	3.29E´04 2.16 1.21E´03 1.88	9.17E´08 3.66 1.53E´06 3.71	7.02E´10 6.28 2.07E´08 5.73
	165599	6.96E´05 2.24 3.45E´04 1.81	6.58E´09 3.80 1.07E´07 3.83	1.37E´11 5.68 3.85E´10 5.74

Table 6 :

 6 Rose-shaped problem -Test 2 -Errors and convergence rates for the ROD method with uniform triangular Delaunay meshes.

			P 1				P 3				P 5		
	DOF	E 1	O 1	E8	O8	E 1	O 1	E8	O8	E 1	O 1	E8	O8
	645	2.71E´02 -	6.97E´02 -	6.80E´04 -	8.76E´03 -	5.12E´04 -	5.86E´03 -
	2550	7.56E´03 1.86 2.30E´02 1.61	4.49E´05 3.95 7.62E´04 3.55	1.29E´05 5.36 2.45E´04 4.62
	10244	1.89E´03 2.00 7.30E´03 1.65	3.71E´06 3.59 1.28E´04 2.57	2.98E´07 5.42 1.39E´05 4.12
	40789	4.10E´04 2.21 1.97E´03 1.89	2.53E´07 3.89 6.70E´06 4.27	9.53E´09 4.98 4.91E´07 4.84
	162011	9.63E´05 2.10 5.92E´04 1.75	1.89E´08 3.76 9.37E´07 2.85	1.20E´10 6.34 1.07E´08 5.55

Table 7 :

 7 Rose-shaped problem -Test 2 -Errors and convergence rates for the ROD2 method with uniform quadrilateral meshes.

			P 1				P 3				P 5		
	DOF	E 1	O 1	E8	O8	E 1	O 1	E8	O8	E 1	O 1	E8	O8
	660	6.91E´02 -	1.11E´01 -	5.06E´03 -	3.27E´02 -	5.37E´03 -	3.60E´02 -
	2760	1.74E´02 1.93 2.85E´02 1.90	3.94E´04 3.57 3.57E´03 3.10	1.33E´04 5.17 1.61E´03 4.35
	11280	4.37E´03 1.96 7.13E´03 1.97	4.70E´05 3.02 3.83E´04 3.17	2.27E´06 5.78 5.07E´05 4.91
	46080	1.08E´03 1.99 1.77E´03 1.98	3.36E´06 3.75 2.50E´05 3.88	4.85E´08 5.47 1.07E´06 5.48
	185280	2.71E´04 1.99 4.42E´04 1.99	2.05E´07 4.02 1.57E´06 3.98	1.11E´09 5.42 1.41E´08 6.22
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