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Abstract

Sp2Learn is a Python toolbox for the spectral learning of weighted automata from a set of
strings, licensed under Free BSD. This paper gives the main formal ideas behind the spectral
learning algorithm and details the content of the toolbox. Use cases and an experimental
section are also provided.
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1. Introduction

Grammatical inference is a sub-field of machine learning that mainly focuses on the induc-
tion of grammatical models like finite state machines and generative grammars. However,
the core of this field may appear distant from mainstream machine learning: the methods,
algorithms, approaches, paradigms, and even mathematical tools used are usually not the
ones of statistical machine learning.

There exists one important exception to this observation: the recent developments of
what is called spectral learning are building a bridge between these two facets of machine
learning. Indeed, by allowing the use of linear algebra in the context of finite state ma-
chine learning, tools of statistical machine learning are now usable to infer grammatical
formalisms.

The initial idea of spectral learning is to describe finite state machines using linear repre-
sentations: instead of sets of states and transitions, these equivalent models are made of vec-
tors and matrices [Berstel and Reutenauer, 1988]. The class of machines representable with
these formalisms is the one of Weighted Automata (WA)1 [Mohri, 2009], some time called
multiplicity automata [Beimel et al., 1996], that are a strict generalization of Probabilistic
Automata (PA) [Schtzenberger, 1961] and of Hidden Markov Models (HMM) [Dupont et al.,
2005].

∗ This work was supported in part by the LabEx Archimède of the Aix-Marseille University. This publi-
cation only reflects the authors’ views.

1. Only WA whose weights are real numbers are considered in this work.
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The corner stoned of the spectral learning approach is the use of what is called the
Hankel matrix. In its classical version, this bi-infinite matrix has rows that correspond to
prefixes and columns to suffixes: the value of a cell is then the weight of the corresponding
sequence in the corresponding WA. Importantly, the rank of this matrix is the number of
states of the WA: this allows the construction of the automaton from a rank factorization
of the matrix [Balle et al., 2014].

Following this result, the behavior of the spectral learning algorithm relies on the con-
struction of a finite sub-block approximation of the Hankel matrix from a sample of se-
quences. Then, using a Singular Value Decomposition of this empirical Hankel matrix, one
can obtain a rank factorization and thus a weighted automaton.

From the seminal work of Hsu et al. [2009] and Bailly et al. [2009], important develop-
ments have been achieved. For example, Siddiqi et al. [2010] obtain theoretical guaranties for
low-rank HMM; A PAC-learning result is provided by Bailly [2011] for stochastic weighted
automata; Balle et al. [2014] extend the algorithm to variants of the Hankel matrix and
show their interest for natural language processing; Extensions to the spectral learning of
weighted tree automata have been published by Bailly et al. [2010].

In the context of this great research effervescence, we felt that an important piece was
missing which would help the widespread adoption of spectral learning techniques: an easy
to use and install program with broad coverage to convince non-initiated researchers about
the interest of this approach. This is the main motivation behind the project of the SPiCe
Spectral Learning (Sp2Learn) Python toolbox2 that this paper presents.

We notice that a code for 3 method of moments, including a spectral learning algo-
rithm, is available at https://github.com/ICML14MoMCompare/spectral-learn. However,
this code was designed for a research paper and suffers many limitations, as for instance
only a small number of data sets, the one studied in the article, can be used easily.

Section 2 gives formal details about the spectral learning of weighted automata. Sec-
tion 3 carefully describes the toolbox content and provides use cases. Some experiments
showing the potential of Sp2Learn are given in Section 4, while Section 5 concludes by
giving ideas for future developments.

2. Spectral learning of weighted automata

2.1. Weighted Automata

A finite set of symbols is called an alphabet. A string over an alphabet Σ is a finite
sequence of symbols of Σ. Σ∗ is the set of all strings over Σ. The length of a string w
is the number of symbols in the string. We let ϵ denote the empty string, that is the
string of length 0. For any w ∈ Σ∗, let pref(w) = {u ∈ Σ∗ : ∃v ∈ Σ∗, uv = w} be
its set of prefixes, suff(w) = {u ∈ Σ∗ : ∃v ∈ Σ∗, vu = w} be its set of suffixes, and
fact(w) = {u ∈ Σ∗ : ∃l, r ∈ Σ∗, lur = w} be the set of factors of w (sometime called the set
of substrings).

The following definitions are adapted from Mohri [2009]:

2. SPiCe stands for Sequence PredIction ChallengE, an on-line competition where the toolbox was released
as a baseline.

2

https://github.com/ICML14MoMCompare/spectral-learn


A Toolbox for the spectral learning of weighted automata

Definition 1 (Weighted automaton) A weighted automaton (WA) is a tuple
⟨Σ, Q, I, F, T , λ, ρ⟩ such that: Σ is a finite alphabet; Q is a finite set of states;
T : Q × Σ × Q → R is the transition function; λ : Q → R is an initial weight
function; ρ : Q → R is a final weight function.

A transition is usually denoted (q1, σ, p, q2) instead of T (q1, σ, q2) = p. We say that two
transitions t1 = (q1, σ1, p1, q2) and t2 = (q3, σ2, p2, q4) are consecutive if q2 = q3. A path π
is an element of T ∗ made of consecutive transitions. We denote by o[π] its origin and by
d[π] its destination. The weight of a path is defined by µ(π) = λ(o[π])× ω × ρ(d[π]) where
ω is the multiplication of the weights of the constitutive transitions of π. We say that a
path (q0, σ1, p1, q1) . . . (qn−1, σn, pn, qn) reads a string w if w = σ1 . . . σn. The weight of a
string w is the sum of the weights of the paths that read w.

A series r over an alphabet Σ is a mapping r : Σ∗ → R. A series r over Σ∗ is rational if
there exist an integer k ≥ 1, vectors I, T ∈ Rk, and matrices Mσ ∈ Rk×k for every σ ∈ Σ,
such that for all u = σ1σ2 . . . σm ∈ Σ∗,

r(u) = IMuT = IMσ1Mσ2 . . .MσmT

The triplet ⟨I, (Mσ)σ∈Σ, T ⟩ is called a k-dimensional linear representation of r. The
rank of a rational series r is the minimal dimension of a linear representation of r. Linear
representations are equivalent to weighted automata where each coordinate corresponds to
a state, the vector I provides the initial weights (i.e. the value of function λ), the vector T
is the terminal weights (i.e. the value of function ρ), and each matrix Mσ corresponds to
the σ-labeled transition weights (Mσ(q1, q2) = p ⇐⇒ (q1, σ, p, q2) is a transition).

q01 q1

a : 1/6
b : 1/3

a : 1/2

1/4

a : 1/4
b : 1/4

b : 1/4

I =

[
1
0

]
T =

[
0

1/4

]
Ma =

[
1/2 1/6
0 1/4

]
Mb =

[
0 1/3

1/4 1/4

]

Figure 1: A weighted automaton and the equivalent linear representation.

In what follows, we will confound the two notions and consider that weighted automata
are defined in terms of linear representations.

A particular kind of WA is of main interest in the spectral learning framework: a
weighted automata A is stochastic if the series r it computes is a probability distribution
over Σ∗, i.e. ∀x ∈ Σ∗, r(x) ≥ 0 and

∑
x∈Σ∗ r(x) = 1. These WA enjoy properties that are

important for learning. For instance, in addition to the probability of a string r(x), a WA
can compute the probability of a string to be a prefix rp(x) = r(xΣ∗), or to be a suffix
rs(x) = r(Σ∗x). It can be shown that the rank of the series r, rp, and rs are equal [Balle
et al., 2014]. Other properties of stochastic WA are of great interest for spectral learning
but it is beyond the scope of this paper to describe them all. We refer the Reader to the
work of Balle et al. [2014] for more details.
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Finally, stochastic weighted automata are related to other finite state models: they are
strictly more expressive than Probabilistic Automata [Denis et al., 2006] (which are equiv-
alent to discrete Hidden Markov Models [Dupont et al., 2005]) and thus than Deterministic
Probabilistic Automata [Carrasco and Oncina, 1994].

2.2. Hankel matrices

The following definitions are based on the ones of Balle et al. [2014].

Definition 2 Let r be a rational series over Σ. The Hankel matrix of r is a bi-infinite
matrix H ∈ RΣ∗×Σ∗

whose entries are defined as H(u, v) = r(uv) for any u, v ∈ Σ∗. That
is, rows are indexed by prefixes and columns by suffixes.

For obvious reasons, only finite sub-blocks of Hankel matrices are going to be of interest.
An easy way to define such sub-blocks is by using a basis B = (P,S), where P,S ⊆ Σ∗.
We write p = |P| and s = |S|. The sub-block of H defined by B is the matrix HB ∈ Rp×s

with HB(u, v) = H(u, v) for any u ∈ P and v ∈ S. We may just write H if the basis B is
arbitrary or obvious from the context.

In the context of learning weighted automata, the focus is on a particular kind of bases.
They are called closed bases: a basis B = (P,S) is prefix-closed3 if there exists a basis
B′ = (P ′,S) such that P = P ′Σ′, where Σ′ = Σ ∪ {ϵ}. A prefix-closed basis can be
partitioned into |Σ| + 1 blocks of the same size: given a Hankel matrix H and a prefix-
closed basis B = (P,S) with P = P ′Σ′, we have, for a particular ordering of the elements
of P:

H⊤
B = [H⊤

ϵ |H⊤
σ1
|H⊤

σ2
| . . . |H⊤

σ|Σ|
]

where Hσ are sub-blocks defined over the basis (P ′σ,S) such that Hσ(u, v) = H(uσ, v). The
notation uses here means that H⊤

B can be successively restricted to the other sub-blocks.
The rank of a rational series r is equal to the rank of its Hankel matrix H which is thus

the number of states of a minimal weighted automaton that represents r. The rank of a
sub-block cannot exceed the rank of H and we are interested by full rank sub-blocks: a
basis B is complete if HB has full rank, that is rank(HB) = rank(H).

We will consider different variants of the classical Hankel matrix H of a series r:

• Hp is the prefix Hankel matrix, where Hp(u, v) = r(uvΣ∗) for any u, v ∈ Σ∗. In this
case rows are indexed by prefixes and columns by factors.

• Hs is the suffix Hankel matrix, where Hs(u, v) = r(Σ∗uv) for any u, v ∈ Σ∗. In this
matrix rows are indexed by factors and columns by suffixes.

• Hf is the factor Hankel matrix, where Hf (u, v) = r(Σ∗uvΣ∗) for any u, v ∈ Σ∗. In
this matrix both rows and columns are indexed by factors.

3. Similar notions of closure can be designed for suffix and factor.
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2.3. Hankel matrices and WA

We consider a rational series r, H its Hankel matrix, and A = ⟨I, (Mσ)σ∈Σ, T ⟩ a minimal
WA computing r. We suppose that A has n states.

We first notice that A induces a rank factorization of H: we have H = PS, where
P ∈ RΣ∗×n is such that its uth row equals I⊤Mu, and reciprocally S ∈ Rn×Σ∗

is such that
its vth column is MvT . Similarly, given a sub-block HB of H defined by the basis B = (P,S)
we have HB = PBSB where PB ∈ RP×n and SB ∈ Rn×S are restrictions of P and S on P
and S, respectively. Besides, if B is complete then HB = PBSB is a rank factorization.

Moreover, the converse occurs: given a sub-block HB of H defined by the complete
basis B = (P,S), one can compute a minimal WA for the corresponding rational series
r using a rank factorization PS of HB. Let Hσ be the sub-block of the prefix closure
of HB corresponding to the basis (Pσ,S), and let hP,ϵ ∈ RP denotes the p-dimensional
vector with coordinates hP,ϵ(u) = r(u), and hϵ,S the s-dimensional vector with coordinates
hϵ,S(v) = r(v). Then the WA A = ⟨I, (Mσ)σ∈Σ, T ⟩, with I⊤ = h⊤ϵ,SS

+, T = P+hP,ϵ, and

Mσ = P+HσS
+, is minimal for r [Balle et al., 2014]. As usual, N+ denotes the Moore-

Penrose pseudo-inverse of a matrix N .

2.4. Learning weighted automata using spectral learning

The core idea of the spectral learning of weighted automata is to use a rank factorization of a
complete sub-block of the Hankel matrix of a target series to induce a weighted automaton.

Of course, in a learning context, one does not have access to the Hankel matrix: all that is
available is a (multi-)set of strings LS = {x1, . . . , xm}, usually called a learning sample. The
learning process thus relies on the empirical Hankel matrix given by ĤB(u, v) = P̂LS(u, v)
where B is a given basis and P̂LS is the observed frequency of strings inside LS. Hsu et al.
[2009] proves that with high probability we have ||HB − ĤB||F ≤ O( 1√

m
).

In the learning framework we are considering, we suppose that there exists an unknown
rational series r of rank n and we want to infer a WA for r. We are assuming that we
know a complete basis B = (P,S) and have access to a set of strings LS. Obviously, we
can compute sub-blocks Hσ for σ ∈ Σ′, hP,ϵ, and hϵ,S from LS. Thus, the only thing

needed is a rank factorization of ĤB = Hϵ. We are going to use the compact Singular Value
Decomposition (SVD).

The SVD of a p× s matrix Hϵ of rank n is Hϵ = UΛV ⊤ where U ∈ Rp×n and V ∈ Rs×n

are orthogonal matrices, and Λ ∈ Rn×n is a diagonal matrix containing the singular values
of Hϵ. An important property is that Hϵ = (UΛ)V ⊤ is a rank factorization. As V is
orthogonal, we have V ⊤V = I and thus V + = V ⊤. Using previously described results (see
Section 2.3), this allows the inference of a WA A = ⟨I, (Mσ)σ∈Σ, T ⟩ such that:

I⊤ = h⊤ϵ,SV

T = (HϵV )+hP,ϵ

Mσ = (HϵV )+HσV

These equations are what is called the spectral learning algorithm. The Reader interested
in more details about spectral learning is referred to the work of Balle et al. [2014].
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3. Toolbox description

The Sp2Learn toolbox is made of 5 Python classes and implements several variants of the
spectral learning algorithm. Distributed as a baseline for the Sequence PredIction ChallengE
(SPiCe), http://spice.lif.univ-mrs.fr, it enjoys an easy installation process and is extremely
tunable due to the wild range of parameters allowed.

3.1. The different classes

The corner stone of the toolbox is the Automaton class. It implements weighted automata as
linear representations and offers valuable methods, such that loading from a file, computing
the weight of a string or the sum of the weights of all strings, testing absolute convergence,
etc. Two particular methods are worth being detailed. The first one consists in a numerically
robust and stable minimization following the work of Kiefer and Wachter [2014]. The second
is a transformation method that constructs a WA from a given one computing r(·) such
that the new WA computes the prefix weights rp(·), the suffix ones rs(·), or the factor ones
rf (·). Moreover, the reverse conversion is also doable with this method.

The second class, Load, is a private one that is used to parse a learning sample in the
now standard PAutomaC format [Verwer et al., 2014] and create a dictionary containing
the strings of the sample and their number of occurrences.

Another important class is the one named Sample. Its main role is to create and to
store the data in the needed dictionaries of prefixes, suffixes, or factors, in order to build the
Hankel matrix from a sample. The aim is to take into account only the needed information.
Therefore, in addition to the path to the sample file, its parameters correspond to the ones
of the learning procedure:

• version indicates which variant of the Hankel matrix is going to be used (possible
values are classic for Ĥ, prefix for Ĥp, suffix for Ĥs, and factor for Ĥf ). This
allows to compute only the needed dictionaries.

• partial indicates whether all the elements have to be taken into account in the Hankel
matrix.

• lrows and lcolumns can either be lists of strings that form the basis B of the sub-
block that is going to be considered, or integers corresponding to the maximal length
of elements of the basis. In the latter case, all elements present in the sample whose
length are smaller than the given values are in the basis. This ensures the basis to
be complete if enough data is available. These parameters have to be set only when
partial is activated.

The generated Python dictionaries contains for each elements its frequency in the sample.
Among others not described here, a method is implemented in this class to heuristically
select interesting rows and columns given the sample.

The class named Hankel is a private class that creates a Hankel matrix from a Sample

instance containing all needed dictionaries.
Finally, the class Learning generates a WA from a sample. When creating an instance

of that class, it is required to provide a Sample object. The main method of the class
Learning is LearnAutomaton. Parameters of this method are the same than the ones of

6

http://spice.lif.univ-mrs.fr


A Toolbox for the spectral learning of weighted automata

the instantiation of a Sample object, together with the expected rank value and a Boolean
specifying whether the Hankel matrix has to be stored in a sparse format. It returns the
automaton computed with the requested rank. The class Learning implements also some
evaluation methods, like perplexity computation for instance.

The class diagram of Sp2Learn is given in Figure 5 in Annex.

3.2. Installing and using Sp2Learn

The installation of the toolbox is made easy by the use of pip: one just has to execute
pip install Sp2Learning in a terminal. If needed, the package can be downloaded at
https://pypi.python.org/pypi/Sp2Learning.
A technical documentation is available at http://pythonhosted.org/Sp2Learning.

The following code corresponds to a use case in a python interpreter:

>>> from sp2learn import Learning, Sample

>>> rank = 17

>>> lrows = 4

>>> lcolumns = 5

>>> version = "factor"

>>> partial = True

>>> train_file = "1.pautomac.train"

>>> LS = Sample(adr=train_file, lrows=lrows, lcolumns=lcolumns,

version=version, partial=partial)

>>> sptrl = Learning(sample_instance=LS)

>>> A = sptrl.LearnAutomaton(rank=rank, lrows=lrows,

lcolumns=lcolumns, version=version,

partial=partial, sparse=True)

In this code, the 8 first lines defined the parameters of the spectral learning, the 9th in-
struction is the creation of an instance of the class Sample, the 10th of an instance of the
class Learning, and the last one runs the learning method. This example corresponds to
the learning of a WA on problem 1 of the PAutomaC competition (see Section 4), using a
sparse empirical Hankel matrix Ĥf with a basis containing all factors in the learning sample
up to size 4 for rows and 5 for columns.

In the context of the SPiCe competition, the interest was put on the probability of
prefixes. One can transform the automaton A so that it computes the prefix probability:

>>> Ap = A.transformation(source="classic", target="prefix")

>>> A.val ([1, 0, 2, 2])

>>> Ap.val ([1, 0, 2, 2])

The last line computes rp(1022) while the previous one gives r(1022), where r is the series
represented by the learned automaton A.

4. Experiments

We tested the Sp2Learn toolbox on the 48 synthetic problems of the PAutomaC com-
petition [Verwer et al., 2014]. These data sets correspond to randomly generated sets
of strings from randomly generated probabilistic finite states machines: Hidden Markov
Models (HMM), Probabilistic Automata (PA), and Deterministic Probabilistic Automata
(DPA). Several sparsity parameters were used to generate various machines for each models.

7
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4.1. Settings

For each problem, PAutomaC provides a training sample (11 with 100 000 strings, the rest
with 20 000 strings), a test set of 1 000 strings, the finite state machine used to generate
the data, and the probability in this target machine of each string in the test set.

We ran the toolbox on the 48 data sets using the 4 different variant of the (sparse) Hankel
matrix. On each problem and for each version, we made the maximal size of elements used
for the matrix range from 2 to 6 (these are parameters lrows and lcolumns of the toolbox).
For each of these values, all ranks between 2 and 40 were tried. This represents 28 032 runs
of the toolbox, to which we have to subtract 631 runs that correspond to rank values too
large comparing to the size of the Hankel matrix. All these computations were done on a
cluster and each process was allowed 20Go of RAM and 4 hours computation on equivalent
CPUs.

We evaluated the quality of the learning using perplexity following what was done for
the competition. Given a test set TS, it is given by the formula:

perplexity(C, TS) = 2−(
∑

x∈TS PT (x)∗log(PC(x)))

where PT (x) is the true probability of x in the target model and PC(x) is the candidate prob-
ability, that is the one given by the learned WA. Both probabilities have to be normalized
to sum to 1 on strings of TS.

Finally, the main problem of spectral learning of weighted automata is that some strings
can have negative weights, if not enough data is available. To tackle this issue, we trained a
3-gram using the same data and replaced the output of the learned weighted automata by
the 3-gram one each time it gave a negative weight. We carefully kept track of this behavior
and detail the result in the next section.

4.2. Results

We want first to notice that the aim of these experiments was to show the global behavior
of the toolbox on a broad and vast class of problems. Indeed, spectral learning algorithms
are usually used as a first step of a learning process, usually followed by a smoothing phase
that tunes the weights of the model without modifying its structure (Gybels et al. [2014]
use for instance a Baum-Welch approach for that second step). We did not work on that
since the aim was to show the potentiality of the toolbox.

However, the results of the best run on each problem, given in Table 1 and Table 2 (in
Annex), show that even without a smoothing phase the toolbox can obtain perplexity scores
close to the optimal ones. This would not have permitted the winning of the competition,
but it is good enough to be noticed.

The runs realized using the toolbox also allow to evaluate the impact of the value given
to the rank parameter. Figure 2 shows the evolution of perplexity on the problems whose
target machines are Probabilistic Automata (top) and Deterministic Probabilistic Automata
(bottom). This curves were obtained using the classic version of the Hankel matrix for DPA
and the factor variant for PA. In both cases, values of lrows and lcolumns were set to 5.

These results show that in a first phase the perplexity can oscillate when the rank
increases. However, in a second phase, the perplexity seems to decrease to a minimal value
and then stay stable. This second step is likely to be reached when the value of the rank

8
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parameter is equal to the rank of the target machine. At that moment, inferred singular
values correspond to the target ones and adding other values later has no impact. Indeed,
if the empirical Hankel matrix was the target one, these values would be null. But even if
it is not the case, which is likely in this experimental context, the results show that their
values are small enough to not degrade the quality of the learning.

Figure 2: Perplexity evolution with the rank on problems whose targets are Probabilistic
Automata (top) and Deterministic Probabilistic Automata (bottom). Each line
corresponds to one given set of parameters (values of version, lrows, lcolumns).

Figure 3 shows the learning time of the toolbox on the PAutomaC problems. Each
point corresponds to the average computation time of all runs using a given version of the
Hankel matrix, in seconds. Clearly, the classic version is the fastest while the factor one is
the slowest, suffix and prefix ones are standing in a middle ground. This is expected since
the factor version is the less sparse of the Hankel matrix variants. These results seem to
show that the classic version is 100 times faster than the factor one. Another not really
surprising observation is that the behavior of the prefix and suffix versions are extremely
close.

9
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Figure 3: Average learning time using the 4 different variants of the Hankel matrix on the
48 PAutomaC problems.

Globally, these values show that the running time of the toolbox is reasonable, even for
the slowest variant: on all but one problem the factor version took less than an hour and a
half on average.

Finally, Figure 4 shows the average percentage of the 3-gram uses to find the probability
of a test string. Remember that this happens for strings on which the learned automata
returns a non-positive weight. These percentages are given for each possible rank parameter.
Each curve corresponds to a given value of the size parameter, that is the maximal length
of elements taken into account to build the Hankel matrix.

Globally, the use of 3-gram is quite rare, as less than 1.3% of strings requires its use.
On the one hand, models built on large Hankel matrices tend to need less uses of 3-gram.
On the other hand, models made using a large rank seem to require slightly more uses of
3-gram. This might be due to the overfitting that may occur when the rank parameter is
set higher than the actual rank. Notice that no result is possible with large ranks for Hankel
matrices made of too few rows and columns: as the dimensions of the matrix are smaller
than the asked rank, a SVD cannot be computed.

10
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Figure 4: Average percentage of uses of 3-gram to find the probability of a test string giving
different values of the rank parameter. Each curve corresponds to a different value
of the maximal length of elements of the Hankel matrix.

5. Future developments

The version of the Sp2Learn presented here is 1.1. We are currently working on a different
version that will be usable in the same way than the well-known statistical machine learning
toolbox Scikit-learn [Pedregosa et al., 2011]. This will allow the use of the tuning functions
of Scikit-learn, like cross-validation and grid search. Given the large public using Scikit-
learn, this could convince the statistical machine learning community to get interested in
spectral learning.

We are also planning to develop new useful methods, starting with a Baum-Welch one,
that would complete the learning process by allowing a smoothing phase after the spec-
tral learning one. We might also turn our attention to closely related and promising new
algorithms, like the one of Glaude and Pietquin [2016].
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Figure 5: Class diagram of Sp2Learn.
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Problem Solution Perplexity Version Rank Size Time

1 29.8978935527 30.4365057849 classic 22 3 0.917114973068

2 168.330805339 168.496533827 factor 30 6 130.30452013

3 49.956082986 50.2761373276 factor 29 4 7.71120405197

4* 80.8184226132 80.8558017072 factor 11 6 9.42034196854

5 33.2352988504 33.2390299543 factor 9 6 1.26393389702

6 66.9849579244 67.0522875724 factor 18 6 59.2427239418

7 51.2242694583 51.2542707632 factor 12 6 8.79874491692

8* 81.3750634047 81.6742917934 classic 35 6 17.385874033

9 20.8395901703 21.0402440195 factor 34 6 1.72923922539

10 33.3030058501 33.99830351 classic 39 4 1.75096201897

11 31.8113642161 32.4618574848 factor 38 4 260.691053867

12 21.655287002 21.6701591045 factor 17 5 94.2339758873

13* 62.8058396015 63.0458473691 classic 39 6 3.14246487617

14 116.791881846 116.854374304 factor 7 6 65.0472741127

15 44.2420495474 44.3621902064 factor 30 4 99.350990057

16* 30.7110624887 30.851413939 classic 39 4 7.41966795921

17 47.3112160937 47.4890664272 factor 26 5 127.645046949

18* 57.3288608287 57.3331676752 factor 24 5 284.276638985

19 17.8768660563 17.9142466522 factor 39 5 101.450515032

20 90.9717263176 91.5984851723 factor 8 3 31.4403400421

21 30.518860165 32.0618301238 factor 34 4 283.474653006

22* 25.9815361778 26.1277647043 classic 36 4 8.18691301346

23 18.4081615041 18.4352765238 factor 32 5 190.789381981

24 38.7287795405 38.761782116 factor 7 5 9.56825995445

25 65.7350539501 66.2159906104 factor 23 3 14.8863971233

26 80.7427626831 84.9777239451 classic 39 6 2.27566695213

27 42.427078513 42.6194221003 factor 39 4 166.635137081

28 52.7435104626 53.1105801399 factor 15 3 4.2344379425

29 24.0308339109 24.084604107 factor 39 5 17.505715847

30 22.925985377 23.0171753219 factor 24 3 8.12572789192

Table 1: Best obtained results on the first 30 data sets of the PAutomaC competition.
Column Solution corresponds to the minimal perplexity, i.e. the one of the target
machine; Column Perplexity is the perplexity obtained by the best run of the
toolbox; Version indicates which version of the Hankel matrix was used; Rank
gives the value of parameter rank for that run; Size is the maximal length of
elements considered to build the Hankel matrix; Time is the computation time of
the run, given in seconds. Problem numbers marked with a star are the ones whose
training set contains 100 000 strings (the other are made of 20 000 sequences).
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Problem Solution Perplexity Version Rank Size Time

31 41.2136431636 41.4211835629 factor 14 4 8.21831202507

32* 32.6134162732 32.6754979794 factor 39 6 61.3909471035

33 31.8650289444 31.9141918025 factor 21 3 40.8976488113

34 19.9546848395 20.7051491426 classic 34 4 2.75224304199

35 33.776935538 34.6956389516 classic 39 4 2.0509660244

36* 37.985692906 38.1214706816 classic 11 3 5.38864707947

37* 20.9797622037 21.0288128706 classic 11 4 7.00510692596

38 21.4457989928 21.5279850109 classic 3 2 0.706127166748

39 10.0020442634 10.002996462 factor 6 6 89.0673789978

40 8.2009545433 8.31253842976 factor 39 4 176.795210123

41* 13.9124713717 13.9384593977 classic 8 3 3.88122415543

42 16.0037636643 16.0087620127 factor 7 3 2.48271298409

43 32.6370243149 32.8343363438 classic 6 6 1.82530999184

44 11.7089059654 11.8353479581 classic 6 3 1.67373609543

45 24.0422109361 24.0468379329 factor 3 3 27.9223351479

46 11.9819819343 12.0312721955 factor 38 4 331.469185114

47* 4.1189756456 4.17530125251 classic 39 6 6.05857491493

48 8.0362199917 8.05347816088 factor 33 5 766.088064194

Table 2: Best obtained results on the last 18 data sets of the PAutomaC competition.
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