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Hyperspectral pansharpening is a challenging research area and several methods have been recently developed to fuse low resolution hyperspectral and high resolution panchromatic images. In this paper we focus on a recent regularization method, called Collaborative Total Variation, exploiting a convex optimization algorithm. We evaluate the effectiveness of this novel approach in comparison to existing methods, and assess the performances on two datasets: a synthetic scene mimicking the characteristics of the Hyperion and ALI sensors and the Pavia University dataset.

INTRODUCTION

Images composed of several spectral channels allow to infer, with medium to low spatial resolution, the spectral signature of the materials present on a scene, as required by several applications, ranging from precision agriculture to mineralogy mapping [START_REF] Bioucas-Dias | Hyperspectral remote sensing data analysis and future challenges[END_REF]. On the other hand, high spatial resolution images can give a detailed representation of the surveyed area, but are in general less spectrally accurate (i.e., they feature broadband spectral responses). However, the availability of data characterized by both high spatial resolution and high spectral diversity is precluded in the real practice, due to physical constraints of acquisition devices. Hyperspectral Pansharpening [START_REF] Vivone | A critical comparison among pansharpening algorithms[END_REF][START_REF] Loncan | Hyperspectral pansharpening: A review[END_REF] addresses this limitation by generating a synthetic image through the fusion of a Hyper-Spectral (HS) image (with hundreds of bands in the Visible Near-Infrared and Shortwave Infrared) with a PANchromatic (PAN) image, characterized by a higher spatial resolution. Several algorithms have been proposed in the literature for performing hyperspectral pansharpening [START_REF] Loncan | Hyperspectral pansharpening: A review[END_REF]. They can be divided in three main families: Component Substitution (CS), MultiResolution Analysis (MRA) and Bayesian/Variational techniques. The two former groups are composed by classical pansharpening methods, extended to hyperspectral im-ages [START_REF] Vivone | A critical comparison among pansharpening algorithms[END_REF], whereas the latter can be seen as a particular instance of a deconvolution or deblurring problem.

Focusing on the latter family, variational techniques (e.g., based on convex optimization), have been profitably used in recent years [START_REF] He | A new pansharpening method based on spatial and spectral sparsity priors[END_REF][START_REF] Simões | A convex formulation for hyperspectral image superresolution via subspace-based regularization[END_REF]. In particular in [START_REF] Simões | A convex formulation for hyperspectral image superresolution via subspace-based regularization[END_REF] the authors have introduced the "HySure" method, in which an efficient implementation is attained by reducing the dimensionality of HS data and a regularization approach, based on a particular form of Vectorial Total Variation (VTV) [START_REF] Bresson | Fast dual minimization of the vectorial total variation norm and applications to color image processing[END_REF], is employed for dealing with the ill-posed nature of the problem. In this work we extend the approach proposed in [START_REF] Simões | A convex formulation for hyperspectral image superresolution via subspace-based regularization[END_REF] for the fusion of a HS and a PAN image by considering alternative regularization strategies based on the Collaborative Total Variation (CTV) paradigm. Different instances of CTV were defined and applied to denoising and deblurring problems in [START_REF] Duran | Collaborative total variation: A general framework for vectorial tv models[END_REF]. Therefore, in this paper we show that, according to the particular choice of the regularization term, the fused images exhibit different effects that directly impact the Hyperspectral Pansharpening results.

PANSHARPENING VIA TOTAL VARIATION

In this work we test several spatial regularization terms based on total variation, by relying on the framework proposed in [START_REF] Simões | A convex formulation for hyperspectral image superresolution via subspace-based regularization[END_REF]. To make the paper self-contained, we briefly describe it in the following, resorting to a vector notation. Namely, a multichannel image is represented by a matrix in which each row contains the lexicographically ordered pixels of a given band. More in detail, the HS image H ∈ R C×N HS , with C bands and N HS pixels, is assumed to be a spatially degraded version of the unknown high spatial and spectral resolution image Z ∈ R C×N P AN (with N P AN = ρ 2 N HS , where ρ > 1 is the resolution ratio), obtained according to the following model

H = ZBM + N h , (1) 
where: i) B ∈ R N P AN ×N P AN is the spatial blurring matrix, representing the hyperspectral sensor's Point Spread Function (PSF), that is assumed to be band-independent; ii) M ∈ R N P AN ×N HS allows to perform a uniform subsampling of the Table 1: Synthetic dataset: performance obtained by the tested CTV norm averaged on 100 Monte Carlo trials. λ ϕ is the optimal value of the TV term weight, as defined in eq. ( 3) [START_REF] Simões | A convex formulation for hyperspectral image superresolution via subspace-based regularization[END_REF] 0.05 0.9919 1.8793 0.9334 0.9558 0.67 6.2949 11.438 0.7648 0.8799 39.9 image and gives rise to the lower spatial resolution of the hyperspectral image; iii) Z ∈ R C×N P AN is the high spatial and spectral resolution image (i.e., the objective of pansharpening); iv) N h ∈ R C×N HS is a matrix whose elements are samples of independent and identically distributed (i.i.d.) zeromean Gaussian noise with variance σ 2 HS . On the other hand, the PAN image P ∈ R 1×N P AN is supposed to be obtainable as:

SN R P AN = 40 dB, SN R HS = 30 dB SN R P AN = 20 dB, SN R HS = 20 dB Norm λ ϕ ERGAS SAM UIQI SCC λ ϕ ERGAS SAM UIQI SCC T [s] 2,2,1 (dbx)
P = RZ + N p (2) 
where: i) R ∈ R 1×C is related to the Relative Spectral Response (RSR) of the Panchromatic band; ii) N p ∈ R 1×N P AN is a matrix whose elements are samples of independent and identically distributed (i.i.d.) zero-mean Gaussian noise with variance σ 2 P AN . Following [START_REF] Simões | A convex formulation for hyperspectral image superresolution via subspace-based regularization[END_REF], since Z lives in a subspace of dimensionality (significantly) lower than C, the models in (1) and ( 2) admit an alternative formalization. Specifically, Z is factorized as Z = EX, in which E is the set of basis (with cardinality lower than C) that spans the subspace of Z and X are the representation coefficients. This dimensionality reduction step, which can be obtained by using algorithms from the spectral unmixing literature [START_REF] Simões | A convex formulation for hyperspectral image superresolution via subspace-based regularization[END_REF], leads to a simplification of the problem that reflects in an increased robustness and eases the computation. Therefore, the aim is to estimate a pansharpened image Z (or equivalently its factorization EX) that gives the closest approximation of the HS and PAN im-age according to the models (1) and ( 2). This represents an ill-posed inverse problem that can be addressed by a convex optimization formalization, described by: minimize

X 1 2 H -EXBM 2 F + λm 2 P -REX 2 F + λ ϕ ϕ(X), (3) 
where • F is the Frobenius norm and λ m = 1 [START_REF] Simões | A convex formulation for hyperspectral image superresolution via subspace-based regularization[END_REF]. Due to the complexity of the ill-posed problem, a regularization term ϕ(X) is required and its weight λ ϕ needs to be tuned. In the following we focus on this term, in order to identify the best choice according to the CTV theory.

COLLABORATIVE TOTAL VARIATION

The VTV regularization used in [START_REF] Simões | A convex formulation for hyperspectral image superresolution via subspace-based regularization[END_REF] is a particular instance of Total Variation on multivariate images (e.g., multi-and hyperspectral images). Indeed the authors of [START_REF] Duran | Collaborative total variation: A general framework for vectorial tv models[END_REF] showed that it is possible to build a framework, named CTV, in which the main idea is to choose the most appropriate regularization term ϕ(•) among the so-called Collaborative Norms (CNs), that operate on a multivariate image A = [A i,j,k ] ∈ R N ×C×M , where N is the number of the pixels, C is the number of the bands and M is the number of directional derivatives computed on each pixel.

More in detail, there are two general formulations for the CN's. The first one is based on the p,q,r norm. For example, if we associate the p norm to the derivative dimension (d), the q norm to the bands dimension (b) and the r norm to the pixel dimension (x), i.e. the application order is (dbx), we can obtain the p,q,r (dbx) norm :

||A|| p,q,r =    N i=1   C j=1 M k=1 |A i,j,k | p q/p   r/q    1/r . (4) 
The other formulation is based on the Schatten p-norm (referred to as S p ) applied to two dimensions (usually spectra and derivatives) and then on the q norm for the third dimension (i.e. the pixel dimension), according to:

(S p , q ) (A) =    N i=1 A i,1,1 • • • A i,1,M . . . . . . . . . A i,C,1 • • • A i,C,M q S p    1/q , (5) 
that defines the (S p (bd), q (x)) norm.

In our framework M = 2 and therefore we can put A in the form A = [XD h , XD v ], where XD h and XD v stand for the spatial derivatives of X in the horizontal and vertical directions, respectively. The range of possible choices is wide [START_REF] Duran | Collaborative total variation: A general framework for vectorial tv models[END_REF], due to the possibility of freely selecting the norm kind and the application order. In the following we will check the effectiveness of the most popular choices, such as the 2,2,1 (dbx) norm (used in "HySure" [START_REF] Simões | A convex formulation for hyperspectral image superresolution via subspace-based regularization[END_REF]) and the (S 1 (bd), 1 (x)) norm (the well-known nuclear norm).

EXPERIMENTAL RESULTS

The effect of selecting different CNs is evaluated via a reduced resolution assessment [START_REF] Wald | Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images[END_REF] on two different datasets: a synthetic one, designed to mimic the acquisitions of the Hyperion and ALI sensors, and the well-known Pavia University dataset. The fusion results are evaluated via several in- dices [START_REF] Vivone | A critical comparison among pansharpening algorithms[END_REF]9,[START_REF] Zhou | A wavelet transform method to merge landsat TM and SPOT panchromatic data[END_REF], i.e.: i) The Erreur Relative Globale Adimensionelle de Synthèse (ERGAS) that is a generalization of the Root Mean Square Error (RMSE); ii) The Spectral Angle Mapper (SAM), useful to evaluate the spectral distortion; iii) The Universal Image Quality Index (UIQI), that takes into account the correlation, the error and the contrast between the fused image and the reference image; iv) The Spatial Correlation Coefficient (SCC) computed between the details of the reference image and the fused one, aimed to assess the correct rendering of the details in the fused image.

Synthetic dataset

This dataset has been created by using a collection of ten geometric shapes: each of them is associated to a spectral signature of a different material. The background, divided in four quarters, is composed by a mixing (different for each quarter) of the previous materials. Three images have been generated (see Fig. 1 (a)-(c)): i) A HS image, playing the role of the Ground Truth (GT), obtained by using the Relative Spectral Response (RSR) of the Hyperion sensor; ii) A PAN image, obtained using the RSR of the ALI sensor. Moreover, white Gaussian noise is added in order to have a Signal to Noise Ratio (SNR) equal to a fixed value SN R P AN ; iii) A HS image, Table 2: Pavia University dataset: performance obtained by some CTV, CS and MRA algorithms, averaged on 100 Monte Carlo trials. λ ϕ is the optimal value of the TV term weight in eq. ( 3). 1, two different norms achieve the best results in the high SNR and low SNR scenarios. The 2,1,1 (bdx) norm represents the best option in the first case (SN R P AN = 40 dB, SN R HS = 30 dB) and the nuclear norm is the optimal choice (S 1 (bd), 1 (x)) in the second setting (SN R P AN = 20 dB, SN R HS = 20 dB). A significant improvement is achieved w.r.t. the 2,2,1 (dbx) norm used in "HySure" [START_REF] Simões | A convex formulation for hyperspectral image superresolution via subspace-based regularization[END_REF] in terms of SAM and ERGAS. Focusing on the spatial distribution of the SAM, reported in Fig. 2, we can see that the improvements are mainly related to the borders of the geometrical shapes, that are sharper for 2,1,1 (bdx) and (S 1 (bd), 1 (x)) (see, for instance, the little square in the bottom-left corner). Noticeably, CTV algorithms based on these three norms and on 1,1,1 (bdx) (that obtains appreciable SAM values in the high noise scenario) have comparable (and relatively low) computation times T. The use of other norms results in higher computation times and lower performance, thus constituting worse choices.

SN R

Pavia University dataset

This dataset is based on a widely used HS image acquired by the ROSIS sensor. Also in this case, three images were created (see Fig. 3 (a)-(c)): i) The original ROSIS image plays the role of GT; ii) The PAN image is simulated by using the RSR of IKONOS sensor; iii) The HS image is obtained by blurring the GT via a Starck-Murtagh filter [START_REF] Strang | Wavelets and Filter Banks[END_REF] and downsampling by a factor ρ = 4. Similarly to the other dataset, both PAN and HS images are corrupted by adding white Gaussian noise in order to obtain the desired values of the SN R P AN and SN R HS , respectively. In this case, we considered for comparison only the fastest CTV-based algorithms, i.e., the ones based on 2,2,1 (dbx), 1,1,1 (bdx),

2,1,1 (bdx) and (S 1 (bd), 1 (x)) norms. Moreover, for sake of comparison, we assess the performance of some conventional pansharpening techniques belonging to both the CS class (i.e., GS and GSA, based on the Gram-Schmidt procedure, and the Principal Component Analysis (PCA) method) and to the MRA class (i.e., the High-Pass Filtering (HPF) and the A-Trous Wavelet Transform (ATWT) method) [START_REF] Vivone | A critical comparison among pansharpening algorithms[END_REF]. Looking at the results shown in Table 2, we see that CTV-based algorithms outperform the other techniques. More specifically, we can see that 2,1,1 (bdx) yields a poor performance: indeed, abrupt variations (caused for example by the shadows) are present in all the bands of this image. The 2,1,1 (bdx) norm is not able to reduce spectral artifacts on the corresponding edges [START_REF] Duran | Collaborative total variation: A general framework for vectorial tv models[END_REF][START_REF] Duran | On the Implementation of Collaborative TV Regularization: Application to Cartoon+Texture Decomposition[END_REF]. On the other hand, the nuclear norm (S 1 (bd), 1 (x)) still outperforms the "HySure" 2,2,1 (dbx) one, in particular in terms of SAM, both for low and high noise. Finally, as in the synthetic dataset, 1,1,1 (bdx) norm shows good performance in the high noise scenario.

CONCLUSIONS

In this work we compared the effectiveness of several norms to implement the Collaborative Total Variation framework for the fusion of HS and PAN images. The numerical results obtained with two different datasets indicate that the nuclear norm S 1 (bd), 1 (x)) allows to obtain superior performance with respect to the 2,2,1 (dbx) norm used in the original "HySure" algorithm. Future work will be devoted to the application of these algorithms to other pansharpening scenarios, e.g., the fusion of HS and MS images and of MS and PAN ones.
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 1 Fig. 1: Synthetic dataset: GT image (a), PAN image (b), HS image(c), example of fused image using 2,2,1 (dbx) norm (d).

Fig. 2 :

 2 Fig. 2: Synthetic dataset: SAM map for 2,2,1 (dbx) norm (a), 1,1,1 (bdx) norm (b), 2,1,1 (bdx) norm (c) and (S 1 (bd), 1 (x)) norm (d). Relevant parameters are SN R P AN = 40 dB and SN R HS = 30 dB.

Fig. 3 :

 3 Pavia University dataset: GT image (a), PAN image (b), HS image(c), Fused image (using 2,2,1 (dbx) norm) (d).

  P AN = 40 dB, SN R HS = 30 dB SN R P AN = 20 dB, SN R HS = 20 dB degrading the GT according to the PSF of the Hyperion sensor: the resolution ratio is ρ = 3. Also in this case, white Gaussian noise is added in order to have an SNR equal to a fixed value SN R HS .As shown by the numerical results reported in Table

	Algorithm	λ ϕ	ERGAS SAM	UIQI	SCC	λ ϕ	ERGAS SAM	UIQI	SCC
	EXP	-	7.3828	5.2903 0.7686 0.5517	-	7.4267	5.7044 0.7623 0.5533
	HPF	-	5.8474	7.0084 0.8792 0.7261	-	6.8810	8.0241 0.8105 0.7345
	ATWT	-	5.9789	8.0134 0.8789 0.7404	-	6.9640	8.8917 0.8154 0.7469
	GS	-	5.3330	6.3522 0.8839 0.7411	-	6.1975	7.0914 0.8276 0.7433
	GSA	-	6.0100	9.2121 0.8798 0.7409	-	7.4846	10.501 0.8056 0.7460
	PCA	-	7.4006	9.3170 0.7843 0.6854	-	8.0904	9.9096 0.7387 0.6899
	CTV: 2,2,1 (dbx) [5]	0.002	3.8160	4.8204 0.9411 0.7804	0.02	4.2458	5.0985 0.9168 0.7494
	CTV: 1,1,1 (bdx)	0.002	3.8431	4.8398 0.9387 0.7777 0.005	4.2891	5.0138 0.9147 0.7679
	CTV: 2,1,1 (bdx)	0.002	3.9325	4.9662 0.9370 0.7763	0.01	4.3937	5.2126 0.9116 0.7600
	CTV: (S 1 (bd), 1 (x)) 0.002	3.7809	4.7396 0.9421 0.7801	0.02	4.2097	5.0285 0.9179 0.7436
	obtained by spatially