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Abstract

Phrase-Based Statistical Machine Translation systems model the translation process using pairs of
corresponding sequences of words extracted from parallel corpora. These biphrases are stored in
phrase tables that typically contain several millions such entries, making it difficult to assess their
quality without going to the end of the translation process. Our work is based on the examplifying
study of phrase tables generated from the Furoparl data, from French to English. We give some
statistical information about the biphrases contained in the phrase table, evaluate the coverage of
previously unseen sentences and analyse the effects of pruning on the translation.

Computing Reviews (1998) Categories and Subject Descriptors:
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1.2.7 Natural Language Processing

General Terms:
Machine translation
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Chapter 1

Introduction

The aim of Machine Translation is to automatically translate sentences from a given language
into another. Phrase-Based Statistical Machine Translation systems, one approach to solve this
problem, use pairs of corresponding sequences of words in the source and target languages to build
a probabilistic model of the translation process.

Extracting pairs of corresponding phrases together with their word to word links, the biphrases,
from sentence aligned bilingual corpora using statistical and heuristic models to compute the word
alignments and storing them in a phrase table is the first step to set such a translation system up.

When no intermediate evaluation is available, the full training procedure of the translation
system has to be completed before any evaluation can be conducted. The complete loop often
requires several days to be carried out, making incremental improvements impractical. Besides
the phrase table, many factors are involved in training the system and generating the translations.
Thus, in the absence of intermediate evaluation, determining which part of the system is at fault
when the translation quality is unsatisfactory can also be challenging.

Therefore, after acquiring a better undertanding of what phrase tables actually contain by
computing statistics about the basic characteristics of the biphrases (phrase length, number of
occurrences, etc.), we would like to find a way to evaluate their intrinsic quality. Since they
typically contain several millions of entries, a manual evaluation by browsing through the biphrases
is simply unfeasible. For this reason, we try to estimate the ability of the phrase table to cover
previously unseen sentences, without making any assumption on the system that uses them. We
want to determine whether the biphrases needed to construct the translations are present in the
phrase table, regardless of how the system can combine them.

Finally, we investigate how manipulating the phrase table by filtering out some of the biphrases
impacts the translation. We consider the effects of different pruning methods on the translation
quality as well as on the size of the model and the translation speed.

The work reported here is based on the examplifying study of translation from French to
English, using distinct subsets from the Furoparl corpus to train and evaluate the systems.

After giving a overview of the field of Machine Translation in general and of Phrase-Based
Statistical Machine Translation more specifically in Chapter 2, we focus on the phrase tables,
explaining how they are generated and briefly reviewing related work in Chapter 3. Chapter 4
describes our experimental settings and the results obtained. Chapter 5 concludes this work.



Chapter 2

Preliminaries

2.1 Machine Translation

After defining the main goals of Machine Translation (MT), we briefly present the history of this
field. Next, we outline the main approaches that have been used in solving this problem.

2.1.1 Goals

Machine Translation aims at translating sentences from a source language X to a target language
Y. The ultimate goal for MT would be to obtain perfect translations, i.e. translations that could
not be discriminated from human translations. Yet, this still seems to be too high a target.

There are two main purposes for machine translation outputs, assimilation and dissemination.
When used for assimilation purposes, the translation should help the reader in understanding
texts originally available in a language he does not read. On the other hand, when used for
dissemination purposes, the output is typically post-processed by a human translator in order to
obtain high quality translation to be published.

In the case of assimilation the main objective is to retain as much as possible from the original
meaning of the text while in the case of dissemination it should output sentences that require
minimal post-editing before being acceptable translations for the original sentences. Of course,
these two objectives are closely related. A perfect translation would reflect the original content
and would not need any edition. But while redundant translations of some difficult words might
help to understand the meaning of the translation it would only slow down the post-editing.

MT systems can also be used as part of larger systems. For example, they can be used in
cross-lingual information retrieval or for automatic speech processing. In those cases, again, as the
end-use changes, the way of characterizing a good candidate translation also varies.

2.1.2 Brief history

A detailed history of MT can be found in [20]. Ounly the main steps are reported here.

Long before computers became available did intellectuals envision the use of machines to trans-
late from one language into another. Shortly after the Second World War, Warren Weaver [36]
suggested that some of the innovations made during the war in the field of cryptography could
be applied to MT. He compared translating a text from chinese into english to deciphering some
encrypted text, the cipher being chinese language. In the 50’s and 60’s, the first attemps to make
the old dream of automatic translation become true, resorting mainly to rule-based systems, failed
to fulfill the high expectations they had generated. Bar-Hillel, one of the first MT researchers,
concluded in 1960 in his review [6] that the objective of producing automatic translations undis-
tinguishable from human translations is unrealistic and had to be abandonned. In 1966, a report
published by the Automatic Language Processing Advisory Committee (ALPAC) in the United
States presented MT as a failure and put an end to almost all research in the field [18]. In the 80’s,



some operational systems were released and attracted back attention. Systran [33] is probably the
most famous of them. From the late 80’s, as more resources became available, approaches based
on corpora - exemple-based and statistical MT - started to be developed. The latter in particular
keeps attracting increasing attention as the amount of data available to feed to those systems
continues to grow.

2.1.3 Approaches

We will now introduce the main approaches for solving the problem of Machine Translation.

Expert systems

The first operational MT systems were Rule-Based systems. Such systems use bilingual dictionaries
and a large set of rules that are automatically applied to generate a translation. Generally the
set of rules needs to be written by a linguist for each specific pair of languages. Alternatively, an
artificial representation, an interlingua, can be used as a universal intermediate representation of
the semantic content.

Data-driven systems

Example-Based and statistical MT systems both rely on bilingual corpora. But while the former
generates translations based on analogies retrieved from the parallel texts at runtime [19], the
latter requires a training step to carry out a statistical analysis of the corpora in order to extract
relevant knowledge to be used while translating.

Statistical systems Statistical Machine Translation (SMT) [24] uses a probabilistic represen-
tation of natural languages and the translation process. To all possible pairs of source language
sentence z and target language sentence y is associated a value Pr(y|z). This value represents
the probability that given the sentence z a translator would choose y as its translation. The best
translation given a sentence x is then defined as the sentence § that maximizes Pr(y|z). Using
Bayes’ theorem this can be rewritten as

Pr(y)Pr(zly)

Pr(ylz) = Prz)

For a given source sentence the denominator is constant. Therefore the sentence

g = argmax Pr(z|y) Pr(y)
y

is the best translation for the source sentence x.

Pr(y) models the probability that the sentence y is a valid sentence in the target language,
while Pr(y|x) models the probability that y is a good translation for . The former model is called
the language model, the latter is the translation model.

The most common language models are based on counts of occurrences of sequences of n
successive words, the n-grams, in large monolingual texts.

e Phrase-Based and Syntax-Based SMT

The knowledge extracted from the bilingual corpora in SMT systems to model the translation
probabilities can take different forms. It can be syntactic rules, typically represented as
operations on parse trees [14], in the case of Syntaz-Based SMT, or pairs of corresponding
sequences of words in the source and target languages, aligned phrases, in the case of Phrase-
Based SMT. The extracted sequences of words in the source and target languages may have
varying size. This should take care of fertility issues, i.e., the fact that a word in language may
not be translated into exactly one word in the other language. This should also alleviate the
problem of reorderings, i.e., the fact that the words in the target language do not necessarily



appear in the same order as the source words they translate and may need to be reordered.
However, it cannot entirely solve this issue since the length of the extracted phrases is limited
and cannot cover sentence wide reorderings. The set of corresponding sequences of words in
the source and target languages is called a phrase table.

¢ Phrase-Based Machine Translation and Machine Learning

Phrase-Based machine translation can be cast as a machine learning problem. One way of
doing so is, for a given input sentence, to predict a label that indicates which phrases appear
in the translation and at what position.

2.2 Phrase-Based Statistical Machine Translation

In this section we will present in more detail Phrase-Based Statistical Machine Translation (PB-
SMT) systems, in which phrase tables, the object of our interest in this work, are used as the
base element to model the translation probability Pr(y|x). In the following discussion, we shall
distinguish between sentences, the linguistic units of meaning and phrases, sequences of words of
varying lengths whose boundaries do not necessarily have a linguistic motivation. A pair of a source
language phrase and a target language phrase is called a biphrase and is generally associated with
its word to word correspondence relation, called alignment.

2.2.1 System architecture

Here we want to give an overview of the components that make up a Phrase-Based SMT system.
As an example, we describe the architecture of Sinuhe translation system [22], one of the systems
we studied in this work. In both this system and Moses [17], the system used as a baseline in our
work, the phrase table is generated the same way, as described below. However the two translation
models use it differently, so the training processes as well as the decoding are different.

Training material

The starting material for Phrase-Based SMT systems is a large bilingual corpus, typically two large
texts in the source and target languages which are translations of each other and are aligned at
sentence level. Alignment at sentence level means that corresponding lines of the two texts contain
sentences that are translations of each other. The bilingual material is separated into a training
set, from which the biphrases are extracted and their weights learnt, a tuning set, used to adjust
the values of the parameters of the decoder and an evaluation set, to assess the translation quality.
A separate monolingual corpus in the target language is needed to train the language model.

Alignment and phrase extraction

Before extracting the aligned biphrases, the training set is tokenized and lowercased. The most
common way to perform the phrase extraction is to generate the word to word alignment and
then extract the set of biphrases that are compatible with it, called phrase table. The GIZA++
implementation of the IBM models [7] is generally used to perform the word alignment. The IBM
models are statistical models of the translation process that are used to evaluate the probabilities
of word to word alignements for all pairs of source word and target word given a pair of aligned
sentences. There are five models of increasing complexity to take into account effects such as
distortion, i.e., the fact that the translations of some words may be swapped, and fertility, i.e.,
the fact that one word is not always translated into exactly one word in the other language. The
parameter values estimated for one model are used as initial values for the next estimation. To
obtain a good quality word alignment a series of successive estimations is needed. This iterative
process generally requires several hours to be carried out for roughly one million sentences. The
models allow one word of a target sentence to be linked to only one word of the source language.
To by-pass this constraint, the word alignments are computed in both directions, from source to



target and target to source, and the results are combined as a final step called symmetrization.
The result of this alignment process is for each pair of training sentences a set of links between the
source words and the target words. An example is given below where x is a source sentence, y a
target sentence, and a their word to word alignment, i.e., a set of link between the words of = and
y. For example the link 3 — 2 indicates that the fourth word of z, meme is aligned with the third
word of y, also.

X: je me permettrai meme , bien qu’ ils soient [...]
y: i would also like , although they are absent [...]
a: 0-0 1-1 3-2 2-3 4-4 5-5 6-5 7-6 8-7 9-8 10-9 [...]

A biphrase (2/,a’,y’), where 2’ is a source phrase, 3’ a target phrase and a’ the alignment
between the words of 2’ and 3’ induced by a is considered valid if it contains links but none of
them crosses the boundaries of the biphrase. All valid biphrases are stored in a phrase table, along
with their count of occurrences.

Learning

From this point Sinuhe and Moses differ in the use they make from the extracted biphrases to
model the translation probabilities.

In Sinuhe the biphrases are used to construct ¢(z,a,y), a vector indicating which biphrases
occurs in (z,a,y), a pair of aligned sentences z and y and their word to word alignment a. More
precisely ¢(z,a,y); ; indicates whether the it" biphrase of the phrase table occurs at position j of
the source sentence. Then q?)(x, a,y); is defined as (Z)(a:, a,y); = Ej:J o(z,a,y); 4, so it is the count
of occurrences of the ¥ biphrase in (z,a,y) over the set of all starting positions .J.

The translation model in Sinuhe doesn’t estimate the translation probability distribution
Pr(y|x) directly but Pr(¢(z,a,y)|x) instead, using the features (;NS(x, a,y) to build a conditional
exponential model

Pr(o(r.a,y)lr) = SO )
>gea, xp(w- @)
where @, represents the set of all possible candidates for the sentence x. The mazimum a posteriori
(MAP) [31] estimates of the weights for the biphrases features w; are computed using stochastic
gradient ascent, where the gradients are computed by dynamic programming. The counts of
occurrences associated to the biphrases can be used at this stage to compute regularization terms
for the weights. Biphrases with unaligned end words are discarded from the phrase table as they
cannot be handled by the dynamic procedure, as well as all biphrases occurring only once to prevent
overfitting the training data. Since the weights are learnt from the same corpus as the features
have been extracted from, if no pruning was applied to the phrase table prior to the learning phase,
the system could simply use all the biphrases that were extracted from an aligned pair of sentences
to reconstruct it.

Decoding

Decoding is the dynamic procedure of finding the translation that maximizes the translation prob-
ability. Once the weights have been learnt, the translation can be generated by selecting the vector
(5(30, a,y); that receives the highest translation model probability and reconstructing the translation
induced by the target side of the biphrases active in that vector.

Alternatively, additional scores can be taken into account to select the best candidate transla-

tion:
e a language model score, given by an external language model trained separately,
e a word level lexical translation probability,

e the length of the candidate translation, and



e a distortion score, to penalize for reorderings in the translation.

The contribution of the different scores in the decoding is tuned using Minimum Error Rate Train-
ing (MERT) to optimize the BLEU score (cf. 2.2.3) on the tuning corpus.

2.2.2 Data sources

As we mentioned, bilingual corpora are the starting material for SMT systems.

Since the Canadian Government is officially bilingual, the proceedings of the Canadian Par-
lament have to be maintained both in French and English. Likewise, the European Parliament
also maintains proceedings in the official languages of its member states. The proceedings of these
two political institutions, the Canadian Hansard [27] and the Europarl [23, 12] respectively, have
traditionally been the most important resources for Statistical Machine Translation between Eu-
ropean languages. A major inconvenience of these two sources arises from the fact that they are
parliament proceedings. They have a very specific focus and contain many atypical formulations
that are not useful to translate texts from other domains.

A new French-English corpus generated by automatically crawling bilingual websites has re-
cently been released for the translation task of the fourth Furopean Chapter of the Association
for Computational Linguistics (EACL) Workshop on Machine Translation (WMT09). This Giga
French-English [12] corpus contains over 20 millions sentences in both languages, to be compared
to Furoparl corpora of typically slightly more than 1 million sentences.

Finding training material is a crucial point in developing a SMT system for a new language pair.
For some language pairs, in particular those that involve rare languages, finding aligned bilingual
texts can be really challenging. Therefore, some alternative approaches have been developed to
take advantage of texts that are similar but not exact translations of each other [29] or even from
two monolingual datasets [16], or to use a third language as an intermediate [37].

2.2.3 Translation evaluation

Evaluation of translation systems output is a hard, tedious and highly subjective task. Common
criteria are fluency and adequacy. Fluency indicates whether the translation is a correct sentence in
the target language and can possibly be evaluated by a person who only reads the target language.
Adequacy measures how well the original meaning was conveyed to the translation and needs to
be evaluated by a bilingual person.

Automatic evaluation tools are required not only to compare systems but also during the
training process since systems are often trained to optimize a criteria on the translation quality.
Various metrics have been developed to approximate human judgment. They generally require
human reference translations of the test sentences to be at hand. The most widely used metric
for evaluating machine translation output is the BLEU score [28]. This score is based on n-grams
precision evaluation. The basic idea is to count how many n-grams from the candidate translation
are present in the reference. This might seem a coarse criterion for evaluation and its use is subject
to much critisism. But while much research effort has been directed toward inventing metrics that
correlate better with human judgement [3, 8, 38], no satisfactory solution has been developed. The
very existence of an automatic tool for evaluating the quality of such complex objects as instances
of natural language is arguable. There are for example many different ways to translate the same
idea that might be acceptable. Using several references has been shown to increase the reliability
of the evaluation [34]. There is also much discussion about how to evaluate the quality of candidate
translations when no reference is available. This is needed in particular to rank several candidate
translations generated by one or different systems.

Automatic Machine Translation evaluation remains a difficult task. The use of multiple metrics
has been recommended but it can be computationally heavy and the results may be difficult to
interpret so that BLEU score alone still is widely used despite its evident flaws.



Chapter 3

Background informations on
phrase tables

3.1 Motivation

Phrase tables are corner stones of Phrase-Based Statistical Machine Translation systems. Therefore
the phrase table quality is critical in the overall quality of the translation system. The quantity of
biphrases in the model is also a very important factor determining the size of the model and the
speed of the learning and of the translation processes.

We focus here on three systems:

e Moses, a state-of-the-art open-source toolkit [17] for Statistical Machine Translation, is usu-
ally used as a baseline in Phrase-Based SMT.

e A SMT software that models the translation probabilities using a conditional exponential
family, Sinuhe [22].

e An application of multiview learning to machine translation, based on the maximum margin
regression algorithm [32], the Maximum Margin Based Translator (MMBT).

Both Sinuhe and MMBT where developed for the SMART EU project [30].

We want to consider more closely the phrase tables used by those three systems. Moses and
Sinuhe both rely on the GIZA++ implementation of the IBM models [7] to generate the word align-
ments but the biphrases extracted after symmetrization are scored and filtered differently. MMBT
has its own alignment, biphrases extraction and scoring algorithm. We will analyse theses three
different phrase tables, trying to get a better understanding of what they contain and looking for
patterns that would enable us to discriminate between good and bad biphrases. If such charac-
teristics were found, we could in particular reduce the search space during the decoding process,
without affecting significantly the quality of the final translation.

What we call good biphrases are pairs of source and target phrases that are correct translation
of each other, have proper boundaries and valid weights. We would also like to find a compromise
for the size of the model. On one hand, an important part of large phrase tables may be constituted
of biphrases which are very specific to the training corpus and rarely occur in texts to translate.
On the other hand, small phrase tables that contain only frequent expressions may be unable to
translate constructs slightly out of the ordinary.

3.2 Phrase table generation process

In this section, we describe how the phrase table is generated from the sentence aligned training
corpus. First for Moses and Sinuhe translation systems starting from word alignments generated
using GIZA++, then with MMBT.



3.2.1 Using GIZA++

Most of the current Phrase-Based SMT systems rely on the GIZA++ implementation of the IBM
Models [7] to produce word alignments, running the algorithm in both directions, source to target
and target to source. Various heuristics can then be applied to obtain a symmetrized alignment
a from those two. Most of them, such as grow-diag-final-and, that we used, start from the
intersection of the two word alignment and enrich it with alignment points from the union. Word
sequences are then stored in the phrase table as biphrases (z/,y’) along with their alignment a’ if
they satisfy the following conditions:

1. 2’ and ¥’ are consecutive word subsequences in the source sentence x and target sentences y
respectively and neither of them is longer than k words.

2. o/, the alignment between the words of 2’ and 3’ induced by a, contains at least one link and
all links from a have either both ends in a’ or none.

Moses phrase table

Moses uses directly the biphrases extracted from the GIZA++ word aligments without any further
processing apart from the scoring explained in 4.2.1.

Sinuhe phrase table

Sinuhe does not use the full phrase table obtained from the GIZA++ word aligments. After associ-
ating count-based features to the biphrases as presented in 4.2.2; before proceeding to the learning
of the biphrases’s weights, the phrase table is pruned by filtering out biphrases that satisfiy any of
the six following criteria:

1. single occurrence, the pair (source phrase, target phrase) occurs only once in the corpus,

2. rank, the biphrase is not among the N most frequent among all biphrases sharing the same
source phrase (N is typically fixed to 20),

3. first source word unaligned, the first word of the source phrase is not aligned to any word on
the target side,

4. last source word unaligned, similarily the last word of the source phrase is not aligned to any
word on the target side,

5. first source word unaligned, and
6. last source word unaligned, similar to 3. and 4. with respect to the target phrase.

The motivation for removing biphrases that occur once is to avoid overfitting the training data
by leaving out biphrases that are specific to that corpus and are unlikely to occur anywhere else.
Having only biphrases whose first and last word are aligned simplifies the learning of feature weights
[22]. Biphrases farther than the twentieth are likely to be assigned too low probabilities compared
to the most frequent ones to be actually used in translations.

3.2.2 Using MMBT

MMBT is an application of multiview learning to machine translation. It predicts an ouput label
associated to some given input features. A detailed explanation of the method can be found in
[30].

Machine Translation deals with how to arrange words into sentences. Therefore, the inputs
are features associated to words, both from the target language and source language. They are
similarity measures, representing how closely two words are related to each other, based on how
often they occur in the training data at neighboring positions. To a word w is associated a vector



¢s..s, (w) representing how closely w relates to the words in the source sentence Sy and in the
target sentence Sj.

Consider a sentence S and a set of phrases Py, Ps,..., P, that cover it. The label to predict
for a word w is a binary vector indicating which phrases w belongs to ¥ (w)s = (w € P,w €
P27...7_U GPT,)

Once these representations have been fixed, the learning problem is can be defined as follows:

nsg

1
mln§ || w ||2F7‘obenius +CZ§7€7 (31)
k=1

w.r.t. W linear operator, & loss,

s.t. (Ys, (wr), Wos, s, (we)) > 1 =&, wp € S5,
& >0 and C > 0 penalty constant.

When W has been computed, here assuming that the source words are the training set, the
label for a target word w; is Weg, g, (w;). This vector does not contain boolean indicators but real
values. The strength of the relation between a source word wj and a target word w; can then be
computed as R(wy, wi) = (s, (wi), Wos,,s, (wi)).

Two such closeness matrices are computed, considering the source words as the training set and
computing the labels for the target words as well as in the other direction and summed. The result
is a ng, X ng, matrix, D, where ng, and ng, are the number of words in the source and target
sentences respectively. D(i, j) measures how closely the i*" word of the source sentence relates to
the j** word of the target sentence.

The next step is to extract biphrases from this matrix. Consider a source phrase of length k
starting at position ¢ of St, i.e., some adjacent lines of D with indices [i,i + k& — 1]. The aim of
the phrase extraction process is to find the target phrase that gives the best match, i.e., the set
of adjacent columns of D with indices [j,j + k&’ — 1] such that the similarity is maximized in the
window defined by the indices and minimized outside.

The extraction is done using the following heuristic. Only values that are row or column
maxima are kept. For a source phrase, all target words that are aligned to some source word are
collected. Words whose score is below a certain threshold are removed and the remaining ones
sorted in the order of the target sentence. The obtained biphrase is stored in the phrase table if it
does not contain more than a one word gap and its target phrase length does not differ from that
of the source phrase by more than one word.

3.3 Related work

3.3.1 Phrase alignment and extraction

Extracting aligned biphrases from the symmetrized word alignments generated using the IBM
models, as presented in 2.2.1, is by far the most widely used technique to generate the phrase
table. Alternative methods have been proposed to directly generate the phrase level alignment
using statistical models [26], with a machine learning approach as in MMBT (described in 3.2.2) or
using integer linear programming [11]. The model proposed in [25] refines the IBM models by
adding agreement constraints between the alignments in direct and reverse direction, leading to
improved final word alignments.

Starting from the word alignments generated by the IBM models in both directions, various
symmetrization and extraction heuristics can be applied. Different criteria have been studied to
discard some biphrases from the phrase table, based on usage statistics [13] or significance tests [21].
The latter reported no decrease in BLEU score while removing up to 90% of the biphrases. The
use a Gibbs sampler initializied with the IBM word alignments to estimate biphrases frequencies
is proposed in [10]. These weights were shown to allow for a better use of the phrases.

A filtering technique using triangulation with a bridge language is presented in [9]. Given an
original phrase table Pxy to be pruned, between languages X and Y and the two phrase tables
Px 7z between X and the bridge language Z and Pz y between Z and Y, for a candidate biphrase



(z,y) from the original phrase table to be kept, there must be a phrase z in the third language such
that (x,2) € Px z and (z,y) € Pzy. This approach is claimed to yield increased BLEU score up
to 2.3 points, depending on the language used as a bridge. Nevertheless, applying this technique
requires to obtain the bridge phrase tables Px 7 and Pzy, meaning that aligned corpora in the
language pairs (X, Z) and (Z,Y) have to be at hand and two additional alignment processes run.

3.3.2 Alignment quality

Precision, Recall and Alignement Error Rate (AER) are generally used to evaluate the quality of
word alignments. A reference alignment is required to use these metrics. Reference alignments
are definied manually and contain two kinds of links, sure (S) and probable (P), with P C S, to
which the links (A) of the studied alignment are to be compared. The metrics are then defined as

follows:
|ANP|

Al

|ANS |
Recall = ———,
| S|

|ANS|+|ANS|
|A[+]S]

The impact of word alignment quality on the final translation has been studied [35, 5, 15],
showing that improved AFR does not necessarily leads to better translations, in terms of BLEU
score in particular. The results presented in [35] suggest that the usage of the biphrases by the
decoder should be taken into account when tuning the alignments.

A thorough analysis of the search space of phrase-based systems can be found in [4]. In that
work, phrase-based systems are compared to hierachical phrase-based systems, studying the reach-
ablity of a set of translations and analysing symptomatic errors.

Precision =

AER =
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Chapter 4

Phrase table experiments

4.1 Material

The work we report here was made using a phrase table obtained with GIZA++ to generate the
alignment on one side and the MMBT alignment algorithm on the other. The phrase tables have
been obtained using the Furoparl training data, from French to English, made available for the
translation task of the fourth European Chapter of the Association for Computational Linguistics
(EACL) Workshop on Machine Translation (WMT09) [23, 12]. europarl-v4.fr-en was tokenized,
lowercased and long sentences (over 40 words) filtered out before being used as the training data.
We used two sets of 2000 tokenized and lowercased sentences, dev2006 and test2007, as tuning
and evaluation data respectively. Statistics of the three datasets are reported in Table 4.1.

Typically, the phrase tables we consider come as ordinary text files containing one line per
biphrase, each line having four fields:

source phrase, a short sequence of words as it appears in the source corpus,
target phrase, a short sequence of words as it appears in the target corpus,
alignment, the mapping between the words of the source phrase and the target phrase, and

features, counts, translation probability, etc.

The features assigned to each biphrase depend on the scoring procedure. In the next section, we
will present in more detail how the phrase tables are generated from the parallel corpora, what
features are associated with them for each of the three different systems studied here, and how we
could use them to discriminate the biphrases.

All three translation systems were used as of March 2009. The source code of Moses translation
system can be downloaded from [1]. A step by step guide from installation to translation and a
detailed manual can be found on the website of the WMT09 [12] where it is used as a baseline.
The source code of Sinuhe translation system can be downloaded from [2] and contains installation
instructions. The source code of MMBT is not available online but can be obtained from its author.

4.2 Phrase table features

After extracting the biphrases from the aligned corpus, numerical features are associated to them
which can be used for a preliminary pruning or in the training phase and decoding. In this section
we will present in more detail the different features generated by the three scoring procedures.
Two are applied to the GIZA++ alignments, in Moses and Sinuhe respectively and one in the MMBT
system.
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europarl-v4.fr-en dev2006 test2007
French English | French English | French English
sentences 1050377 2000 2000
words 23812195 21617161 | 64331 58762 64339 59156

Table 4.1: Statistics of the data

4.2.1 Moses features
Moses phrase table contains five features per biphrase (mos;,i € [1,5]):

1. the phrase translation probability ¢(fle),

2. the lexical weighting lex(f|e),

3. the phrase inverse translation probability ¢(e|f),

4. the inverse lexical weighting lex(e|f),

5. the phrase penalty, currently always e = 2.718.

The first four features are probabilites, so they take values between zero and one. The fifth one,
being constant is not used in our experiments. These features are directly used by the decoder.
4.2.2 Sinuhe features
Sinuhe phrase table also contains five features per biphrase (sin;,i € [1,5]):

1. the number of occurrences of the triple (source phrase, target phrase, alignment) in the
training data,

2. the number of occurrences of the source phrase,
3. the number of occurrences of the target phrase,

4. the rank of the pair (source phrase, target phrase) among all such pairs sharing the same
source phrase,

5. the rank of the pair (source phrase, target phrase) among all such pairs sharing the same
target phrase.

These features are not used directly by the decoder but for filtering the phrase table prior to
learning and determing the regularization during the weights estimation.
Note that we have the following correspondence between Moses’s features and Sinuhe’s, from
the definition of the translation probabilities:
mos; = % and mos3 = % (4.1)
§in9 sing
Sinuhe’s features, as they are not normalized, are not as easy to handle as Moses’s probabilities
but allow for finer distinctions. Let us take some biphrases and consider the scores they are given
in Moses and Sinuhe phrase table respectively to illustrate this point. The two lines below are
extracted from Moses phrase table, they have very similar scores.

absence de mme ||| absence of mrs ||| (0) (1) (2) |1l (0) (1) (2)
[1] 1 0.239303 1 0.0623942 2.718
abstention exprime ||| abstention expresses ||| (0) (1) [I| (0) (1)

[11 1 0.293781 1 0.0659091 2.718

Here are the two same biphrases, extracted from Sinuhe’s phrase table.
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absence de mme ||| absence of mrs ||| 0-0 1-1 2-2
115656511

abstention exprime ||| abstention expresses ||| 0-0 1-1
[Ir11111

Both biphrases are scored mos; = moss = 1, because the source and target phrases always co-
occur in the training data, but the first biphrase occurs five times, the second only once. As a
consequence while the two will be handle in the same way in Moses, with Sinuhe the first will be
kept but the second pruned out.

Another example follows, again the first group of biphrases are extracted from Moses’s phrase
table and second one from Sinuhe. Here all biphrases have scores mos; = 0.25 and mosz = 0.5
since the pair (source phrase, target phrase) occurs with every other occurrence of the source phrase
but only every fourth occurrence of the target phrase. Nevertheless, the first biphrase occurs five
times in the training data while the last one occurs only once.

abolit ||| abolishes |||
|1l 0.25 0.263158 0.5 0.25 2.718

abandonnera ||| will abandon |||
|l 0.25 0.00621805 0.5 0.078478 2.718

adopte par le conseil et ||| adopted by the council and |||
|1l 0.25 0.00637363 0.5 0.0748383 2.718

affirmation que 1’ ||| insistence that the |||

[1l 0.25 0.000199703 0.5 0.000491218 2.718

abolit ||| abolishes |||
[11 51020 1 2

abandonnera ||| will abandon |||
[l 361211

adopte par le conseil et ||| adopted by the council and |||
24811

affirmation que 1’ ||| insistence that the |||
1112411

The lexical probabilities moss and moss are the product of the lexical translation probabilities
lex(wy|we) and lex(we|wy) respectively over aligned word-pairs (wy,w.) in the biphrase. Thus
they are linked to the number of occurrences of the individual words of the biphrase in the training
data and to the length of the biphrase, but they do not give a direct indication of the number of
occurrences of the biphrase as a whole.

4.2.3 MMBT features

MMBT phrase table only contains two features per biphrase (mmbt;, i € [1,2]):

1. the number of occurrences of the triple (source phrase, target phrase, alignment) in the
training data,

2. the sum of the margins computed for each occurrence.

Figure 4.1 is a plot of the features of the MMBT phrase table, second feature as a function of the
first feature, for the biphrases verifying mmbt; < 5000 (includes over 99% of the points).

The points seem to lies along two different lines. Using biphrases such that 1000 < mmbt; <
5000 to obtain a more reliable estimation from biphrases occurring multiple times, the linear
regressions obtained for the two clusters have coefficients close to a; = 2.886 and as; = 2.305
respectively. Yet, the lower cluster is more subject to noise. The two affine functions mmbt, =
aymmbt; and mmbte = agmmbty are displayed on Figure 4.1 in red and green respectively.

As the second feature accumulate the margins when the biphrase occurs multiple times, the
two features are clearly linearly dependent. However the existence of two biphrases clusters based
on the value of the quotient ’m”zgﬁf should be considered to check whether they have different
properties.
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Figure 4.1: MMBT features, mmbt2 vs. mmbtl

phrase table # biphrases size
Moses 46058264 5.9 GB
MMBT 1936768 138.5 MB

Table 4.2: Sizes of the phrase tables

4.3 Further phrase table characteristics

In this section we present some characteristics of the phrase tables, trying to identify some that
could be used along with their features to discriminate between good and bad biphrases.

4.3.1 Size of the phrase tables

Trained on the same data, the phrase tables obtained using GIZA++ or MMBT have very different
sizes.

The phrase tables obtained using GIZA++ are about 23 times larger than those obtained with
MMBT with respect to the number of biphrases but over 40 times larger with respect to the size of
the file on disk as one can see from Table 4.2.

The distribution of biphrases with respect to their source length and target length as a ratio
of the whole set of biphrases is shown on Figure 4.2. The GIZA++ algorithm allowed to retrieve
phrases up to length 7 on both sides while MMBT was limited to 6. But regardless of that limit,
MMBT concentrates much more on shorter biphrases and allows for much less distortion between the
lengths on the source and target sides. This observation and the fact that the MMBT phrase table
contains only two features per biphrase while Moses’ contains five features probably explains the
difference in disk size.

4.3.2 GIZA++ characteristics

Since Moses and Sinuhe both rely on GIZA++ alignment and the same symmetrization heuristic,
their characteristics are the same, only the scoring methods vary. Therefore, the results presented
in this section are valid for both of them.
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Figure 4.2: Distribution of the biphrases depending on the source length and target length

Pruning criteria

We look at the repartition of the biphrases to the groups made up by the six criteria used by Sinuhe
to prune the phrase table. Using the phrase table generated by GIZA++ from the whole Europarl
training data and scored by Sinuhe, we extracted every fiftieth biphrase (the whole phrase table
is too large to be handled in Matlab).

Figure 4.3 shows the number of biphrases contained by the following different groups:

full all extracted biphrases,

single biphrases occurring only once,

multiple biphrases occurring multiple times,

src non aligned biphrases whose first source word, last source word or both are not aligned,
trg non aligned biphrases whose first target word, last target word or both are not aligned,

rank over 20 biphrases that are ranked lower than twenty with regard to the count of occurrences
for the same source phrase, and

kept biphrases that are retained in the phrase table after pruning.

Of course, there are overlaps between some of these groups. For example, a biphrase may occur
once and have its first source word unaligned. Groups of biphrases that are left out by the pruning
process are represented in red/pink while blue/cyan are used for biphrases that are retained in the
phrase table.

Over 93% of the biphrases occur only once, about 20% have deficient alignment on their source
side and about 16% on their target side. After pruning, only about 4.6% of the biphrases are
retained.

The proportion of well-aligned biphrases is significantly higher among multiple-occurring biphrases
than among single-occurring ones (76% in the former group, 67% in the latter).

Figure 4.4 and Figure 4.5 show for each of the different groups the distribution of biphrases
according to their source or target phrase length and length distortion (i.e., length of the source
phrase minus length of the target phrase), respectively.

Phrases lengths

The distributions of biphrases according to their source length or target length in the full phrase
table are alike, since the extraction process is symmetrical and does not depend on the direction.
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Figure 4.3: Percentage of Sinuhe biphrases in each group

The lengths are very similar to the distribution of n-grams depending on their length n that can
be observed in N-gram language models.

The number of different possible n-grams formed using words taken from a dictionary con-
taining K words grows exponentially with respect to n since there are K times as many possible
combinations of n words as there are combinations of n — 1 words. Nevertheless, k,, the number
of different n-grams actually observed in a corpus does not follow this exponential growth because
of syntactic and semantic limitations on the possible combinations in natural languages. This
property is the basis of N-gram language models. For n > 4, k, even decreases. Indeed, beyond
four words, there are fewer and fewer distinct phrases that occur in the data because of the data
sparsity and sentence boundaries.

The distribution of source length for the biphrases with deficient source alignment is approx-
imatetly the same as for the whole phrase table apart that there are no biphrases of length one
for which that single word is not aligned. This would yield an empty alignment and this is not
allowed during the phrase extraction. The same pattern is repeated on the target side.

Length distortion

The distribution of biphrases depending on the difference between the length of their source phrase
and the length of their target phrase is centered on zero with variance around 1.99. This means,
as we would expect, that most of the biphrases have equal length on source and target sides. The
variance is quite high, some of the biphrases that were retrieved even have for example a source
phrase of length one while the target phrase contains the maximum allowed seven words, yielding
in this case a negative distortion of 6 words.

Many asymmetric biphrases are obtained by gluing an unaligned word on one end of the phrases,
creating an extension with a deficient alignement. Unaligned words preceeding or following well-
aligned symmetric biphrases are attached to them, producing asymmetric extensions. For that
reason, the distribution of biphrases with unaligned end word on source side and on target side
are very similar to the distribution of the complete phrase table with a one word shift toward
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Figure 4.5: Distribution of Sinuhe biphrases depending on their length distortion

source length or target length respectively. Removing biphrases with deficient alignment (33% of
the biphrases) reduces the variance in distortion to about 1.29.

Keeping only multiple-occurring biphrases favors shorter phrases, reducing the potential for
distortion. As a consequence this further lowers the variance in distortion to 0.78. An asymmetry
toward longer biphrases on the source side remains. It is probably due to the fact that French is
more wordy than English and French texts are generally longer than their English translation by
a few words.

Lox rank biphrases

The last pruning criteria discards biphrases that are ranked lower than twenty among the candi-
dates for a given source phrase. Source phrases that have more than twenty candidates must be
very frequent, so as to be extracted along with more than twenty different target phrases. These
different target phrases can be generated by different alignments in various sentences or as exten-
sions, by gluing unaligned words on one or both sides of the target phrases. For example, the
french phrase affaire occurs 3243 times in the training data. It has been extracted with 514 differ-
ent target phrases. Among them are 169 single words, 34 well-aligned 2-grams and 2 well-aligned
3-grams, the remaining 309 candidates are extensions with deficient alignment.
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# candidates # source phrases
1 1227906
2 118914
3 51493
4 26725
5 41931

Table 4.3: Number of candidate biphrases per source phrase for MMBT
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Figure 4.6: Percentage of MMBT biphrases in each group

4.3.3 MMBT characteristics
Pruning criteria

To compare the characteristics of the two different phrase tables, we studied the repartition of
MMBT biphrases to the goups made up by Sinuhe pruning criteria. Note that as a consequence of
the biphrase extraction process there are no biphrases with deficient alignment on the target side,
since a target word has to be linked to some word of the candidate source phrase to be retrieved in
the candidate target phrase. Therefore, deficient alignments can be found only on the source side.

In the phrase table generated using MMBT there were at most five different biphrases for one
given source phrase. 86% of the source phrases have only one candidate biphrase, as shown in
Table 4.3. The pruning criterion based on rank is therefore not applicable here.

Thus, only five groups are taken into consideration: full, single, multiple, src non aligned and
kept. As for Sinuhe’s biphrases, Figure 4.7 and Figure 4.8 show for each of the different groups the
distribution of the MMBT’s biphrases according to their source or target phrase length and length
distortion (i.e., length of the source phrase minus length of the target phrase) respectively.

Length distortion

As can be seen from Figure 4.2, the alignment obtained with MMBT is strongly biased toward
asymmetric biphrases, compared to the one obtained with GIZA++. It retrieves a much larger
proportion of biphrases whose source phrase is longer than the corresponding target phrase by one
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Figure 4.8: Distribution of MMBT biphrases depending on their length distortion

word.

In fact, the bias toward positive length distortion of the alignment algorithm may even be
stronger, producing a large number of biphrases whose source phrase is longer than the corre-
sponding target phrase by two or more words. Since only one word distortion is allowed during
the extraction such biphrases are filtered out and we cannot assert whether this phenomena really
occurs or not.

We also noticed that a gaussian kernel, instead of the default polynomial kernel configuration,
produced very symmetrical alignments. However this was only tested for a small corpus and we
cannot be certain that this result would generalize to a larger corpus as we were not able to run it
on the larger corpus for computational reasons.

Almost all biphrases with unaligned words on the source side are asymmetric, problably pro-
duced by extending some aligned biphrase by gluing an unaligned word to its end or beginning.

Applying pruning rules to the phrase table allows to obtain characteristics that are more in
line with what we would expect, in terms of symmetry in particular. This is possible only at the
expense of a reduction of the phrase table size. Modifying the extraction algorithm and maybe
the alignment algorithm might allow to correct this bias and help to further enhance the quality
of the phrase table while keeping it at a reasonable size.

By default, a biphrase must occur at least once if the source phrase contains only one word,
four times if it contains between two and four words and twice if it contains five or six words.
This criteria is responsible for the irregularities in the distribution of source lengths, which is also
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closely linked to the distribution of target lengths.

4.4 Phrase table coverage

Our aim with this experiment is to compare how well a test set is covered by the biphrases of the
different phrase tables, not making any assumptions on subsequent components such as the decoder
or the language model, the capability of the system to handle reorderings, etc. The procedure we
followed is explained in more details in the next section before presenting the results we obtained.

4.4.1 Experiment description
Metrics

For this test, we propose to retrieve the biphrases whose source phrase match n-grams in the
source test sentence using some feature of the biphrase or a combination of features to threshold
the phrase table. We analyse how the bag of words obtained from the biphrases’ words on target
side covers the target test sentence using metrics similar to the common precision and recall:

: (4.2)

where

inter is the number of words common to the target sentence and the aggregate bag,

sumT is the number of words contained in the aggregate bag (test), and

sumR is the number of words contained in the target sentence seen as a bag of words (reference).

R quantifies how well the test sentences were covered and can be assimilated to a measure of
recall, while P quantifies how large a bag of word has been retrieved from the phrase table and
can be assimilated to a precision measure. These measures can also be computed so that only the
presence of the words, not their number of occurrences, is taken into account.

To evaluate the coverage at corpus level one can either

1. use micro-averaging, denoted with subscript mic, i.e., calculate the total inter, sumT and
sumR for all sentences then compute P and R, or

2. use macro-averaging, denoted with subscript mac, i.e., compute P and R for each sentence
and then average over all sentences.

Compared with micro-average, macro-average puts more emphasize on the shortest sentences.
Nevertheless, the difference between the two measures is only noticeable for the first thresholds
and vanishes as the size of the bags of words grows. Later in this report we use micro-average,
unless otherwise stated, as it proved to be more stable for the first thresholds.

Outline
To carry out our experiment we follow the outline described below.

e Run the algorithm to obtain a scored phrase table (GIZA++ and Moses or Sinuhe scoring and
pruning / MMBT).

e Associate to each biphrase a unique score using some function of the features found in the
original phrase table. For that scoring function choose a set of K thresholds, defining bins
in which to categorize the biphrases depending on their score, such that they give some
nice partition of the biphrases. With Moses, the biphrases are scored using mos;.moss, the
product of the first feature (direct translation probability) and the third feature (reverse
translation probability) of the phrase table (cf.4.2.1). With Sinuhe we used the equivalent
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score formula mfml. , to obtain comparable results (cf. 4.2.2). For MMBT, the score is mmgtz
2.51M3 mmbtq’

the quotient of the second feature by the first feature (count) of the phrase table, i.e., the
average margin (cf. 4.2.3).

e Choose a test dataset, an aligned corpus of J sentences.

e For each of the sentences of the source corpus look for all possible n-grams that appear in the
phrase table on the source side, with n varying from 1 to a chosen length N, generally the
maximum length of the source phrases in the studied phrase table. Split the corresponding
target phrase into words. For each score bin, construct a bag containing all target words
obtained from phrases whose score fall in that particular bin. There is no order between the
words in the bag, but each of the words is associated to its count of occurrences.

e Progressively aggregate the bags from bins with increasing or decreasing thresholds and

evaluate how the target sentence is covered at each step using P and R.

More formal definition
Our framework is defined by the following parameters:
e Different algorithms to generate phrase tables are compared: L phrase tables (1...1),

e A set of thresholds (¢i,ts,...%,...) defines bins, such that the bin k contains biphrases
whose scores s are such that ¢ —1 < s <=1 : K bins (1...k),

e An aligned test corpus: J test sentences (1...7),

e All words that appear on the target side, either in the phrase table or test dataset makes up
a dictionary containing I words indexed from 1 to i: I words (1...1%).

This allows use to define:

o W,(i,7,k,1), non-negative integer, as the number of times the word i is predicted for the
sentence j, using the bin k of the phrase table [.

e W.(i,7), non-negative integer, as the number of times the word ¢ appears in the target
sentence j.

e Z:(i,4,k,1), boolean, indicating whether the word 7 is predicted for the sentence j, using the
bin k of the phrase table .

e Z,.(i,j), boolean, indicating whether the word ¢ appears in the target sentence j.

inter(j,k,1) =Y _ min(Wi(i, j, k1), W,.(i, ), (4.3)
sumT(j, k, 1) ZWt i, 4, k1), (4.4)
sumR(j ZW 7)), (4.5)

Pric(k, 1) = %j;::;(é ]z ll)) (4.6)

Prnac(k, 1) 7 Z ;Z:;?i ll) (4.7)
Rue(kl) = S inter(j, k, 1) (48)

> sumR(j, k1) '
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Figure 4.9: MMBT, Moses and Sinuhe phrase tables coverage comparison over 100 test sentences,
including biphrases with decreasing scores, P vs. R

inter(j, k,1)
mac(k, 1) 4.
R 7 Z sumR(j, k,1)’ (4.9)

One can similarily define interU, sumTU, sumRU, PU and RU, by leaving out the number
of occurrences and using the boolean indicators (0/1) instead of counts:

interU (j, k,1) = Y (Zi(i, j,k,1) AND Z,(i, 5)), (4.10)
I
sumTU (5, k,1) ZZt i,7, k1), (4.11)
and so on.

4.4.2 Results
MMBT and Moses

Figure 4.9 is a plot of R as a function of P for MMBT, Moses and Sinuhe.

We note that for the same value of R Moses generally has lower P than MMBT. This means that
to cover the same amount of words in the test sentences, more words have been retrieved from
Moses’s phrase table, leading to a larger raw search space to construct the translation from. In this
respect, we can say that Moses’s phrase table contains more alternatives than MMBT’s. Among these
alternatives, some are probably clearly wrong candidates but others can be correct translations
that would have been used in other contexts. The prediction of the words is in that sense less
deterministic with Moses.

When the full phrase table is taken into account (right end of the curves) Moses reaches a much
better coverage, close to full coverage (R = 0.99) while with MMBT one fifth of the sentences remains
uncovered (R = 0.81). The value of P when the full phrase table is taken into account is 6 x 1072
for MMBT and 2.8 x 10~° for Moses.
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Figure 4.11: MMBT and Moses biphrases distribution depending on their scores

Coverage and biphrases distribution

The evolution of R and P when more and more biphrases are included, aggregating words from
phrases with decreasing scores, for MMBT and Moses, is shown on Figure 4.10a and Figure 4.10b
respectively.

We can see that the increase of R is directly linked to the decrease of P. Increasing the coverage
(as measured by R) is obtained by lowering the threshold to take in more biphrases, therefore
building a larger bag of words, loosing precision (as measured by P). The gain in coverage always
remains proportional to the loss in precision.

The slope of the curve is mainly caused by the size of the portions of the phrase table that
are aggregated when lowering the threshold on the score. We tried to use a score and thresholds
set in order to cut the phrase table in equally sized portions to cut out this effect, but some large
portions of the phrase table may have the same score and thus cannot be discriminated. The best
example is the set of Moses’s biphrases scoring 1 which represent about a third of that phrase
table.

With Moses this effect is particularly strong, the cumulative distribution of the biphrases de-
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Figure 4.12: Sinuhe phrase table coverage comparison over 100 test sentences, including biphrases
with decreasing scores, pruning using various methods, P vs. R

pending on their score shown on Figure 4.11a is very similar to the R curve of Figure 4.10b.
Different scoring methods and threshold sets have been tried but we could not identify any subset
of biphrases for which R and P were atypically related.

With MMBT, the R curve has a sharp increase for scores between 3 and 2.5, while the cumulative
distribution of the biphrases (Figure 4.11a) does not show an equally sharp growth in the total
number of biphrases between thoses scores but a rather small bump corresponding to the cluster
with slope a; = 2.886 mentioned in 4.2.3. Among a rather small number of biphrases from that
cluster, many have been retrieved and allowed to cover a significant part of the test sentences.
This might indicate that this cluster contains biphrases of better quality.

Phrase table pruning

Next we look at how pruning the phrase table according to Sinuhe criteria affects the coverage.
We used the score formula SZ;;’?WS . It corresponds directly to mos;.moss, the formula used in the
previous section, allowing us to compare the results obtained with Moses’s phrase table and those
obtained with Sinuhe’s.

Figure 4.12 is a plot of R as a function of P for Sinuhe’s phrase table. The curve denoted
sinuhe was obtained after applying the pruning used in Sinuhe described in 3.2.1, it was the same
as the corresponding curve in Figure 4.9. The curve denoted once was obtained when applying the
pruning used in Sinuhe but relaxing the pruning criterion on single co-occurrence of the pair (source
phrase, target phrase) to a single occurrence of both source phrase and target phrase separately.
Using only biphrases of length one on both sides restricting to the highest ranking candidate for
each source phrase, i.e., using only word to word translation with the first candidate, we obtained
the curve denoted as words. The curve denoted twenty was generated by removing only candidates
ranked lower than twenty and the one denoted tail with multiple occurring biphrases, cutting the
tail of candidates in a somewhat more elaborate way that we will detail later.

The values obtained for P and R for the different pruning methods when including the whole
pruned phrase table (this corresponds to the rightmost point of each curve) are reported in Table
4.4.

The fact that using word to word matching with the best candidate (words) only allows to cover
about half of the test data is an argument for using phrases with multiple candidates. Relaxing
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pruning P R
sinuhe  0.0207 0.9038
once 0.0120 0.9210
words  0.5358 0.5583
twenty  0.0065 0.9294
tail 0.0941 0.7813

Table 4.4: P and R for different pruning methods

the pruning criterion of one occurrence of the biphrase to one occurrence of both the source phrase
and the target phrase (once) does not lead to a significant improvement over the original pruning
when only multiple occurring biphrases ar kept (sinuhe). Only a little increase in coverage R
at the expense of a smaller P, i.e., of a larger search space. Including all biphrases but still
cutting the tail of candidates at the twentieth (twenty) has about the same effect, the coverage
still increases by a few hundredth parts and the search space becomes still larger. This means
that adding once occurring biphrases only brings few new useful terms but makes the search space
larger, about twice as many distinct words to select the translation from in twenty as in sinuhe.
Therefore, the decoding process might be slown down significantly only for little gain in translation
quality. The last pruning technique, including only multiple occurring biphrases and cutting the
tail of candidates depending on its shape allows to reach equivalent coverages with smaller search
space than the three methods with fixed number of candidates. On the other hand its maximum
coverage is only 0.78, letting a rather large fraction of data uncovered, and might be harmful to
the translation quality.

Low rank biphrases

When using the complete phrase table, the value for R is very close to 1 for Moses, i.e., almost
perfect recall is reached. In fact, this result appears to be misleading. We run the same coverage
test, this time using only biphrases ranked further than the twentieth for a given source phrase.
That phrase table contains only 11708 very frequent source phrases. Each of them is associated
with a number of possible candidates. For example, the french word de is associated to 42569
different target phrases, pour to 11885 and pour les to 1713. In fact, almost all relatively common
words from the target vocabulary have been extracted in some low ranking candidate. Since thoses
source phrases are very frequent, several of them typically occur in each of the sentences to be
translated. Then, almost all relatively common words are included in our target word bag and
those that do occur in the target sentence can be found there even though they might have been
generated only by chance from a distant word of the source sentence. This is how only rare words
are left untranslated, yielding an almost perfect coverage, which is in fact only virtual, since as we
explained it is generated merely by chance and cannot be handled by the decoder.

The number of candidates taken into account in the decoding process with Moses is generally
limited to twenty, but the ranking of the candidates is not established on the same criteria. The
values obtained for twenty (P = 0.0065, R = 0.9294), when removing only the low rank biphrases,
therefore give a more accurate estimate of the operative setting also for Moses, even if it does not
exactly correspond to the restriction applied on the search beam during the decoding process.

4.5 Tail cutting, translation quality and speed

Some phrases have a very large number of candidate translations, as we pointed out in the preceding
section. Some among these candidates are erroneous translations, others are more or less literal
translations. In this section we concentrate on the question of how many candidates to keep for
each phrase.
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Il unaligned (14.9M / 329%)
[1-1-1 (14.8M/ 32%)
[ Junique (14.4M/31%)
I muttiple (2.3M / 5%)

Figure 4.13: Partition of Sinuhe biphrases depending on their occurrence counts

4.5.1 Sinuhe pruning

Out of the 46.4 million biphrases of the original phrase table, about a third (14.9 MB) contains
an unaligned end word (Figure 4.13). About another third is made up by biphrases that occur
once and whose source phrase and target phrase occur once. These biphrases are denoted by their
characteristic 1-1-1 occurrence count. Almost all of the last third of the phrase table is composed
of once occurring biphrases for which either the source phrase, the target phrase or both occur more
than once. This group of biphrases will later be referred to as unique biphrases. The remaining
multiple occurring biphrases represent only about 5% of the original phrase table. The original
prunig method for Sinuhe keeps only the last group of biphrases.

An additional criterion for filtering the biphrases is one based on their rank. The biphrases that
share the same source phrase are ranked in decreasing order of occurrence count and only those
ranked over k are kept, where k is a parameter than can be modified in the configuration and is
typically set to twenty. Note that since some biphrases can occur the same number of time there
can be several biphrases having the same rank. In this case, if for example three biphrases have
equal rank four, there won’t be any biphrase with rank five or six and the next biphrase will have
rank seven. For that reason, phrases with more than twenty multiple occurring biphrases may not
have exactly twenty candidates after pruning.

Furthermore, the ranking is established before any pruning. The once occurring biphrases do
not have an influence on the ranking since they would always be ranked last. On the other hand,
since the ranking is done before filtering out unaligned biphrases, some of them may be ranked
among the twenty most frequent candidates, leaving holes in the ranking when they are removed.

As an example, the tails of candidates of two source phrases are given as the sequence of the
counts of occurrence of the candidate biphrases in decreasing order of occurrence. The subscripts
indicates the rank and unaligned biphrases are displayed between parenthesis.

devions: 781 602 503 424 295 236 127 118 99 99 711 612 612 514 315 315 315 315 219 219 219 219
219 (2)19 (2)19 (219 - --

de maniére a: (108)1 852 843 (82)4 (54)5 (51)6 497 408 369 (35)10 2711 (26)12 2513 (23)14 (19)15
1816 1617 (16)17 (15)19 (15)19 1491 (13)22 (13)22 1224 1294 1224 (11)27 (11)27 (11)27 930 930 832
(8)32 (7)34 (7)34 (7)34 (6)37 (6)37 (6)37 (6)37 541 (5)a1 (5)a1 (5)a1 (5)ar ...

The first case shows how more than twenty candidates can be kept for the same source phrase.
After pruning, the source phrases devions will have 23 candidates. The second case is an extreme
example of how frequent unaligned biphrases can lead to a short tail of candidates after pruning.
The source phrase de maniére a will only have 9 candidates after pruning.

A similar fixed rank tail cutting also happens in Moses since the number of candidates for a
given input phrase is limited during the decoding. This parameter is defined in the configuration
file and is typically set to twenty.
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qui a permis (119, 0.04) pallier (112, 0.08) diminuera (49, 0.08)
5  which enabled 9 alleviate 4 will reduce
3 which led 8 compensate for 4 will be reduced
3 which has enabled 7 remedy 3 will diminish
3 that allowed ) overcome 3 will decrease
2 which has allowed 3 offset 3 will
2 which caused 3 deal 2 will lessen
2 which allowed 3 alleviating 2 will fall
2 that made it possible 2 plug 2 will drop
2 that enabled 2 mitigate 2 reduce
2 that brought 2 make up for 2 declining
nous avons toujours (259, 0.63) | dans les nouveaux (353, 0.76) | mesdames (6458, 0.96)
13 we still have 268 in the new 6170 ladies
9  we always 10  in new 125  honourable
6  we have consistently 4 to the new 7 i
4  we always have 3 of the new 5 — ladies
3 we have repeatedly 3 into the new 4 dear
3 we have constantly 3 in the newly 3 members
2 we have continually 2 with the new 3 by
2 we have actually always 2 within the new 2 rapporteur
2 we continue 2 from the new 2 parliament
- - 2 among the new 2 onorevoli

Table 4.5: Example of tails of candidates. The source phrases are followed by their count of occur-
rences and the ratio of these occurrences taken by the first candidate. The candidate translations
are listed in decreasing order of co-occurrences with the source.

4.5.2 Tail of candidates

A fixed rank tail cutting is intuitively a simple but suboptimal solution to the problem of deciding
which candidates to keep for a phrase with multiple candidates. Indeed, some phrases clearly have
one good translation and the rest is merely noise while other phrases might have several equally
acceptable translations, as it is the case with polysemic terms. Consider the six source phrases
presented in Table 4.5. Those six source phrases have ten multiple occurring candidate biphrases,
ordered by decreasing count of co-occurrences with the source. Only the aligned biphrases are
reported here, this is why one of the phrases only have nine candidates.

For some source phrases, qui a permis or pallier for example, all ten candidates can be consid-
ered as correct translations while the first candidate is the only acceptable translation for mesdames.
Some cases are more ambiguous, the candidates cannot be considered as incorrect but they are
not exact translations either. For example to the new is acceptable for dans les nouveaux in some
situations but it better translates to aux nouveaux.

The numbers in parenthesis after the source phrases are the count of occurrences of the source
phrase in the training data, O, and the proportion of those occurrences taken by the first candidate
biphrase, r, respectively. Let of be the count of occurrences of the first candidate biphrases of
a source phrase. Then ry is defined as g—’;. This ratio gives a good indication of how much the
translation of the source phrase is spread between different candidate biphrases. The larger 7
is, the more the occurrences are concentrated on one translation, the fewer candidates need to be
taken into account.

From this idea we derive a criterion to cut the tail of candidates. From the count of occurrences
of the source phrase and the number of candidates we compute o., the number of occurrences of
each candidate under the hypothesis that all candidates are equally good translations for the
source phrase, in which case they would appear equally often. o, = %, where Ny is the number
of candidates biphrases of the source phrase. Then we compute o; = (1 —1§)0e + 1yoy, the mean
between the number of occurrences of the first candidate and the number of occurrences under
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Figure 4.14: Number of candidates per source phrase for fixed rank (frm) and adaptive thresholding
(atm) tail cutting methods

equiprobability assumption, weighted by the ratio of occurrences taken by the first candidate. We
use k; as an adaptive threshold, only biphrases with a count of occurrences greater than o; are kept.
The greater the ¢ the closer o, will be from oy, the count of occurrences of the first candidate, the
fewer candidates will remain in the phrase table. Note that when r; is large, the threshold o; will
be high too and at the same time, since most of the mass is concentrated on the first candidate,
the following candidates will have low count of occurrences, much lower than o; and will not be
retained. In the special case where the first candidate is an unaligned biphrase which collects most
of the occurrences, no aligned candidate will occur more than o, times and the source phrase will
not appear in the phrase table. These entries are typically phrases ending with a character that is
often left unaligned, there are a few thousands of such source phrases. Leaving them out is rather
safe as it is difficult to assess the quality of the aligned candidates in such cases.

Using the fized rank method, 932587 source phrases, i.e., slightly less than 75% of the source
phrases, are associated to only one candidate. Using the adaptive thresholding method reduces
the number of candidates of 160152 additional source phrases to one (87% of the source phrases
then have a single candidate). The histogram in Figure 4.14 plots the number of source phrases
depending on the number of candidate biphrases they are associated to, considering only multiple
occurring biphrases. The original fized rank method is denoted as frm while the adaptative thresh-
olding method we just presented is denoted as atm. The number of source phrases having many
candidates is smaller using the adaptive thresholding method, only a few hundred source phrases
have more than ten candidates while with the former, there were almost 17000 such source phrases.

An alternative criterion is to keep a certain proportion p of the occurrences for each source
phrase. For example, if we choose p = 0.75 we cut the tail of candidates so that 75% of the
occurrences of the source phrase remain. For devions (cf. 4.5.1), which occurs 392 times in the
training data, we would keep eleven candidates, since the sum of their occurrences (78 4+ 60 + 50 +
424+29+23+12+11+9+9+7 = 330) is larger than 0.75%392 = 327. But choosing an appropriate
value for p is nontrivial and our attempts did not yield any satisfactory result. It is also disputable
whether to include the unaligned and once occurring biphrases or not when computing the number
of occurrences and how to break ties for equally ranked biphrases.
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4.5.3 Effects of the tail of candidates
Experiment

To analyse the effects of the different pruning methods on the translation we trained Moses and
Sinuhe starting from a phrase table pruned using each of the following methods:

org (original) no pruning,
fro (fized rank 1-1-1) pruning unaligned and ranked lower than twenty,
frm (fized rank multiple) pruning unaligned, 1-1-1, unique and ranked lower than twenty,

atm (adaptive thresholding multiple) pruning unaligned, 1-1-1, unique and less than o; occur-
rences,

atu (adaptive thresholding unique) pruning unaligned, 1-1-1, and less than o; occurrences, and
ato (adaptive thresholding 1-1-1) pruning unaligned and less than o; occurrences.

Only Moses was trained with the phrase table org, as it contains unaligned biphrases Sinuhe
is not able to deal with. It is impossible to discriminate between aligned 1-1-1 biphrases based on
their occurrence counts, rank or translation probabilities since thoses scores are equal to one for
all elements of this group. The lexical weighting (moss) and inverse lexical weighting (mosy) does
vary for the biphrases of this group but how to use them as a filtering criterion is unclear. For
example, one-to-several links are penalized a priori since the lexical weight is divided between the
differents target words. For this reason, the set of aligned 1-1-1 biphrases is always handled as a
whole and ato is simply the union of atu and aligned 1-1-1 biphrases.

Translation quality

The BLEU scores obtained by the different settings for the translation of 2000 test sentences from
the Furoparl are reported in Table 4.7. The translations have been generated with the full systems,
i.e., using a language model, distortion penalty, etc. (TM+LM) or enabling only the translation
model (TMonly). Table 4.8 and Table 4.9 contain figures about the training of the different models
for Moses and Sinuhe respectively. The evolution of the log probabilities during the training of
the models for Sinuhe, that indicates the convergence of the weights, is displayed in Figure 4.15.

The pruning method seems to have more impact when using only the translation model. In
that case, a stricter selection of the biphrases allows to gain 4 BLEU points between org and atm
with Moses and 3 BLEU points between fro and atm with Sinuhe. In general, the more biphrases
the model contains the lower the BLEU score.

On the other hand, when the full translation system is enabled, all scores are within one BLEU
point for Moses and a half BLEU point for Sinuhe and the larger phrase tables yield the higher
scores. This is probably due to the fact that the larger phrase tables allow for more variety in the
translations, as we argue in the next section.

However, such small differences in BLEU score cannot be considered as really significant in
term of translation quality. When we look at the translations generated by the different systems,
we only notice minor differences in word choice. The terms or expressions chosen by the systems
have typically very close meanings.

Table 4.6 gives an example of translations obtained with different models. Grey lines con-
tain translations with translation model only while translations with the fully enabled translation
system are on white background. First and second lines contain the French source and English
reference respectively. Following lines are translations by Moses, with org and atm models, then
translations by Sinuhe, with frm, fro, atm and atu models. The sentence level and corpus level
BLEU scores are reported, best and worse performing settings in each category (translation sys-
tem / TM+LM or TMonly) in terms of corpus level BLEU score are identified with a + and -
respectively.
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The aim here is not to compare the settings on a single translation. Indeed if a BLEU score
computed for a test corpus of significant length is hard to interpret, a comparison based on a single
sentence would be even more meaningless. We will use this example only to point out typical errors
and problems for the different systems. But first we note how close the different translations are
from each others.

In models where once occurring biphrases have been pruned out, the french conditional procéderait
is left untranslated while it is translated into should undertake by the other systems apart from
MOSES_OTGT Monly Where it is incorrectly translated into would not proceed, giving the sentence a
meaning in contradiction with the source. The explanation for this error can be found when look-
ing at the entries of the Moses’s phrase table containing procéderait that match with the source
sentence, some of which are reproduced below:

commission procederait ||| commission would not proceed |||

(0) (1,2,3) Il (0) (1) (1) (1) [Il 1 0.000212282 1 0.00465698 2.718
commission procederait a une ||| commission should undertake an |||

(0) (1,2) (2) (3 [l (0) (1) (1,2) (3) |Il 1 1.43621e-05 1 0.000792311 2.718
procederait ||| ask |||

0) 11l (0) Il 0.000153492 9.41e-05 0.333333 0.142857 2.718
procederait ||| would not proceed |||

(0,1,2) Il (0) (0) (O) Ill 0.5 0.000220533 0.333333 0.0058309 2.718
procederait ||| would |||

) 11l (0) Ill 5.23231e-05 2.71e-05 0.333333 0.285714 2.718
procederait a ||| should undertake |||

(0,1) (1) |1l (0) (0,1) [l] 0.05 4.90124e-05 0.5 0.0102129 2.718
procederait a ||| would |||

(0) O Il (0) Ill 5.23231e-05 8.05358e-07 0.5 0.285714 2.718

All those biphrases only occur once in the training data, so they are pruned away as unique
biphrases and atm as well as frm do not contain any translation for procéderait. The three entries
for procéderait can be considered incorrect since they either don’t convey the full original meaning
or worse, mean the opposite. Therefore, trying to translate a chunk of the source sentence cut
between procéderait and d, as in moses_orgrroniy inevitably leads to an error. Only considering
procéderait together with ¢ can yield a correct translation. This shows how critical the sentence
segmentation can be in Moses, where the source sentence is first cut into pieces that are translated
independently. Moses tries to find a segmentation of the source sentence and biphrases for each of
these chunks so that its translation score is maximized. The language model score should enforce
the fluency of the combination of the translated parts, possibly involving reorderings. Since Sinuhe
can handle overlappings, there is no such segmentation issue. It tries to maximize the translation
probability by finding a combination of compatible biphrases with possible overlappings. This is a
major difference in the decoding process.

It is also interesting to notice how the word retombées is translated differently in its two
occurrences, into repercussions, impact, consequences, effects, fallout, fall-out or spin-off. The first
four are rather common acceptable translations, though each of them as a closer french equivalent,
while spin-off is less adequate in this context. Fallout is the most literal translation of retombées as
both have the same literal meaning. But since it also occurs with the alternative spelling fall-out,
the occurrences are divided between the two forms so that each of them is less likely to be chosen.

Translation variety

We could witness a difference in variety when using Sinuhe to generate not only one candidate
translation for a given source sentence but a list of candidates. We tried to generate the list of 500
best candidates for the 2000 sentences of our test data using fro, frm, atu and atm. The list can
contain less than the required number of candidates if the system is unable to generate enough
different translations using all possible combinations of the biphrases at hand. With fro and frm,
that include a larger number of candidates, only eight lists contained less than 500 candidates, for
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very short and formal statments of the parliement. The average lengtht of these shorter lists is
of 243 candidates for fro and 180 for frm. For atu and atm, 88 and 105 lists were shorter, with
average length of 146 and 115 candidates respectively. When looking at the lists of candidates, the
variety was clearly reduced, the different candidates being generated from two or three alternative
translations for a small set of words or expressions in the sentence.

When the phrase table went through a more severe pruning, there are fewer biphrases left for
the translation system to build the best combination. The pruning makes the search for the best
candidate translation more deterministic. The biphrases left are more exact literal translations so
that when only the translation model is enabled, the outcome is better. On the other hand, the
larger phrase tables, since they are less constrained and even though they contain some bad quality
biphrases, allow for more variety, from which the translation system is able to choose the best
translation based on more criteria (translation score, language model score, reordering penalties,
etc.) With atu and atm, the fully enabled translation system has less options to choose from,
moreover these options are very similar to each other, so the improvement when using additional
scores is small. This effect is even more significant when the reference translation is not a literal
translation of the source sentence. With a broader set of biphrases the systems seem to have a
better ability to imitate the unliteral translations.

The use of overlappings in Sinuhe adds constraints on the candidate translations, already
enforcing the fluency of the output. This might explain why Sinuhe obtains higher BLEU scores
than Moses without language model but lower with it, as it benefits less from the additionnal scores
having less variety among the candidates.

However, these differences should be put in perspective, since as we mentioned at the beginning,
the translations contain only minor differences and the BLEU scores for the different setting are
generally very close to each other.

Model size

If the impact of the tail cutting method on the translation outcome is subject to discussion, its
impact on objective factors such as the size of the model, the time needed to train the model or
translation speed are unequivocal.

Leaving out unaligned biphrases, 1-1-1 biphrases and finally unique biphrases, allows to de-
crease the size of the model by about one third at each step, from 6.0 GB to 4.1 GB, 1.7 GB
to finally 250 MB when keeping all multiple biphrases. The method employed to cut the tail of
candidates comparatively allows for rather limited size reduction, only few percents of the model.
The model size is an important issue when the translation system is to be installed on portable
devices for example. Before translating a text with Moses, the model can be filtered to keep only
biphrases whose source phrase occurs in the text, dramatically reducing the size of the model that
has to be loaded into memory. In most of the cases, only a few percents of the original model needs
to be loaded. Nevertheless, the full model must be stored as long as new data may be submitted
for translation.

When the decision not to use the unaligned biphrases or the once occurring biphrases is taken,
they should be removed from the phrase table as early as possible, to minimize the quantity of data
that needs to be manipulated. It is for example possible to avoid extracting unaligned biphrases
from the word aligned corpora. The absence of unaligned biphrases would presumably not have a
big impact when ranking the candidates. The same way, once occurring biphrases could be filtered
out before the ranking process. Since they are always on the last position, this would not affect
the ranking.

Translation and training speed

When translating webpages “on the fly”, which is a very common usage scenario, or if it were
integrated into an automatic speech translation system, the translation speed is a factor of upper-
most importance for automatic translation systems. The adaptive thresholding method makes the
decoding process for both systems much faster. Indeed, the main advantage of this method lies
in the reduction of the number of alternatives to be examined, significantly shrinking the search
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Figure 4.15: Training of the biphrases weights for Sinuhe: log probabilities for differents models
vs. nb. of iterations

space. In a way, the systems only have good candidates at hand and simply need to assemble
them. From 7.9 ms per sentence (TM only) and 63.1 ms/sent (TM + LM) with the usual frm for
Sinuhe, the translation time drops to 2.7 ms/sent (TM only) and 26.0 ms/sent (TM + LM ) when
using atm. fro is the slowest, requiring 19.0 ms/sent (TM only) and 145.0 ms/sent (TM + LM).
This is still much faster than Moses, even when using atm, which is up to ten times faster than
with the full phrase table org (510 ms/sent with atm_TM + LM instead of 5660 ms/sent with
org-TM + LM).

Since the decoding process is significantly faster, the time spent in translating the tuning data
during the MERT training is also reduced. As a consequence, the full tuning of Moses that required
41 hours with the original phrase table (org) could be completed within 7 hours or less (atm, atu
and ato).

The number of iterations needed to obtain the convergence of the weights for Sinuhe’s trans-
lation model clearly depends on the total number of biphrases. The more biphrases, the more
iterations needed to obtain the convergence. Training curves for models that contain the same
groups of biphrases, fro and ato on the one hand, frm and atm on the other hand, have similar
shapes, the latter two being flatter, with atu as an intermediate. At the same time, the fewer
candidates there are for a source phrase the lower the average log probability reached at conver-
gence. Indeed, the translation probability is divided between fewer candidates so that each of
them receives higher probability. The number of iterations is not the only parameter determin-
ing the speed of the learning process, with fewer candidates the dynamic procedure to estimate
weights is also faster. This procedure is very similar to the one used for decoding, so both speed
improvements are comparable. Thus, also there the time required is reduced to hours instead of
days.
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Chapter 5

Conclusions

In this report we took a close look at phrase tables, the corner stones of Phrase-Based Statistical
Machine Translation systems.

First, we reviewed how they are generated from aligned bilingual corpora, how they are used
by the translation systems to model the translation probabilities and to generate translations.

Next, we gave some statistical information about the actual content of the phrase tables and the
coverage of unseen sentences. Nevertheless, phrase tables are very dependent from the system that
uses them. Some biphrases might be present in the phrase table but never be used in translations
because they are ranked too low, for example.

Finally, we presented pruning methods that can be applied in order to reduce the size of the
model or increase the speed of the training and decoding processes by filtering out large parts of
the phrase table or reducing the number of candidate translations per source phrase, whithout
affecting the translation quality significantly.

We based our work on the example of translation from French to English using data from the
Europarl corpus to train and evaluate the systems. The generalization of the results obtained in
this framework to other language pairs and other training corpora remains to be analysed.
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