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The dynamics of the multidimensional randomly forced Burgers equation is studied in the limit of
vanishing viscosity. It is shown both theoretically and numerically that the shocks have a universal global
structure which is determined by the topology of the configuration space. This structure is shown to be
particularly rigid for the case of periodic boundary conditions.
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The d-dimensional randomly forced Burgers equation

≠tu 1 �u ? =�u � n=2u 2 =F�x, t� , (1)

appears in a number of physical problems, ranging from
the dynamics of interfaces and cosmology to hydrodynam-
ics (see, e.g., Ref. [1] for a review). In the context of fluid
dynamics, the Burgers equation, frequently referred to as
“Burgers turbulence,” is a simple model for analyzing the
signature of singularities, mostly shock discontinuities, in
the statistics of the velocity field (see, e.g., Refs. [2–6]).
The (statistical) steady-state theory for Burgers turbulence
in the limit of vanishing viscosity �n ! 0� was developed
for d � 1 in the spatially periodic case [4]. The analysis
of the Lagrangian dynamics led to the distinguishing of
a particular trajectory, the global minimizer, correspond-
ing to the unique fluid particle that is never absorbed by a
shock. The counterpart to the global minimizer is a unique
main shock, with which all other shocks are merging after a
finite time and, hence, in which all the matter gets concen-
trated. Here the goal is to show that these objects, extended
to multidimensional situations, determine the global struc-
ture of the stationary solution. This structure is strongly
connected with the topology of the configuration manifold
defined by the boundary conditions. We show that, in any
dimension, a unique global minimizer exists, so that the
shocks have either a local or a global topological nature.
The global shocks, unavoidably present in Burgers dynam-
ics, are called the topological shocks; they have a nontriv-
ial structure for d . 1. For simplicity, we mostly consider
space-periodic forcing potentials for which the configura-
tion manifold is the d-dimensional torus �d (1-periodic
boundary conditions), but most of our work can be ex-
tended to other types of boundary conditions and configu-
ration spaces.

If the initial data is of gradient type, the velocity field
preserves this property at any later time, so that u�x, t� �
2=c�x, t�, where the velocity potential c solves the
Hamilton-Jacobi equation

≠tc 2
1
2 j=cj2 � n=2c 1 F�x, t� . (2)
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When the external potential F is delta correlated in both
space and time, this equation is known as the Kardar-
Parisi-Zhang model for interface dynamics [7]. We focus
here on smooth-in-space forcing potentials with a correla-
tion function given by

�F�x1, t1�F�x2, t2�� � G�x1 2 x2�d�t1 2 t2� , (3)

where G is a smooth large-scale function. This type of
large-scale forcing was chosen analogous with that usually
assumed in work on forced Navier-Stokes turbulence. Note
that the results discussed in this Letter can be extended to
other types of random forcing (e.g., with a finite correlation
time). Because of space periodicity, the average velocity
b �

R
�d u�x, t� dx is an integral of motion. Its value does

not affect the structure of the topological shocks and, for
simplicity, we choose b � 0.

The initial-value problem associated with the Hamilton-
Jacobi equation (2), in the inviscid limit n ! 0, has a
variational solution [8]. Denoting c0 the potential at the
initial time t0, the velocity potential at times t . t0 is given
by

c�x, t� � 2 inf
g�?�

�A�g, t� 2 c0�g�t0��	 , (4)

where the infimum is taken over all differentiable curves
g : �t0, t� ! �d such that g�t� � x and A is the La-
grangian action,

A�g, t� �
Z t

t0

µ
1
2
j �g�t�j2 2 F�g�t�, t�

∂
dt . (5)

A minimizing trajectory is called a minimizer on the inter-
val �t0, t� and is associated with a fluid particle reaching x
at time t. In the limit t0 ! 2`, a stationary regime is ob-
tained, independent of c0. The solution is then determined
by one-sided minimizers, i.e., action-minimizing trajecto-
ries from 2` to t. It is easily seen from Eq. (4) that all the
minimizers are solutions of the Euler-Lagrange equations

�g�t� � y�t� , (6)
© 2002 The American Physical Society 024501-1
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�y�t� � 2=F�g�t�, t� . (7)

A global minimizer (or a two-sided minimizer) is defined
as a curve which minimizes the action for any time interval
�t1, t2� and thus corresponds to the trajectory of a fluid
particle that is never absorbed by shocks.

We now state three main results whose rigorous proof
is given in Ref. [9] and that are essential for the intro-
duction of topological shocks. First, there exists a unique
solution of the Hamilton-Jacobi equation (2) in the limit
n ! 0 which is extendable to all times. This solution is
continuous and almost everywhere differentiable in space.
It generates uniquely a stationary distribution for the ran-
dom Hamilton-Jacobi equation and its gradient defines a
unique statistically stationary solution of the inviscid Burg-
ers equation. Second, for a given time and for every space
location where the potential is differentiable, there exists
a unique one-sided minimizer. The locations where the
one-sided minimizers are not unique correspond to shock
positions. Finally, there exists a unique global minimizer.
This third statement is crucial for the construction of topo-
logical shocks because it implies that, for large negative
times t ! 2`, all the one-sided minimizers are asymp-
totic to the global minimizer [10].

To introduce the notion of topological shock, we “un-
wrap,” at a given time t, the configuration space �2 to the
entire space �d [see Fig. 1(a)]. Now, for a given realiza-
tion of the forcing, we obtain instead of a single global
minimizer an infinite number of them, each being the im-
age of others by integer shifts. They form a lattice pa-
rametrized by vectors k with integer components and are
denoted g

�g�
k . The backward-in-time convergence to the

global minimizer on �d implies that every one-sided mini-
mizer emanating from some location in �d is asymptotic
to a particular global minimizer g

�g�
k on the lattice. Hence,

every location x which has a unique one-sided minimizer
is associated with an integer vector k�x�, defining a tiling
of the space at time t. The tiles Ok are the sets of points
whose associated one-sided minimizer is asymptotic to the
kth global minimizer. The boundaries of the Ok’s corre-
spond to the positions of particular shocks that are called
the topological shocks. They are the locations for which at
least two one-sided minimizers approach different global
minimizers on the lattice. Indeed, a point where two tiles
Ok1 and Ok2 meet has at least two one-sided minimizers,

one of which is asymptotic to g
�g�
k1

and another to g
�g�
k2

.
Of course, there are also points on the boundaries where
three or more tiles meet and thus where more than two
one-sided minimizers are asymptotic to different global
minimizers. For d � 2 such locations are isolated points
corresponding to the intersections of three or more topo-
logical shock lines, while, for d � 3, they form edges and
vertices where shock surfaces meet. Note that, generically,
there exist other points inside Ok with several minimizers.
They correspond to shocks of a “local” nature because, at
these locations, all the one-sided minimizers are asymp-
024501-2
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FIG. 1. (a) Sketch in space-time of the unwrapped picture for
d � 2; on the horizontal plane which corresponds to a lattice of
periodic box replicas at time t, the bold lines denote the topo-
logical shocks and the triple points are represented by dots. The
different “horns” illustrate the backward-in-time convergence to
four different global minimizers represented as dashed lines and
the filled areas represent different tiles Ok . (b) Position of the
topological shock on the torus; the two triple points are repre-
sented as dots.

totic to the same global minimizer g
�g�
k and, hence, to each

other. In terms of mass dynamics, the topological shocks
play a role dual to that of the global minimizer. Indeed,
all the fluid particles converge backward in time to the
global minimizer and are absorbed forward in time by the
topological shocks. Assuming that the Burgers equation
(1) is accompanied by a continuity equation for the mass
density, this implies that all of the mass concentrate at large
times in the topological shocks.

We now describe the global structure of the topo-
logical shocks. Parameter counting suggests that
there are generically �d 2 1�-dimensional surfaces of
points with two one-sided minimizers which contain
�d 2 2�-dimensional submanifolds with three one-sided
minimizers, and so on. This ends up with single points
(zero dimension) from which emanate �d 1 1� one-sided
minimizers. Since one expects to see only generic behav-
ior in a random situation, the probability to have points
associated with more than �d 1 1� one-sided minimizers
is zero. It follows that there are no points where �d 1 2�
tiles Ok meet, an important restriction on the structure
of the tiling. Thus, for d � 2, the tiling is constituted
of curvilinear hexagons. Indeed, suppose each tile Ok
is a curvilinear polygon with s vertices corresponding to
triple points. For a large piece of the tiling which consists
of N tiles, the total number of vertices is ny � sN
3
and the total number of edges is ne � sN
2. The Euler
formula implies that 1 � ny 2 ne 1 N � �6 2 s�N
6,
so we have s � 6, corresponding to a hexagonal tiling.
As shown in Fig. 1(b), this structure corresponds, on the
periodicity torus �2, to two triple points connected by
three shock lines which are the curvilinear edges of the
hexagon O0. The connection between the steady-state
024501-2
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FIG. 2. Snapshot of the velocity potential c�x, y, t� for d � 2
in the statistical steady state, obtained numerically with 2562

grid points. Shock lines, corresponding to locations where c is
not differentiable, are represented as black lines on the bottom
of the picture; the four gray areas are different tiles separated
by the topological shocks; the other lines are local shocks.

velocity potential and the topological shocks is shown in
Fig. 2 which was obtained numerically.

Although the topological shocks always form hexagonal
patterns when d � 2, the corresponding tilings can be of
different types; in the course of time, the merger of two
triple points is the generic mechanism for changing the
type of the tiling. This so-called flipping bifurcation [11]
has the property of redistributing matter among nodes, so
that the mass does not concentrate in a particular triple
point. In higher dimensions, the structure of topological
shocks can be more complex; for instance, it is not possible
to determine uniquely the shape of polyhedra forming the
tiling. Nevertheless, the minimal polyhedra defining such
tilings for d � 3 can be shown to have 24 vertices [12,13].

All the above results concerning the global structure of
solutions require a statistical steady state, achieved asymp-
totically at large times. The convergence to this regime is
actually exponential so that, generally, the global picture
of the flow is reached after just a few turnover times. The
nature of the convergence is related to the local proper-
ties of the global minimizer and more particularly to its
hyperbolicity. For d � 1, the global minimizer has been
shown to be a hyperbolic trajectory of the dynamical sys-
tem defined by the Euler-Lagrange equations (6) and (7)
[4]. In multidimensional situations the hyperbolicity of
the global minimizer is an open problem. Since the La-
grangian flow defined by (6) and (7) is Hamiltonian, one
can define d pairs of nonrandom Lyapunov exponents with
opposite signs. Hyperbolicity means that none of these ex-
ponents vanish. This question can be addressed in terms of
the backward-in-time convergence of the one-sided mini-
mizers to the global one or, in terms of forward-in-time dy-
namics, by looking at how fast Lagrangian fluid particles
are absorbed into shocks. For this, we consider the set
V�T� of locations x such that the fluid particle at x at time
024501-3
t � 0 survives, i.e., is not absorbed by any shock, until
the time t � T . The long-time shrinking of V as a func-
tion of time is asymptotically governed by the Lyapunov
exponents. To ensure the absence of vanishing Lyapunov
exponents, it is sufficient to show that the diameter of V�T�
decays exponentially as T ! `. Below, we demonstrate
numerically that this is indeed the case for d � 2. For this
we assume that the forcing is a sum of independent ran-
dom impulses concentrated at discrete times [14], a case
to which the present theory remains applicable. Between
“kicks” the velocity field decays according to the unforced
Burgers equation. This allows us to use the fast Legendre
transform method [15], based on discrete approximations
of the one-sided minimizers over a grid, which gives di-
rectly the solution in the inviscid limit and is particularly
useful due to its strong connection with the Lagrangian
picture of the flow. We can then track numerically the set
V�T� of regular Lagrangian locations. As shown in Fig. 3
for three different types of forcings, the diameter of this set
decays exponentially in time, providing strong evidence for
the hyperbolicity of the global minimizer when d � 2.

Since all the one-sided minimizers converge backward
in time to the global minimizer, hyperbolicity implies that,
in the statistical steady state, the graph of the solution in
the phase space �x, u� is made of pieces of the smooth un-
stable manifold associated with the global minimizer with
discontinuities along the shocks lines or surfaces. In other
words, shocks appear as jumps between two different folds
of the unstable manifold. The smoothness of the unstable
manifold is key; for instance, it implies that, when d � 2,
the topological shock lines are smooth curves. The above
geometrical construction of the solution has much in com-
mon with that appearing in the unforced problem. Indeed,
when F � 0, the solution can be obtained by consider-
ing, in the �x, u� space, the Lagrangian manifold defined
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FIG. 3. Time evolution of the diameter of the Lagrangian set
V�T� (points corresponding to the regular region) for three dif-
ferent types of forcing spectra normalized to give the same Lya-
punov exponents; average over 100 realizations and with 2562

grid points.
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by the position and the velocity of the fluid particles at
a given time. This analogy gives good ground to conjec-
turing that several universal properties associated with the
unforced problem still hold in the forced case, as indeed
happens in one dimension [4,6]. Hyperbolicity implies that
there exists a strong parallel between the forced and the un-
forced situations. Despite the fact that the mass dynamics
is completely different in the two cases (mass is absorbed
by shocks linearly in time in the decaying case and ex-
ponentially fast in the forced case), many features of the
velocity field are universal. For instance, it was shown
in Ref. [16] that, for the unforced case and d . 1, large
but finite mass densities are localized near time-persistent
boundaries of shocks (“kurtoparabolic” singularities) con-
tributing, in any dimension, power-law tails with the ex-
ponent 27
2 in the probability density function (PDF) of
both velocity gradients and mass densities. When a force
is applied, the geometry of the solutions is very similar to
that appearing in unforced situations. This leads again to a
universal 27
2 power-law behavior of the PDF of veloc-
ity gradients and mass density, irrespective of d. The issue
of similarities between forced and unforced Navier-Stokes
turbulence and the search for universal statistical prop-
erties of the velocity field is, of course, still an open
problem.

Note, finally, an important physical problem which will
be addressed in a future paper, namely, the understand-
ing of the behavior of minimizers and the effects related to
global shocks in the case of spatially extended nonperiodic
systems. This amounts to investigating intermediate-time
asymptotics when the size of the system is much larger
than the forcing scale. Preliminary numerical results in-
dicate the appearance of a shock structure resembling the
structure of topological shocks.
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