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PHYSICAL REVIEW E VOLUME 61, NUMBER 2 FEBRUARY 2000

Probability distribution functions of derivatives and increments for decaying Burgers turbulence

J. Bec and U. Frisch
Observatoire de la Oe d’Azur, CNRS UMR No. 6529, BeiPostale 4229, 06304 Nice Cedex 4, France
(Received 4 June 1999

A Lagrangian method is used to show that the power law with7d2 exponent in the negative tail of the
probability distribution function(PDF of the velocity gradient and of velocity increments, predicted by E
et al.[Phys. Rev. Lett78, 1904(1997] for forced Burgers turbulence, is also present in the unforced case. The
theory is extended to the second-order space derivative whose PDF has power-law tails with ex{fbaent
both large positive and negative values and to the time derivatives. PDF’s of space and time derivatives have
the samgasymptotig functional forms. This is interpreted in terms of a random Taylor hypothesis.

PACS numbds): 47.27.Gs, 02.50.Ey, 05.60k

I. INTRODUCTION Il. THE LAGRANGIAN REPRESENTATION
AND PRESHOCKS
E et al. [1] made various predictions concerning the one-

. ) . In the absence of force and of viscous dissipation and as
dimensional Burgers equation

long as no shock has appeared, the Burgers equétjdms
the obvious solution

AU+ udyu=voiu+f, (1)

o _ o u(x,t)=up(a), a=L;'x, (€)
with viscosity v and a randond-function correlated in time
force f(x,t), which is homogeneous, periodic and smooth inwhere
the space variable. One prediction concerns the probability
density function(PDP) of the velocity gradient= d,u. Ac- Lita—at+tug(a), (4)
cording to Ref.[1], in the limit v— 0, the statistically sta- . . . L .
tionary solution of Eq(1) has a PDF is called thenaive Lagranglan ma_pThls is |r_1deed just a

statement that the velocity of a fluid particle is conserved in
p(&)ec| g2 for E——c. (2)  Lagrangian coordinategFollowing standard tradition, we

denote Lagrangian initial coordinates byand Eulerian co-

This power-law range is due to preshocks, nascent shockydinates byx.) _
with a cubic root structure, as discussed by Fournier and A remarkable property of the unforced Burgers equation
Frisch[2]. There has been an interesting controversy abouf! the limit of zero viscosity, which follows from the Hopf-
this negative tail of the PDF, which we shall not try to sum- Cole solution(see Refs[7,8] for detaily, is that Eq.(3)
marize here(see, e.g., Refd3-5] and references thersin remams.valld in Fhe presence of shocks prowde.d the naive
There is no complete proof at this moment of the validity of Lagrangian map is replaced by tfgrope) Lagrangian map
the —7/2 law, but significant progress has been made re;ﬁp . The Iatt.er is defined a§_follows. First, we define the
cently[6]. We shall not dwell now on the issue of the valid- initial potential (up to an additive constanby
ity of the —7/2 law for forced Burgers turbulence. Uo(8) = — datho(a) )

It is our intention here to show that the7/2 law is also 0 ayores
present in unforced_ decaying Burgers tu_rbolenc_e. _SpecifiWe then define the Lagrangian potential by
cally, we shall consider solutions of E¢L) in the limit »
—0 with f=0 and random zero-mean-value initial condi- a2
tions ug(x) which are periodida unit period is assumed for pla)=—5+tyo(a) (6)
conveniencg statistically homogeneous, and sufficiently
smooth. One such instance is to take Gaussian initial condiand observe that the naive Lagrangian map is simply the

tions with a spectrum that decreases exponentially at highegative gradient of the Lagrangian potential:
wave numbers. Such “large-scale” initial conditions will de-

velop nonsmooth featurépreshocks and shockafter some d

(random time. Lia=———e(@). @)
This paper is organized as follows. In Sec. Il we consider

the deterministic problem in Lagrangian coordinates andrhe Lagrangian map is defined as

identify the preshock events leading to large negative gradi-

ents. In Sec. 1l we derive the 7/2 law for the PDF of the

first derivative. In Sec. IV, we derive similar laws for higher-

order space derivatives and the time derivative. In Sec. V we

derive the corresponding results for the PDF of space increwhere ¢.(a,t) is the convex hullwith respect toa of the

ments. In Sec. VI we make concluding remarks. Lagrangian potentiab(a,t). The convex hull of a function

d
Lia=— £<pc(a,t), (8)
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ated “mature shock.” Thus, large negative Eulerian gradi-
ents must come from the neighborhood of preshocks.

— We now recall, for use in later sections, the logadrmal)
form of the Lagrangian and Eulerian solutions near a pre-
shock. Leta, be a local negative minimum afj(a). We

¢t : then have(generically
| up(a,)<0, uj(a,)=0, uy(a,)>0. (11
' , Taylor expanding neaa, , we have
a aa  \ a
FIG. 1. Lagrangian potential and its convex hull in the presence - 1 _ Ug (ay) _ 3
of a shock interval extending from™ to a*. Uo(8)=Uo(8,) FUg(a,)(a—ay)+ 6 (a=a,)"
(12

f(a) can be defined as the smallest piecewise differentiable
function that is greater than or equal t¢a) for all a and By Eq. (4), for t neart, = —1/u{(a, ), the naive Lagrangian

such that its derivative is nonincreasing. map is given by
The graph of the convex hull @f(a,t) is made of pieces
of the graph of the functionp(a,t) joined by linear seg- t, —t t,ul(a,)
ments, sitting over the Lagrangian shock intervals, as shownx=a, +tug(a, )+ (a—a,)+ T(a—a*)3.
in Fig. 1. Hence, the Lagrangian map coincides with the (13

naive Lagrangian map except over the Lagrangian shock in-
tervals where it is constafsee Fig. 2 Thus, Eq(3) with L,
given by(4) remains valid outside the Lagrangian shock in-
tervals.

We can now use this solutiai3),(4) to calculate the Eu-
lerian velocity gradient, i.e., its first-order space derivative,
in Lagrangian coordinates. Differentiating E§) and using
Eq. (4), we obtain

Hence, for givenx andt, nearx(a, ,t,) andt, , respec-
tively, the naive Lagrangian map can be inverted by solving
(to leading ordera cubic equation. Far<t, , this equation
has a single real solution and the naive Lagrangian map co-

incides with the Lagrangian map. Fort, , the time of the
preshock, the equation simplifies and its solution reads

1 uj(a) 6 1/3
=ui(a)—=——""— a—a,=|——[Xx—X(a,,t 14

au(x,t)=uj(a) X Tra 9 * t*ug’(a*)[ (ay ,ty)] (14

whereu((a)=dug(a)/da. We immediately observe that, for Substitution in Eq(12) gives

t>0, the only way in which this gradient can become large

and negative is to have a very small denominator in(Eq. 1 13

For the kind of smooth initial conditions considered here, the y(x,t, )=uq(a,)— —| ————[x—x(a, ,t,)]

denominator is necessarily positive for sufficiently small Le [ toug(ay)

times. Leta, be the location where the initial velocity gra- (19

dientuj(a) achieves its minimum over the period. At
This is the well known Eulerian cubic root structure of pre-

_ 1 shocks. Fot slightly in excess of, , the naive Lagrangian
t=t,=min — — , (100 map is not monotonic and cannot be invert@dherwise
a Uo(a) there would be three branche3here is now a shock. The

: . ) corresponding shock interval can be determined by using the
we have the first preshock, i.e., a shock is bﬂi'h Subse-  ¢onvex hull construction on the Lagrangian potential. To
quently, other(less negativelocal minima of ug() May  |eading oder, it is found that the shock interval extends from
also produce preshocks, provided that the corresponding Igs— 5 a+ which are such thak(a* t)=a, +tuo(a,)
cation has not already been captured by a previously 9enefamely, * *

t<t, t>t 1/2

£

6(t—t,)

2..m

a —a,=*|5———
t*uo(a*)

(16)

This condition expresses that, to leading order, the Eulerian
location of the shock remains fixed in a frame moving with
the velocityug(a, ).
In Fig. 3, we have illustrated the Eulerian structure of the
FIG. 2. Lagrangian map befofe) and after(b) the appearance Solution at three times: just before, at, and just after the time
of a shock. The naive Lagrangian map is shown as a dashed linet, of the preshock.

a a at a
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Using Eq.(20) and evaluating the derivative of the argument

of the delta function in Eq(19) at the point where this ar-
\ gument vanishes, we can rewrite the PDF of the gradient as

: 1 1
o D™ o & <|u6<bk>|fDL<t>5(a_bk)da> |

(22

u(x,t)

where the integral over the delta function may be viewed as
FIG. 3. Eulerian structure of the solutige) just before a pre- shorthand for the indicator function &f, (t) [equal to one if

shock;(b) at the time of a preshocKg) just after a preshock. b,e D_(t) and to zero otherwideNote that the right-hand
side (rh9) of Eq. (22) has a|¢| 2 dependence for largé if
lll. THE PDF OF THE VELOCITY GRADIENT we take into account only the first factor. Actually, we shall

see that the presence @f(by) in the denominator provides

an additional|£|*? factor and that realizability conditions

provide a|¢| ! factor, so that the PDF will be proportional
P(&X, 1) =(8(E= du(x,1))), (17) tolg "

So far, we have not made any expansion. Let us now
where angular brackets denote ensemble averaging over tlkencentrate on the case of large negati\se As observed in
random initial conditionuy. By the assumed homogeneity, Sec. Il, this happens only in the neighborhood of preshocks.
p(¢;x,t) is obviously independent ok [and will subse- The latter originate from Lagrangian locations at which
guently be denoteg@(&,t)]. It follows that up(a) has an inflection point satisfying E@L1). Leta, ; be

the discrete set of such locations.
1 We show now by perturbation theory that, for each such
p(f,t)=< JO 5(§—axu(x,t))dx>. (18) point, there are zero or two roots of E@1). Indeed, using
the Taylor expansiofil2), in Eqg. (21), we obtain
Having thus a representation of our PDF as a space integral
over the Eulerian coordinate we can make the change of
variable from Eulerian to Lagrangian coordinates, using the
map L;. The same idea was used in Rf] to calculate the

Fourier transform of the Eulerian solution during the early\yhich has either two root&lenotedb”) or none, depending
phase of regularitybefore the appearance of shockhis . ihe sign of the rhs Defining-ELllué(a*-), it is Now
idea also works for later times provided we use the Lagrangéonvenient to distinguish the caélest*j andt;t*j . corre-

lan map, which differs from the naive Lagrangian rrigp sponding respectively to before and after the preshock. Be-

only by the exclusion from the basic periodicity interval fore, the Lagrangian shock interval nemy; is empty; the

[0, of the Lagrangian shock intervals. Let us denote bthO conditions thatt<t,; and that the rhs of Eq(23) is

DL.(t) the set of so-called regular _points, ie., I.'agrangia”positive read
points that do not belong to shock intervals. Using the La-

Our purpose is to derive the behavior 6 —«~ of the
PDF of the velocity gradient

2 1
(b—a, ) 2=——| - =—1-tuya,)|, (23

grangian representatiof®) of the velocity gradient, we ob- 1 1 1
tain from Eq.(18) - T$U6(3*1)< R (24)
Up(a) After t,;, the Lagrangian shock interval is defined by Eq
= - - ! j .
P(&D <fDL(t)5( l+tu6(a)>|1+tuo(a)|da>. (16). Since shock intervals are excluded from the integral

(19  (22), acceptable solutions must be outside of such intervals.
This andt>t, ; again provide two conditions, namely,
Note that I+tug(a) is the Jacobian of the Lagrangian map.

Hereafter we shall use several times the formula 1 1 / 1
_T+2tTg<u°(a*j)<_T' (25
1
s(F(y)=2 Py o(y—yj), (200 We observe now that the two conditiof®4) and (25) may
Tyl be written as a single condition

where they;’s are the zeros of andf is assumed to be 1 1

sufficiently smooth. ——+ ——<ui(a, ) <——— ——
y t + 2t2§<u0(a*])< t t2§1 (26)

Let us denote by, the (discret¢ Lagrangian locations
where the arguments of the delta function in E) vanish,

ie. locations which are the roots of which, for large negative, restrictsug(a, ;) to being near

— 1/t in a small interval of length-3/(2t2£). We shall de-
uj(b) note bylps(ug(a,);t,€) the indicator function equal to one
-——FF—=0. (21)  if up(ay;) is in this preshock realizability interval and to
1+tug(b) zero otherwise.
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The integral overa appearing in Eq(22) is over the smooth in itsu’ argument, we can replace the latter by
complement of shock intervals. The above analysis only-1/t and carry out the remaining integration owvef, to
takes care of those nascent shock intervals that can be calcobtain
lated perturbatively. A further condition is that the poit;
should not be within a mature shock interval that was created P(ED)=23t7D(1)|¢] 72 E——oo, (30
before timet. Because of the convex hull construction, this is
a global geometrical constraint that cannot, in general, behere
expressed perturbatively. We shall denotel@g(t)(a) the
indicator function equal to one # is outside such a global . w12
shock interval and to zero otherwise. D(t)= Jo du™(u™) p3’°( —pou

We now return to Eq(22). Sincebk=bji , which is close
to thea, ;'s whereug vanishes, we can use the Taylor ex- This concludes the derivation of the7/2 law for decaying
pansion |ug(b;- )| = |b *J|u’”(a*]) which by Eg.(23)  Burgers turbulence. The time-dependent condby} is ex-
takes the same value fbg andb‘ Hence, the contribution pressed in terms of a conditional probability that cannot be
to the integral in Eq(22) of the two by points in the neigh- calculated without solving a global geometric random prob-

" ]DG(t): 1) . (31)

borhood of each pon’m*] is ZlPS(ué(a*j);tig)lDG(t)(a*j)v lem [9] A more eXpIICIt form is Obta.”']ed for Smaﬂ- the
where the products of the indicator functions express thgondition logw=1 may then be omitted and the integral
shock interval exclusion. Using E3), we now obtain (31) can be calculated, e.qg., in the Gaussian case. Indeed, for
the kind of large-scale initial conditions assumed here, if,
/2 near some poira, , the initial velocity gradient, achieves
P& t)=—07 a very large negative minimum close tel/, the other
té] minima will be above— 1/t with a probability very close to

unity, so that it is nearly certain that no mature shocks have

21ps(Up(ays )it E)lp (1) (ay ) been formed

(2
J ( m(a*J)

172
] IV. HIGHER-ORDER SPACE DERIVATIVES AND TIME
(27 DERIVATIVES

l !

g —1-tup(a,)
We begin with the second Eulerian space deriva,b‘i@le.

The method is rather similar to the one used for the first

derivative. So, we shall avoid repeating details. From Eqgs.
(3), (4), and(9), it follows that

Since the sum is over points of vanishingwith ug >0, by
use of Eq.(20) this may be rewritten as

DY [ 1 (ug(a)?a(ug(a))
p(& )= (|t;|3 f 1 s
[— e 1—-tug(a) ﬂf(u:aa(axu){;—x
" U(,)(a) 1
XH(ug (a))lps(ug(a);t,H)lp (@) |, (28) =4, e L@
0 0
. ug(a)
where H() is the Heaviside function. = m- (32

Now, interchanging the mean value and the integration
over a, we observe that, because of homogeneity, the inte-
grand does not depend @ Hence, the integration ovexr
can be omitted. Let us denote lpaé,o(u’,u”,u”’UlDG(t):l)

Denoting byp®(¢,t) the PDF ofs2u, we have, as before,

o : i i ug(a)
the joint PDF of the first three derivatives of tiratial ve- p@(& )= J' Sl e— 0—,3 |1+tuj(a)|da ).
locity at an arbitrary Lagrangian location, knowing that this L) [1+tug(a)]
location is not within a mature shock interval at timéNe (33

can then write
For Gaussian statistics or, more generally, when the prob-

2t)1/2 (1) — (l/t2§) . ability of very large values olij(a) is very small, large
&t | E f f (1/t)+(1/2tz§) values ofd2u _WiII be du_e ovemhe_lmingly to small denomi-
nators. That is, they will again originate from the neighbor-
(um)l/zpslo(u,’O’UWHDG(U:1) hood of preshocks. Near an inflection poay; of the kind
X 1 7 . (29)  considered in Sec. Ill, we have
E 1—-tu u

Pu= Ug (axj)(a—ay)) e

t
1+tug(a,) + 5 Ug(a,)(a—ay))?

In Eqg. (29), the variableu’ is constrained to remain very
close to— 1/t for é&— —o. Assuming that the density; o is
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This is an odd function od—a, ; that can achieve both large . *oo 5o [© 1
positive and large negative valug¢slence, we obtain power- E-()== f dulul j du”(u”)
law tails at both ends. 0 0
As before, in Eq.(33) we change from a delta function
over ¢ to delta functions over those Lagrangian locatibps X Pa,0
where the second space derivative is equad.ttt is easily
shown that the condition whereby the rhs of E24) is equal
to ¢ has either two solutiongon the same side d,;) or  which involves the joint PDRp, (u,u’,u”,u”[lp )=1) of
none. Obtaining these solutions explicitly requires solving arthe initial velocity and its first three derivatives at an arbi-
algebraic equation of degree six in—a, ;. Nevertheless, trary location, knowing that this location is not within a ma-
the conditions for the existence of such solutions can be writture shock interval at timé Note that the PDF of the time
ten explicitly, as before. In the early shock phase there magerivative (40) is just the PDF of the space derivati{@0)
now be either two, or one, or zely’s outside of the shock with the change of variable— —uyé and an extra averag-
interval. The length of the realizability interval in the vari- ing overu,. This is the result we expect if, in E39), we
ableuj(a, ;) is now O(|¢|~?9). The coefficient in front of neglect the variation ofio(a) near a preshock. It is easily
the distributionss(a—by) is now found to beO(|§|‘8’5). It shown, when doing the complete asymptotic expansion

10 "
u1 Y! 1u

Ipm= 1) , (41)

follows that along the same lines as in Sec. lll, that this is indeed the case
for the leading-order behavior. This theory can again be ex-
PAEDx|é]72, E—xoo, (35  tended to PDF’s of higher-order time derivatives that follow
) . the same power laws as for space derivatives.
The time-dependent constant in front of the2 power law Obtaining for the PDF of the Eulerian time derivative the

can again be expressed in terms of the conditional joint probsame law as for the space derivative is not very surprising. In
ability p3 ¢ already introduced, but this is very cumbersomehigh-Reynolds-number turbulent flows it is well known that
since it involves the solution of the aforementioned equatiorWhen there is a |arge mean ﬂOW, the Eulerian tempora| struc-
of degree six. ture is, to leading order, determined by the spatial structure

The theory can be extended to higher-order space derivan the reference frame of the mean fl¢this is often referred
tives but becomes even more cumbersome. Somewhat supg- as the “Taylor hypothesis,” but is of course a simple
ficial inspection(mostly by dimensional analysisndicates  asymptotic resujt Furthermore, when there is no mean flow,
that the PDF’s have in such cases power-law tails with exit js generally believed that the small-scale temporal struc-
ponent —(3n+4)/(3n—1) [10]. For evenn the tail is ture is still determined by the spatial structure, since most of
present for both large negative and large positive values. FQhe time dependence comes from the sweeping of small-scale
oddn>2 it is certainly present for large negative values andeddies by larger energy-containing eddies that have much
may also be present for positive onesg., forn=3). larger but random velocities. For the case of Burgers turbu-

Finally, we turn to the Eulerian time derivative. We define |ence, the identical functional forms of Eq®R0) and (40)

may be seen as a proof of this “random Taylor hypothesis.”

Pou(7,t) =(8 (7 du(x,1))). (36 Note that it is the sweeping by the random velocities of the
shocks[ug(a) at those locations whera((a)<O0, ug(a)
From Eq.(3) we have =0 anduf/(a)>0] that determines the interplay of temporal
, and spatial structures. Since we assumed that the velocity has
du(x,t)=up(a)da, (37 zero mean value, the random velocities at the shocks can

have both signs, so that the7/2 power-law tail appears at
both large positive and large negative values of the Eulerian
time derivatives. Alternatively, one may calculate the PDF of
dyu in the frame moving with the shodlassuming there is a
Uo(a) 38) single shock In this case one obtains a much steeper law

whered,a is calculated for a given Eulerian positianTime
differentiation ofx=a+tug(a) gives

@a=- 1+tul(a)’ «|5|~8. Note that this is not the PDF of the Lagrangian time
derivative. For unforced Burgers turbulence in the inviscid
Hence, limit, this derivative is exactly zero.
AU(X,t)=— Uo(@)Uo(a) _ (39) V. VELOCITY INCREMENTS
1+tuj(a)

We define the Eulerian velocity increment over a separa-

Note that the rhs is just-udyu, which could have been tion Ax as

deduced from the Eulerian inviscid equation. Substituting
Egs. (39) in (36) and proceeding almost exactly as in Sec. AUg(AX;X,t)=u(x+Ax,t)—u(x,t). (42
I1l, we obtain

p[?tu( 7],t)22\/§t74Ei(t)| 77|77/2, n— * oo, (40) Our goal is to find the PDF

where Pau(€,AX,)=(8(£— Aug(Ax;x,1))), (43
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for valuesé of sign opposite to that of the separation. Let us Bjm:t[1+tu6(a*j)+tu6’(a*j)(bjm—a*j)2/2]. (53
introduce the Lagrangian velocity increment, defined outside
the Lagrangian shock intervals, as The realizability conditions associated with E§0) lead

to rather involved expressions for the PDF. Simple scaling

behavior emerges in two limiting cases. To express the cor-

responding conditions in reasonably compact fashion, we

shall assume that the third derivativg'(a, ;) is of order

, unity.

(05(5—AuL(Ax;a,t))|1+tu0(a)|da>. For |t&] <|Ax|Y® the A, term in Eq.(51) dominates. For
(45) |t&]>|Ax|*3, the B, term dominates. In the former case,

Ajn can be further approximated:

Au (Ax;a,t)=Aug[Ax;a+tug(a),t]. (44)

Proceeding as at the beginning of Sec. Ill, we obtain

pAU(fiAX1t) = < fD

L

For a givent,Ax and ¢, we must now find those Lagrangian

locations, denotetl,, where the argument of the delta func- |Ax|?2
tion in Eq. (45) vanishes. For this, it is convenient to asso- |Ajml|= 3 . (54)
ciate with eactb, the pointb}, such that their images by the |t ug (8 j) (bjm—ay))]

Lagrangian magL; are separated by a distans&, while the

velocities differ byé. We thus have (Realizability imposes thaf and Ax be of opposite sigi.

Substitution of Eq(54) into Eq.(51) leads essentially to the

uo(bp) —ug(by) =& (46) same expressiof27) as for the PDF of velocity gradients,
provided (i) we replace the Eulerian velocity gradient by
by +tug(by) = b+ tug(by) + Ax. (47 &Ax and(ii) multiply the PDF(27) by 1/Ax|. Hence,

The equivalent of Eq(22) is now 1
“ 2 PaEAxD= b o | <Iax ¥ T (69

[1+tug(b) IL(1+tup(by)) ‘
Uo(by) — Up(by)

pAu(§,AX,t):2k < ¢

for |Ax|<|té]<|Ax|3, =0 (56)

X f 5(a—bk)da>. (48
Di() For 1> [t£]>|Ax|'? the Bj,, term in Eq.(51) dominates.

) , ... .. Contrary to the former case, the situation is quite different

Here we shall be interested exclusively in situationsyqm that which what has been studied in Sec. Ill. We shall

where therefore give more detail. With the assumptions made, the
condition whereby the quadratic equati@®) has real roots

|AX|<|t§|<1’ (49) reads

which originate from the neighborhood of preshocks; ”
where the Taylor expansiofl2) may be used11]. From ul(a, )< — }_ uO(a*j)tzgz (57)
Egs. (46) and (47), we then obtain thab, is a root of the R L 24 '
following quadratic equation i:

which, given the positivity ofug'(a, ), implies thatt>t, ;
t2¢2 2 =—1/luj(a,;). It is then easily checked that one of the two

—a )2 S T S
(b=a, )" +te(b—a )+ 3" tuy(ay;) roots of Eq.(50) is not acceptable because it is within the
Lagrangian shock interval. The condition whereby the other
, Ax one is outside this interval reads
X 1+tu0(a*j)+¥ =0. (50
. N 1 ug(ay) 24201
We shall see that Eq50), together with the realizability T1T T g LésUo(ay)). (58)

condition of having real roots not belonging to a shock in-
terval, can have zero, one, or two solutions, which we shal
denote byb;,,. We then approximate the PO&8) using the
Taylor expansion{12) near preshocks to obtain

|Equations(57) and(58) now play the role of the realizability
conditions(26) in Sec. lll. Proceeding along the same lines
as in Sec. lll, we obtain

Pau(&EAX D=2 <A- +B; f d(a—b; )da>, t3
* AU PO Pau(£:A%) =5 F(D]AX][¢], (59)
(5
where &
for |Ax|Y3<|tg]<1, =0 (60)

:[1+tu(,)(a*j)+tug,(a*j)(bjm_a*j)2/2]2’ (52)

" téug (a,j)(bjm—ay;) where
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of the shock conditions, an incorrgé ~2 power law is ob-
106(0:1), (61)  tained for the left-hand tail of the PDF of gradients. Indeed,
the PDF(22) has an overal|£| 2 factor in front of the rhs
andps . is defined as in Sec. Il. _(for Iarge |€]). If in the remaining _fact_or we perf(_)rm the
We observe that thé dependence of our resuks5) and integration over the whole Lagrang|an interyal 1 vylthout
(59) for decaying burgers turbolence is essentially the samé&Xxcluding the Lagrangian shock interval, we obtain an order

% 1
F(t)E f dum(um)Z p3'0( _ T,O,Um
0

as that proposed in Ref] for the forced case. unity contribution. It has already been pointed out in Ref.
[17] that a|£| 2 law is obtained from multivalued solutions
VI. CONCLUDING REMARKS of the Riemann equation. This is indeed equivalent to using

the naive Lagrangian map; note that it gives the correct an-

We have shown here that several results proposed in Re$wer when using the Zeldovich approximation in cosmology,
[1] for forced Burgers turbulence are also valid for decayingwhich allows “multistream” solutiong18,19.
Burgers turbulence and can actually be derived by systematic It is shown in Ref.[20] that there is a simple relation
asymptotic expansions, using a Lagrangian approach. Theetween the velocity gradient and the density of an advected
results that carry over from the forced to the unforced cas@assive scalar. When this density is initially uniform, this
are those involving preshocks-=7/2 power law for the PDF implies that the power law with exponent7/2 also applies
of velocity gradients and increments ard. power law for  to the tail of the density PDF. Analogous results can be ob-
the PDF of increments over suitable ranges. For the tail ofained in several dimensions, where they have cosmological
the PDF of gradients at largmsitive&, a decaying exponen- implications; this requires the study of singularities of mul-
tial law of the argumeng® is generally proposefl,12-15.  tidimensional convex hullg19].
This result, unrelated to preshocks, has no counterpart in the Finally, there is a problem which is in a way intermediate
decaying case. Indeed, it follows then frdi¢/Dt= — &2, between the decaying and the forced cases, namely,
whereD/Dt denotes the Lagrangian derivative, that the PDF'kicked” Burgers turbulence. The space-periodic forfcap-
of ¢ is exactly zero forg>1#. pearing in Eq.(1) is then of the form

Our results involving the-7/2 power law are quite ex-
plicit: for example, we obtain thé&ime-dependentconstant _
D(t), given by Eq.(31), before the power law30). The f(x,t)—; fi)a(t=1), (62)
expressiorD(t) for short times, when mature shocks have
negligible probability, can be written explicitly in terms of where thef;(x) are deterministic or random prescribed func-
the joint PDF of the first three derivatives of the initial ve- tions. Between the kicking timeg we have decaying dy-
locity at an arbitrary location. For later times we need thepnamics. At timet; the velocity undergoes a temporallyut
conditional PDF, knOWing known that no mature shock iSnot Spa“a”y discontinuous Changﬁ(x)_ When thetj’s are
present at that location. Obtalnlng this exaCtly, say forequa”y Spaced and all '[h‘q(x)’s are equaL the solution of
Gaussian initial conditions, may be very hard. But it is POS-the Burgers equation converges to a Space_time_periodic
sible to construct lower bounds. For example, largefunction. PDF’s obtained by space and time averaging have
deviations theory may be used to show thainD(t)  exactly the same scaling properties as those obtained here for
=0(In?t) for t—oo [16]. random decaying Burgers turbulence. Very clean scaling can

We observe that, formally, our results can easily be expe obtained by numerically simulating this problem using a
tended from the case of a space-periodic homogeneous initighodification of the fast Legendre transform method of Refs.

conditionug(a) (as assumed in Reffl]) to that of a random  [8,21]. Such questions are discussed in RBf.
homogeneous mixing initial condition defined on the whole

real line. For this it suffices to use ergodicity and to replace,

in Eq. (18), the mean of the integral over the period by

IimL_,m[ll(ZL)]fft.Afterthis, the calculation is essentially ~ We thank M. Blank, S. Chen, W. E, S. Gurbatov, K.

unchanged. Khanin, R. Kraichnan, A. Noullez, B. Shraiman, E. Vanden
It is of interest to point out that without careful handling Eijnden, and B. Villone for fruitful discussions.
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