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REPLICATOR-MUTATOR EQUATIONS WITH QUADRATIC

FITNESS

MATTHIEU ALFARO AND RÉMI CARLES

Abstract. This work completes our previous analysis on models arising in
evolutionary genetics. We consider the so-called replicator-mutator equation,
when the fitness is quadratic. This equation is a heat equation with a har-
monic potential, plus a specific nonlocal term. We give an explicit formula for
the solution, thanks to which we prove that when the fitness is non-positive
(harmonic potential), solutions converge to a universal stationary Gaussian
for large time, whereas when the fitness is non-negative (inverted harmonic
potential), solutions always become extinct in finite time.

1. Introduction

This note is concerned with replicator-mutator equations, that is nonlocal reac-
tion diffusion problems of the form

∂tU = σ0
2∂xxU + µ0

(

f(x)−
∫

R

f(x)U(t, x) dx

)

U, t > 0, x ∈ R,

where σ0 > 0 and µ0 > 0 are parameters, and when either f(x) = −x2 or f(x) = x2.
In order to simplify the presentation of the results, and before going into more
details, we use the rescaling

u(t, x) := U

(

t

µ0
, x

)

, σ :=
σ0√
µ
0

,

and therefore consider

(1.1) ∂tu = σ2∂xxu+ (f(x) − f(t))u, t > 0, x ∈ R,

where the nonlocal term is given by

(1.2) f(t) :=

∫

R

f(x)u(t, x) dx.

Equation (1.1) is always supplemented with an initial condition u0 ≥ 0 with mass
∫

R
u0 = 1, so that the mass is formally conserved for later times. Indeed, integrating

(1.1) over x ∈ R, we find that m(t) :=
∫

R
u(t, x)dx satisfies

dm

dt
= f(t) (1−m(t)) , m(0) = 1,

hence m(t) = 1 so long as f is integrable.
In the context of evolutionary genetics, Equation (1.1) was introduced by Tsim-

ring et al. [17], where they propose a mean-field theory for the evolution of RNA
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virus populations on a phenotypic trait space. In this context, u(t, x) is the density
of a population (at time t and per unit of phenotypic trait) on a one-dimensional
phenotypic trait space, and f(x) represents the fitness of an individual with trait

value x in a population which is at state u(t, x). The nonlocal term f(t) represents
the mean fitness at time t. We refer to [1] for more references on the biological
background of (1.1).

1.1. The case f(x) = x. This case can be seen as a parabolic counterpart of the
Schrödinger equation with a Stark potential; in the context of quantum mechanics,
this potential corresponds to a constant electric field or to gravity (see e.g. [16]).
In the case of (1.1), a family of self similar Gaussian solutions has been constructed
in [2]. Then this case has been completely studied in [1]. It turns out that not
only traveling pulses are changing sign, but also extinction in finite time occurs
for initial data with “not very light tails” (data which do not decay very fast on
the right). This, in particular, contradicts the formal conservation of the mass
observed in (1.1) and evoked above. Roughly speaking, the nonlocal term of the
equation

∫

R
xu(t, x)dx becomes infinite and the equation becomes meaningless. On

the other hand, for initial data with “very light tails” (they decay sufficiently fast
on the right), the solution is defined for all times t ≥ 0 and is escaping to the right
by accelerating and flattening as t → ∞. More precisely, the long time behaviour
is (when σ = 1) a Gaussian centered at x(t) = t2 (acceleration) and of maximal

height 1/
√
4πt (flattening effect). In other words, extinction occurs at t = ∞ in

this situation. This is like in the case of the linear heat equation, up to the fact
that the center of the asymptotic Gaussian is given by x(t), which undergoes some
acceleration which is reminiscent of the effect of gravity. Notice some links of this
acceleration phenomena with some aspects of the so-called dynamics of the fittest

trait (see [6], [8], [12] and the references therein) which, in some cases, escape to
infinity for large times [7], [15].

1.2. The quadratic cases. To prove the above results in [1], we used a change of
unknown function based on the Avron–Herbst formula for the Schrödinger equation,
and showed that (1.1) is equivalent to the heat equation. We could then compute
its solution explicitly. Without those exact computations, the understanding of
(1.1) seems far from obvious, and in particular the role of the decay on the right
of the initial data. In [1] we indicated that similar computations could also be
performed in the cases f(x) = ±x2, thanks to the generalized lens transform of the
Schrödinger equation, but without giving any detail. The goal of the present work
is to fill this gap, by giving the full details and results for these two cases.

Our motivation is twofold. First, very recently, replicator-mutator equations
(or related problems) with quadratic fitness have attracted a lot of attention: let
us mention the works [10], [3], [5], [11], [9], [18] and the references therein. In
particular, Chisholm et al. [5] study — among other things — the long time
behaviour of the nonlocal term of an equation very close to (1.1), in the case
f(x) = −x2, with compactly supported initial data. In Section 2 we completely
solve (1.1) for any initial data, and can therefore study the long time behaviour
not only of the nonlocal term f(t) but also of the full profile u(t, x). The second
reason is that the obtained behaviours are varied and interesting, bringing precious
information in the dynamical study of partial differential equations. To give a
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preview of this, we now state two theorems which are direct consequences of the
more detailed results of Section 2 (f(x) = −x2) and Section 3 (f(x) = x2).

In the case f(x) = −x2, solutions tend at large time to a universal stationary
Gaussian. Denote

M2(R) :=

{

g ∈ L1(R),

∫

R

x2|g(x)|dx <∞
}

.

Theorem 1.1 (Case f(x) = −x2). Let u0 ≥ 0, with
∫

R
u0 = 1. Then (1.1), with

initial datum u0, has a unique solution u ∈ C(R+;L
1(R)) ∩ L1

loc((0,∞);M2(R)).
It satisfies

sup
x∈R

|u(t, x)− ϕ(x)| −→
t→∞

0, where ϕ(x) :=
1√
2πσ

e−x2/(2σ).

The above result shows that the presence of the quadratic fitness compensates
the diffusive mechanism of the heat equation, since we recall that for u0 ≥ 0 with
∫

(1 + |x|)u0(x)dx <∞,

et∂xxu0(x) =
‖u0‖L1(R)√

4πt
e−x2/(4t) + o(1), in L∞(R), as t→ ∞.

We also emphasize that in Theorem 1.1, we do not assume that u0 has two momenta
in L1(R), u0 ∈ M2(R): this property is satisfied by the solution instantaneously,
as we will see in Section 2.

On the other hand, in the case f(x) = x2, extinction in finite time always occurs.

Theorem 1.2 (Case f(x) = x2). Let u0 ≥ 0, with
∫

R
u0 = 1. Then the solution to

(1.1), with initial datum u0, becomes extinct in finite time:

∃T ∈
[

0,
π

4σ

]

, u(t, x) = 0, ∀t > T, ∀x ∈ R.

As in [1], the solution may become extinct instantaneously (T = 0), that is, (1.1)
has no non-trivial solution, if the initial datum has too little decay at infinity.

1.3. Heat vs. Schrödinger. As mentioned above, the present results, as well as
those established in [1], stem from explicit formulas discovered in the context of
Schrödinger equations; see [13, 14], [16]. However, we have to emphasize several
differences between (1.1) and its Schrödinger analogue,

(1.3) i∂tu = σ2∂xxu+ (f(x)− f(t))u, t ∈ R, x ∈ R.

The Schrödinger equation is of course time reversible. Less obvious is the way the
term f(t)u is handled, according to the equation one considers. In the Schrödinger
case (1.3), we simply use a gauge transform to get rid of this term: it is equivalent
to consider u solution to (1.3) or

(1.4) v(t, x) = u(t, x)e−i
∫

t

0
f(s)ds,

which solves

i∂tv = σ2∂xxv + f(x)v,

with the same initial datum. If we assume, like in the case of (1.1), that f(t) is
real (which means that it is not given by (1.2) in this case), the change of unknown
function (1.4) does not alter the dynamics, since |v(t, x)| = |u(t, x)|. On the other
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hand, the analogous transformation in the parabolic case has a true effect on the
dynamics since, as pointed out in [1], it becomes

(1.5) v(t, x) = u(t, x)e
∫

t

0
f(s)ds.

Multiplying by f(x) and integrating in x, we infer
∫

R

f(x)v(t, x)dx = f(t)e
∫

t

0
f(s)ds =

d

dt

(

e
∫

t

0
f(s)ds

)

.

Therefore, so long as
∫ t

0

∫

R
f(x)v(s, x)dxds > −1,

u(t, x) =
v(t, x)

1 +
∫ t

0

∫

R
f(x)v(s, x)dxds

.

It is clear that in general, u and v now have different large time behaviours.
The last algebraic step to construct explicit solutions for (1.1) and (1.3) consists

in using the Avron–Herbst formula when f(x) = x, or a (generalized) lens transform
when f(x) = ±x2. In the case of the standard (quantum) harmonic oscillator, the
solutions to

i∂tv + ∂xxv = ω2x2v, and i∂tw + ∂xxw = 0, with v|t=0 = w|t=0,

are related through the formula

v(t, x) =
1

√

cos(2ωt)
w

(

tan(2ωt)

2ω
,

x

cos(2ωt)

)

e−iω2 x2 tan(2ωt), |t| < π

4ω
.

What this formula does not show, since it is limited in time, is that the solution v
is periodic in time, as can be seen for instance by considering an eigenbasis for the
harmonic oscillator −∂xx + ω2x2, given by Hermite functions. Suppose ω = 1 to
lighten the notations: the Hermite functions (ψj)j≥0 form an orthogonal basis of
L2(R), and

−∂xxψj + x2ψj = (2j + 1)ψj .

Therefore, if

v(0, x) =
∑

j≥0

αjψj(x), then v(t, x) =
∑

j≥0

αjψj(x)e
i(2j+1)t

is obviously 2π-periodic in time. This is in sharp contrast with the behaviour
described in Theorem 1.1. Similarly, the solutions to

i∂tv + ∂xxv = −ω2x2v, i∂tw + ∂xxw = 0, v|t=0 = w|t=0,

are related through the formula (change ω to iω in the previous formula)

v(t, x) =
1

√

cosh(2ωt)
w

(

tanh(2ωt)

2ω
,

x

cosh(2ωt)

)

ei
ω
2 x2 tanh(2ωt), t ∈ R.

This shows that the inverted harmonic potential accelerates the dispersion (‖v(t, ·)‖L∞

goes to zero exponentially fast), and the large time profile is given by w|t=1/(2ω).
Again, this behaviour is completely different from the one stated in Theorem 1.2.

2. The case f(x) = −x2: convergence to a universal Gaussian

The case f(x) = −x2 can be handled as explained in [1]. We give more details
here, and analyze the consequences of the explicit formula. In particular, for any
initial data, the solution is defined for all positive times and converge, at large time,
to a universal stationary Gaussian.
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2.1. Results.

Theorem 2.1 (The solution explicitly). Let u0 ≥ 0, with
∫

R
u0 = 1. Then (1.1)

with initial datum u0 has a unique solution u ∈ C(R+;L
1(R))∩L1

loc((0,∞);M2(R)).
For all t > 0 and x ∈ R, it is given by

u(t, x) =
1

√

2πσ tanh(2σt)

e−
tanh(2σt)

2σ x2

∫

R

e−
1

2σ tanh(2σt) (
x

cosh (2σt)−y)
2

u0(y) dy
∫

R

e−
tanh(2σt)

2σ y2

u0(y) dy

(2.1)

=
1

√

2πσ tanh(2σt)

∫

R

e−
1

2σ tanh(2σt) (x−
y

cosh (2σt))2e−
tanh(2σt)

2σ y2

u0(y) dy
∫

R

e−
tanh(2σt)

2σ y2

u0(y) dy
.(2.2)

As a consequence, for all t > 0, f(t) is given by

(2.3) f(t) = σ tanh(2σt) +
1

(cosh(2σt))2

∫

R

e−
tanh(2σt)

2σ y2

y2 u0(y) dy
∫

R

e−
tanh(2σt)

2σ y2

u0(y) dy

.

We now investigate the propagation of Gaussian initial data.

Proposition 2.2 (Propagation of Gaussian initial data). If

(2.4) u0(x) =

√

a

2π
e−

a
2 (x−m)2 , a > 0, m ∈ R,

then the solution of (1.1) remains Gaussian for t > 0 and is given by

(2.5) u(t, x) =

√

a(t)

2π
e−

a(t)
2 (x−m(t))2 ,

where

(2.6) a(t) :=
aσ + tanh(2σt)

σ(1 + aσ tanh(2σt))
, m(t) :=

maσ

aσ cosh(2σt) + sinh(2σt)
.

Since a(t) → 1
σ and m(t) → 0 as t→ ∞, it is easily seen that u(t, x) → ϕ(x) :=

1√
2πσ

e−
1
2σ x2

uniformly in x ∈ R. This fact is actually true for all initial data, as

stated in the following theorem, which implies Theorem 1.1.

Theorem 2.3 (Long time behaviour). Under the assumptions of Theorem 2.1,

there exists C > 0 independent of time such that

(2.7) sup
x∈R

|u(t, x)− ψ(t, x)| ≤ C

sinh(2σt)
, ∀t ≥ 1,

where

ψ(t, x) :=
1

√

2πσ tanh(2σt)
e−

1
2σ tanh(2σt)

x2

satisfies

ψ(t, x) −→
t→∞

ϕ(x) =
1√
2πσ

e−
1
2σx2

,

uniformly in x ∈ R.
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Observe that ψ(t, x) is nothing but the fundamental solution obtained by plug-
ging u0(y) = δ0(y), the Dirac mass at the origin, in (2.2), so the first part of the
statement is the analogue of the convergence result recalled in the introduction,

∥

∥

∥

∥

et∂xxu0(x)−
‖u0‖L1(R)√

4πt
e−x2/(4t)

∥

∥

∥

∥

L∞(R)

≤ C

t
‖xu0‖L1(R),

and the effect of the fitness f(x) = −x2 is to neutralize diffusive effects.

2.2. Proofs.

Proof of Theorem 2.1. As proved in [1], we can reduce (1.1) to the heat equation
by combining two changes of unknown function. First, we have

(2.8) u(t, x) =
v(t, x)

1−
∫ t

0

∫

R

x2v(s, x) dxds

,

where v(t, x) solves the Cauchy problem

∂tv = σ2∂xxv − x2v, t > 0, x ∈ R; v(0, x) = u0(x).

Notice that relation (2.8) is valid as long as
∫ t

0

∫

R
x2v(s, x) dxds < 1. Next, by

adapting the so-called lens transform ([13], [4]), we have

(2.9) v(t, x) =
1

√

cosh(2σt)
e−

tanh(2σt)
2σ x2

w

(

tanh(2σt)

2σ
,

x

σ cosh(2σt)

)

,

where w(t, x) solves the heat equation

∂tw = ∂xxw, t > 0, x ∈ R; w(0, x) = u0(σx).

Combining (2.8), (2.9) and the integral expression of w via the heat kernel, we end
up with

(2.10)

u(t, x) =
1

1− I(t)
×

√

σ

2π

1
√

sinh(2σt)
e−

tanh(2σt)
2σ x2

∫

R

e−
σ

2 tanh(2σt) (
x

σ cosh(2σt)
−y)2u0(σy) dy,

where

I(t) :=

∫

t

0

∫

R

∫

R

x
2

√

σ

2π

1
√

sinh(2σs)
e
−

tanh(2σs)
2σ

x
2

e
−

σ
2 tanh(2σs)

(

x
σ cosh(2σs)

−y

)2

u0(σy)dydxds.

Let us compute I(t). Using Fubini’s theorem, we first compute the integral with
respect to x. Using elementary algebra (canonical form in particular), we get

∫

R

x2e−
tanh(2σs)

2σ x2

e−
σ

2 tanh(2σs) (
x

σ cosh(2σs)
−y)2 dx

= e−
σ tanh(2σs)

2 y2

∫

R

x2e−
1

2σ tanh(2σs) (x−
σy

cosh(2σs) )
2

dx

= e−
σ tanh(2σs)

2 y2√

2πσ tanh(2σs)

(

σ tanh(2σs) +
σ2y2

(cosh(2σs))2

)

,(2.11)
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where we have used the straightforward formula
∫

R
z2e−

a
2 (z−θ)2dz = 1

a

√

2π
a +

θ2
√

2π
a . Next, we pursue the computation of I(t) and, integrating with respect

to s, we find
∫ t

0

√

σ

2π

1
√

sinh(2σs)
e−

σ tanh(2σs)
2 y2√

2πσ tanh(2σs)

(

σ tanh(2σs) +
σ2y2

(cosh(2σs))2

)

ds

= σ

∫ t

0

e−
1
2 ln(cosh(2σs))e−

σ tanh(2σs)
2 y2

(

σ tanh(2σs) +
σ2y2

(cosh(2σs))2

)

ds

= σ

∫ t

0

d

ds

(

−e− 1
2 ln(cosh(2σs))e−

σ tanh(2σs)
2 y2

)

ds

= σ

(

1− 1
√

cosh(2σt)
e−

σ tanh(2σt)
2 y2

)

.

Finally, we integrate with respect to y and, using
∫

R
u0 = 1, get

I(t) =

∫

R

σ

(

1− 1
√

cosh(2σt)
e−

σ tanh(2σt)
2 y2

)

u0(σy) dy

= 1− 1
√

cosh(2σt)

∫

R

e−
tanh(2σt)

2σ z2

u0(z) dz.

Plugging this in the denominator of (2.10), and using the change of variable z = σy
in the numerator of (2.10), we get (2.1), from which (2.2) easily follows. Using
(2.2), Fubini theorem and the same computation as in (2.11), we obtain (2.3). The
solution thus obtained satisfies u ∈ C(R+;L

1(R)) ∩ L1
loc((0,∞);M2(R)). Unique-

ness for such a solution stems from the transformations that we have used, which
require exactly this regularity (see also (1.5)). Theorem 2.1 is proved. �

Proof of Proposition 2.2. We plug the Gaussian data (2.4) into formula (2.1). Using
elementary algebra (canonical form), we first compute

∫

R

e−
tanh(2σt)

2σ y2

u0(y) dy

=

√

a

2π
e
−m2

2

(

a− a2

tanh(2σt)
σ

+a

)

∫

R

e
− 1

2 (
tanh(2σt)

σ
+a)

(

y− am
tanh(2σt)

σ
+a

)2

dy

=

√

aσ

tanh(2σt) + aσ
e−

m2

2
a tanh(2σt)

tanh(2σt)+aσ .

Some tedious but similar manipulations involving canonical form imply
∫

R

e−
1

2σ tanh(2σt) (
x

cosh (2σt)−y)
2

u0(y) dy

=

√

a

2π
e
− a

(cosh(2σt))2(1+aσ tanh(2σt))
x2

2 e
am

cosh(2σt)(1+aσ tanh(2σt))
xe−

a
2(1+aσ tanh(2σt))

m2

×
∫

R

e−
1+aσ tanh(2σt)
2σ tanh(2σt) [y− σ tanh(2σt)

1+aσ tanh(2σt) (
x

σ tanh(2σt) cosh(2σt)
+am)]

2

dy

=

√

aσ tanh(2σt)

1 + aσ tanh(2σt)
e
− a

(cosh(2σt))2(1+aσ tanh(2σt))
x2

2 e
am

cosh(2σt)(1+aσ tanh(2σt))
xe−

a
2(1+aσ tanh(2σt))

m2

.
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Putting all together into (2.1), we arrive, after computations involving hyperbolic
functions, at the desired formulas (2.5) and (2.6). �

Proof of Theorem 2.3. Since ψ(t, x) is nothing but the fundamental solution arising
from (2.2) with u0(y) = δ0(y), we write

ψ(t, x) =
1

√

2πσ tanh(2σt)

∫

R

e−
1

2σ tanh(2σt)
x2

e−
tanh(2σt)

2σ y2

u0(y) dy
∫

R

e−
tanh(2σt)

2σ y2

u0(y) dy

,

so that the deviation from this fundamental solution is given by

(u(t, x)− ψ(t, x))
√

2πσ tanh(2σt)

=

∫

R

(

e−
1

2σ tanh(2σt) (x−
y

cosh (2σt))
2

− e−
1

2σ tanh(2σt)
x2
)

e−
tanh(2σt)

2σ y2

u0(y) dy
∫

R

e−
tanh(2σt)

2σ y2

u0(y) dy

.(2.12)

Define G(z) := e−z2/(2σ). It follows from the mean value theorem that

|u(t, x)−ψ(t, x)|
√

2πσ tanh(2σt) ≤ ‖G′‖∞

∫

R

|y|
cosh(2σt)

√

tanh(2σt)
e−

tanh(2σt)
2σ y2

u0(y) dy

∫

R

e−
tanh(2σt)

2σ y2

u0(y) dy

,

which in turn implies

|u(t, x)− ψ(t, x)| ≤ ‖G′‖∞√
2πσ sinh(2σt)

∫

R

e−
tanh(2σt)

2σ y2 |y|u0(y) dy
∫

R

e−
tanh(2σt)

2σ y2

u0(y) dy

≤ ‖G′‖∞√
2πσ sinh(2σt)

∫

R

e−
tanh(2σ)

2σ y2 |y|u0(y) dy
∫

R

e−
1
2σ y2

u0(y) dy

=:
C

sinh(2σt)
,

for all t ≥ 1. This proves (2.7). �

3. The case f(x) = x2: systematic extinction in finite time

The case f(x) = x2 can be handled as explained in [1]. Details are presented
below: for any initial datum, the solution becomes extinct in finite time.

Indeed, it will turn out that there are two limitations for the time interval of
existence of the solution. The first limitation arises when reducing equation (3.9)
to the heat equation (3.11) through the relation (3.10), which requires

0 < t < THeat :=
π

4σ
.

The other limitation appears when reducing (1.1) to (3.9), which requires
∫

R

e
tan(2σt)

2σ y2

u0(y)dy
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to remain finite (otherwise the solution becomes extinct). Hence, for u0 ≥ 0 with
∫

R
u0 = 1, we define

(3.1) T := sup

{

0 ≤ t < THeat,

∫

R

e
tan(2σt)

2σ y2

u0(y)dy <∞
}

∈ [0, THeat].

Some typical situations are the following: if u0(x) has algebraic or exponential tails
then T = 0 (immediate extinction); if u0(x) has Gaussian tails then 0 < T < THeat

(rapid extinction in finite time); last, if u0(x) is compactly supported or has “very
very light tails” then T = THeat (extinction in finite time).

3.1. Results.

Theorem 3.1 (The solution explicitly). Let u0 ≥ 0, with
∫

R
u0 = 1. As long as

f(t) is finite, the solution of (1.1) with initial data u0 is given by

u(t, x) =
1

√

2πσ tan(2σt)

e
tan(2σt)

2σ x2

∫

R

e−
1

2σ tan(2σt) (
x

cos(2σt)
−y)

2

u0(y) dy
∫

R

e
tan(2σt)

2σ y2

u0(y) dy

(3.2)

=
1

√

2πσ tan(2σt)

∫

R

e−
1

2σ tan(2σt) (x−
y

cos(2σt) )
2

e
tan(2σt)

2σ y2

u0(y) dy
∫

R

e
tan(2σt)

2σ y2

u0(y) dy

.(3.3)

As long as it exists, f(t) is given by

(3.4) f(t) = σ tan(2σt) +
1

(cos(2σt))2

∫

R

e
tan(2σt)

2σ y2

y2 u0(y) dy
∫

R

e
tan(2σt)

2σ y2

u0(y) dy

.

Remark 3.2. Formally, one can notice that −x2 is turned into +x2 in (1.1) if one
changes σ to iσ, and t to −t. After such transforms, (2.1)-(2.2) becomes (3.2)-(3.3).

Proposition 3.3 (Propagation of Gaussian initial data). If

(3.5) u0(x) =

√

a

2π
e−

a
2 (x−m)2 , a > 0, m ∈ R,

then the solution of (1.1) remains Gaussian for

0 < t < T =
arctan(aσ)

2σ
,

and is given by

(3.6) u(t, x) =

√

a(t)

2π
e−

a(t)
2 (x−m(t))2 ,

where

(3.7) a(t) :=
aσ − tan(2σt)

σ(1 + aσ tan(2σt))
, m(t) :=

maσ

aσ cos(2σt)− sin(2σt)
.

Notice that T < THeat = π
4σ . Since a(t) ց 0 as t ր T , it is easily seen that

u(t, x) → 0 uniformly in x ∈ R. This extinction in finite time is actually true for
all initial data, as stated in the following theorem.
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Theorem 3.4 (Extinction in finite time). Let u0 ≥ 0, with
∫

R
u0 = 1. Let T be

given by (3.1).

(i) If T = THeat, then in (1.1), both u(t, x) and f(t) exist on [0, THeat). Typi-

cally, u ∈ L∞
loc((0, T

Heat)× R), f ∈ L∞
loc(0, T

Heat), and
∫

R
u(t, x)dx = 1 for

all 0 ≤ t < THeat. Moreover, extinction at time THeat occurs, that is

u(t, x) = 0, ∀t > THeat, ∀x ∈ R.

(ii) If 0 < T < THeat, then extinction in finite time occurs:

u(t, x) = 0, ∀t > T, ∀x ∈ R.

(iii) If T = 0, then u(t, x) is defined for no t > 0.

3.2. Proofs.

Proof of Theorem 3.1. Like in the previous section, we can reduce (1.1) to the heat
equation by combining two changes of unknown function. First, we have

(3.8) u(t, x) =
v(t, x)

1 +

∫ t

0

∫

R

x2v(s, x) dxds

,

where v(t, x) solves the Cauchy problem

(3.9) ∂tv = σ2∂xxv + x2v, t > 0, x ∈ R; v(0, x) = u0(x).

Notice that relation (3.8) is valid as long as f(t) remains finite. Next, we have

(3.10) v(t, x) =
1

√

cos(2σt)
e

tan(2σt)
2σ x2

w

(

tan(2σt)

2σ
,

x

σ cos(2σt)

)

,

where w(t, x) solves the heat equation

(3.11) ∂tw = ∂xxw, t > 0, x ∈ R; w(0, x) = u0(σx).

Notice that relation (3.10) is valid for 0 < t < THeat = π
4σ . Combining (3.8), (3.10)

and the integral expression of w via the heat kernel, we end up with

(3.12) u(t, x) =

√

σ
2π

1√
sin(2σt)

e
tan(2σt)

2σ x2

∫

R

e−
σ

2 tan(2σt) (
x

σ cos(2σt)
−y)2u0(σy) dy

1 + I(t)
,

where

I(t) :=

∫ t

0

∫

R

∫

R

x2
√

σ

2π

1
√

sin(2σs)
e

tan(2σs)
2σ x2

e−
σ

2 tan(2σs) (
x

σ cos(2σs)
−y)2u0(σy) dydxds.

Let us compute I(t). Using Fubini’s theorem, we first compute the integral with
respect to x. Using elementary algebra (canonical form in particular), we get

∫

R

x2e
tan(2σs)

2σ x2

e−
σ

2 tan(2σs) (
x

σ cos(2σs)
−y)2 dx

= e
σ tan(2σs)

2 y2

∫

R

x2e−
1

2σ tan(2σs) (x−
σy

cos(2σs) )
2

dx

= e
σ tan(2σs)

2 y2√

2πσ tan(2σs)

(

σ tan(2σs) +
σ2y2

(cos(2σs))2

)

(3.13)
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where we have used
∫

R
z2e−

a
2 (z−θ)2dz = 1

a

√

2π
a + θ2

√

2π
a . Next, we pursue the

computation of I(t) and, integrating with respect to s, we find
∫ t

0

√

σ

2π

1
√

sin(2σs)
e

σ tan(2σs)
2 y2√

2πσ tan(2σs)

(

σ tan(2σs) +
σ2y2

(cos(2σs))2

)

ds

= σ

∫ t

0

e−
1
2 ln(cos(2σs))e

σ tan(2σs)
2 y2

(

σ tan(2σs) +
σ2y2

(cos(2σs))2

)

ds

= σ

∫ t

0

d

ds

(

e−
1
2 ln(cos(2σs))e

σ tan(2σs)
2 y2

)

ds

= σ

(

1
√

cos(2σt)
e

σ tan(2σt)
2 y2 − 1

)

.

Finally, we integrate with respect to y and, using
∫

R
u0 = 1, get

I(t) =

∫

R

σ

(

1
√

cos(2σt)
e

σ tan(2σt)
2 y2 − 1

)

u0(σy) dy

=
1

√

cos(2σt)

∫

R

e
tan(2σt)

2σ z2

u0(z) dz − 1.

Plugging this in the denominator of (3.12), and using the change of variable z = σy
in the numerator of (3.12), we get (3.2), from which (3.3) easily follows. Using
(3.3), Fubini theorem and the same computation as in (3.13), we obtain (3.4).
Theorem 3.1 is proved. �

Proof of Proposition 3.3. The proof is rather similar to that of Proposition 2.2. It
consists in plugging the Gaussian data (3.5) into formula (3.2) and using elementary
algebra (canonical form). Details are omitted. �

Proof of Theorem 3.4. Let us assume T = THeat and prove (i). Since
∫

R

e
tan(2σt)

2σ y2

u0(y)dy <∞ for all 0 < t < THeat,

we have
∫

R
e

tan(2σt)
2σ y2

y2u0(y) dy <∞ for all 0 < t < THeat, and therefore both (3.4)

and (3.3) are meaningful for all 0 < t < THeat. It follows from (3.3) that

0 ≤ u(t, x) ≤ 1
√

2πσ tan(2σt)
,

and the right hand side goes to zero as t ր THeat.
Let us assume 0 < T < THeat and prove (ii). It follows from (3.2) that

0 ≤ u(t, x) ≤ e
tan(2σt)

2σ x2

√

2πσ tan(2σt)

∫

R

e
tan(2σt)

2σ y2

u0(y) dy

,

and, the right hand side goes to zero as tր T < THeat.
Finally, assume T = 0 and prove (iii). Supposing by contradiction that there is a

τ > 0 such that f is finite on [0, τ ], then (3.2) would hold true. On the other hand,
the assumption T = 0, along with (3.2), would imply u(t, x) = 0 for all t ∈ (0, τ ]
and all x ∈ R, while we know that so long as f is finite, we have

∫

R
u(t, x)dx = 1,

hence a contradiction. �
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12. Sepideh Mirrahimi, Benôıt Perthame, and Joe Yuichiro Wakano, Evolution of species trait

through resource competition, J. Math. Biol. 64 (2012), no. 7, 1189–1223. MR 2915555
13. U. Niederer, The maximal kinematical invariance groups of the harmonic oscillator, Helv.

Phys. Acta 46 (1973), 191–200.

14. , The maximal kinematical invariance groups of Schrödinger equations with arbitrary

potentials, Helv. Phys. Acta 47 (1974), 167–172.
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lag, Basel, 2007. MR 2270822 (2007j:35004)
16. W. Thirring, A course in mathematical physics. Vol. 3, Springer-Verlag, New York, 1981,

Quantum mechanics of atoms and molecules, Translated from the German by Evans M. Har-
rell, Lecture Notes in Physics, 141. MR 84m:81006

17. Lev S. Tsimring, Herbert Levine, and David A. Kessler, RNA Virus Evolution via a Fitness-

Space Model, Phys. Rev. Lett. 76 (1996), no. 23, 4440–4443.
18. Mario Veruete, Asymptotic analysis of equations modelling evolutionary branching, in prepa-

ration.

CNRS & Univ. Montpellier, IMAG, CC 051, 34095 Montpellier, France

E-mail address: matthieu.alfaro@umontpellier.fr

E-mail address: remi.carles@math.cnrs.fr

http://doi.org/10.1534/genetics.116.187385

	1. Introduction
	1.1. The case f(x)=x
	1.2. The quadratic cases
	1.3. Heat vs. Schrödinger

	2. The case f(x)=-x2: convergence to a universal Gaussian
	2.1. Results
	2.2. Proofs

	3. The case f(x)=x2: systematic extinction in finite time 
	3.1. Results
	3.2. Proofs

	References

