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SUMMARY

This paper concerns the simulation of a class of nonlineatimaous-time systems under a set of initial
conditions described by an ellipsoid. By getting inspaatirom Lyapunov theory, we show that it is possible
to derive a procedure allowing the computation of a boundiltigsoidal envelope which will enclose all
the states that can be reached from the set of initial camditiThis numerical procedure is based on convex
optimisation, and it makes it possible to set a guaranteed aund on the evolution of the state of the
system for all the possible initial conditions. At the endfut paper, we show an application of the method
through an academic example.

KEY WORDS: Systematic or robust simulation; rational sys$e linear matrix inequalities; sum of
squares

1. INTRODUCTION

Simulation is a tool that is quite often used in the industrgiider to validate the functionality and
safety of a system. As the systems are often supposed to wasveral different situations, it is
important to run simulations which can validate them fotlad possible cases, to make sure that no
special condition may cause malfunctioning or danger. Afral approach to this problem is the
use of systematic simulation, which consists ideally inctfirey the behaviour of the system with
respect to all the possible initial conditions and for a# thalues of the non-constant parameters;
however, this is strictly impossible if initial conditiorsd parameter values are assumed to belong
to adense set, as it would require running an infinite numb&nuulations. This leads to approaches
based on selected tests or Monte Carlo meth@ljof approaches based on random exploration
[2], or sensitivity analysisd]. All of these methods unfortunately have the shortcomindpeing a
sort of “statistical” validation, in the sense that they di offer a hard bound on the evolution of
the system, if not for a computational complexity going tbriity. Another possibility consists in
evaluating the effect of the initial condition with respéatan output index that is an indicator of
such effects, but this approach does not establish preciseds on each state variablg p, 6].

In this article we present a radically different approacth® problem, based on the so called
“robust simulation” or simulation of sets[8, 9, 10, 11], which offers instead mathematically
guaranteed bounds for the evolution of dynamical systenierdas almost all such existing works
approach the problem of systematic simulation for disetiete systems only, we focus here on
continuous-time systemnls fact, the necessity of working in discrete-time can bésadivantage, as
it requires a discretisation of the original physical equa (usually, differential equations), which
can introduce approximation errors in itself.

*Correspondence to: Laboratoire Ampere, UMR CNRS 5005AINSLyon, Université de Lyon, F-69621 Villeurbanne,
France
fe-mail: paolo.massioni@insa-lyon.fr
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The specific method developed in this paper focuses on a afassnlinear systems, and it is
based on the search of a Lyapunov-like function which allbasnding the state vector within an
ellipsoid that evolves with time. The method can work onetihtial equations with polynomial or
rational expressions thanks to the use of the sum of squaf@S)(relaxation]2], which leads to
efficiently solvable convex optimisation problems in thenficof linear matrix inequalities (LMIs)
[13]. This approach can subsequently be considered “safe’he®volution of all the possible
trajectories of the state are hardly bounded, but on the idned it is conservative, i.e. the bounds
are not necessarily tight.

Robust simulation is a problem that shares several sirtidarivith many works on stability,
reachability and search for regions of attractions of m@dr dynamical systems, like those based
on moments14, 15, 16] or Koopman operatorsl[/]. We would like to stress here that the goal of
this paper is to find the envelope containing the stdteach time instantand not to understand
whether it is stable or whether it will eventually convergetset.

The paper is organised as follows. Sectidncontains the preliminaries and the problem
formulation. Section8 and4 provide background on the two main tools used throughoupéper,
whereas the two main theoretical results can then be fouBddtion5 and Sectior, in the form of
theorems. These results are then applied to an exampletio®éand then conclusions are drawn
in Section8.

2. PRELIMINARIES

2.1. Notation

We denote byR the set of real numbers, and By *™ the set of reah x m matrices A" indicates
the transpose of a matrix, 7, is the identity matrix of size.. The notatiord > 0 (A < 0) indicates
that all the eigenvalues of the symmetric matdbare positive (negative) or equal to zero, whereas

A > 0 (4 < 0) indicates that all such eigenvalues are strictly posithegative). The symb<{z>

indicates the binomial coefficient, for which we have

(1) = =

We also definef(P,c) as the ellipsoid of dimension with matrix P € R**", P =PT =0
and centered ir € R", i.e. (P, c) = {x € R"|(z — ¢) " P(z — ¢) < 1}. At last, ® indicates the
Kronecker product, and we employ the symboto complete symmetric matrix expressions
avoiding repetitions.

2.2. Problem formulation

As stated in the introduction, we are interested in the gnobbf finding ellipsoidal hard bounds
for the evolution of the state of dynamical continuous-tisystem. Namely, assume we have a
differential equation

i(t) = f(z(t)) 1)
wherez € R™ is the state vector, € R it the time andf is a generic (nonlinear) function. Let us
assume that the initial state vector is bound to belong teenggllipsoid, i.exz(0) € £(P(0), ¢(0)),
with P(0), ¢(0) given. The general problem we are interested in is to find thallsst possible
ellipsoid £(P(t), c¢(t)) such thate(t) € E(P(t),c(t)) for t € [0,1], i.e. to find functionsP(¢) and
c(t)) defining such an ellipsoid, withy > 0 given. In this article, we propose a possible approach
to such problem foy belonging to two different classes.

Problem 1
Consider the linear time-invariant system

i(t) = Ax(t) @)
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with A € R™*", 2(0) € £(P(0),¢(0))), i.e. (z(0) — ¢(0)) T P(0)(z(0) — ¢(0)) < 1, for given ¢(0)
andP(0) > 0. Find the smallest ellipsoiél( P(t), c(t)) with P(t), ¢(t) such that

(2(t) — e(t)) TP()(a(t) — c(t) <1, fort € [0,7]. 3)

This problem can also be extended to rational systems, whossnics can be described as

i(t) = % ()

with z = [z, 2, ..., 7,] ", N(z) € R" a vector of polynomials of degree up#te,, andd(z) € R
a polynomial of degree up tom, — 2. If we define the vector € R? which contains all the
possible monomials obtainable fromfrom degree) up tom, (for example, ifn =2, m, = 2,
theny = [z1, 2, 27, z122, 23, 1]7), with

o= ("), )

then we have that any polynomial in the variables of to degreen, can be formulated as a linear
function of x; so namely we have
N(z) = F'x(t), (6)

with F' € R**", So, the second class of problems that we consider is fotatuées follows.

Problem 2

Consider the rational systend)(where F' € R?*" is defined in ) and x(¢) € R? expresses
all the possible monomials af(¢) up to degreem,, with z(0) € £(P(0),¢(0)), i.e. (z(0) —
c(0))T P(0)(z(0) — ¢(0)) < 1, for givenc(0) andP(0) > 0. Find the smallest ellipsoifl( P(t), c(t))
with P(t), ¢(t) such that

(2(t) — ) TP®)(z(t) — c(t)) <1, forte[0,ty]. @)

Notice that obviously Problerhis a special case of Probletnwe have chosen to separate the
two cases in order to be able to tackle the simpler Proldldirst, and then extend the results to
Problem2. This greatly simplifies the reading and understanding isfghper.

Notice also that we do not assume any special stability ptigsefor @) or (4), i.e. the systems
we are interested in simulating can be stable or unstableiteless, the approach that we follow
for finding a possible solution for this problem is inspiredltyapunov’s work on the stability of
systems. We recall the relevant results, and show how t@&xpem, in the next section.

3. LYAPUNOV STABILITY AND PSEUDO-LYAPUNOV FUNCTIONS

We first restrict to a linear time-invariant system asd)) &nd we define the quadratic forvf(z(t))
as
V(x(t)) = z(t)" Pa(t), 8)

whereP = PT ¢ R™*", According to Lyapunov’s theoryl[], system P) is asymptotically stable
iff there existsV (z(¢)) such that

V(z(t)) >0
{ Vi) <o 070 ®)

which is equivalent to the existence ofa= P’ such that

P=0
{ ATP 4+ PA <0. (10)
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In this caseV (z(t)) is called a Lyapunov function. There is an interesting jmtetation for this
approach: besides asymptotic stability, the existence Bf satisfying (L0) allows defining the
class of ellipsoidal setdg = {z|V(z) < 8} whose boundaries (also known as level curves) can
only be crossed by a state trajectory in an inward motiorgesin(z(t)) < 0 for an z following

(1). This means that, if at a given, we have that:(t;) € £(P,0), i.e. z(t;) " Pz(t;) < 1, then
z(t)T Pa(t;) <1 for all t >¢;, i.e. z(t) will never get out of the initial ellipsoid. Moreover,
intuitively, if the value of the Lyapunov function decreastrictly with time, the state is necessarily
brought to its only value for whick (x(¢)) = 0, i.e. the origin.

We can adapt this approach to our problem by neglecting tbesséy of proving the asymptotic
stability (not our goal) and focusing on the aspect of thelleurves. As we do not require anymore
the system state to converge to the origin, we do not needsitredsing value df to drag the state
there, so we can account for just a non-positive derivativ& @:(¢)), which is enough to ensure
that the initial level curves are never crossed outwardscavealso account for a time-varying
(i.e. with direct dependence with respect to time) in orddet these level curves accommodate the
evolution of the state. These ideas let us formulate theviotig preliminary lemma, which is valid
both for stable and unstable systems.

Lemma 3
Consider the system i), with 2(0) " Py2(0) < 1. If there exists a matrix functioR (t) = P(t)" €
R™™, with P(0) = P, such that

P(t)>0
{ ATP(t) + P(DA + P(t) < 0 fort e [0, ¢y] (11)

thena(t)T P(t)x(t) < 1fort € [0, ;).

Proof
The first equation inX(1), left- and right-multiplied byxz(t), implies that the pseudo-Lyapunov
function V(z(¢),t) = z(t) " P(t)z(t) > 0, which guarantees the existence of the ellipsoids. The
second equation inl(), again left- and right-multiplied by:(t), yields < (z(t)" P(t)z(t)) <

0. By integrating with respect to time, we have thatt)" P(t)z(t) — x(0) " P(0)x(0)
Ot 4 (2(t)T P(t)z(t))dt < 0if 0 <t < ty, which implies thate(t) " P(t)z(t) < z(0)" P(0)z(0)
1.

AN

Notice that there is no loss of generality in setting theiahiime value ag = 0, as a shift or
change of coordinates in the time axis is always possible.

Lemmas3 contains the key idea which will lead to the main results &f gfaper; in fact, finding a
P(t) satisfying (L) is quite close to finding a solution to ProblénFinding such a matrix function
satisfying (L1) is quite close to a classical LMI problem, with the relevissue that the unknown
P(t) is not a constant but a function of a parameter, nameBy searching through the literature,
we can see that there are a number of similar problems witanpeter-dependent LMIs, with a
known computationally feasible solutiofd, 20, 21, 22]. For the sake of this work, we will use
a generalised version of the famous Kalman-YakubovicheR@KYP) lemma P3|, which is the
topic of the next section.

4. THE KALMAN-YAKUBOVICH-POPOV LEMMA

The Kalman-Yakubovic-Popov lemma or KYRJ is a widely celebrated result for dynamical
systems that allows turning frequency-dependent inetigginto frequency-independent ones, by
exploiting a state-space formulation. It turns out thathsacesult can be adapted and generalised
to inequalities depending on any scalar parameter. Nawelyyill use the following generalised
version of the KYP.



ROBUST SIMULATION OF CONTINUOUS-TIME SYSTEMS 5

Lemma 4Generalized KYP19])
Consider

!
= Mo+ &M, (12)
i=1

with ¢ € R! a vector of decision variables and; = M,” € Rty =1, ... 1. The quadratic
constraint

6(0) " M(€) ¢(6) < 0for 6 € [6,6] (13)
is verified if and only if there exisD = D" = 0 andG = —G ' such that
cT ~
EALCIC: ]
. _ (14)
(Lo 20 (@+BD+g ][ 1 0],
A B 0+0)D—G  —200D A B

with A ,B, C andD such that

$(0) =D+ COI(I — AOI) ™' B = 01 * [ g g } (15)
where the operatorimplicitly defined above is known as the Redheffer prodadi.|

The lemma applies as well if the signin (13) is replaced by<: in this case replace with < in
(14) as well.

Notice that the lemma above can only be applied if the unkrsavare not depending on the
paramete® (¢, in our case). So this means that this lemma cannot be apjolidd a solution
for Lemma3 as theP(t) there depends on time. This problem can be overcome by asgumi
pre-established form for the time- dependencé’(ﬁ) For example, we can assurﬁét) to be a
polynomial of degre@m, with m > 1, i.e. P(t) = 327" P, (P, = P, ,i =0,--- ,2m) (this of
course adds some conservatism, which can be progressedllmed by increasing the degree of
the polynomial). In this way, the constant teris(for i = 1, - - - , 2m) are the unknowns, anél(t)
can be explicitly expressed (notice tHatinstead is a known constant, corresponding to the initial
ellipsoid). Subsequently, any affine expressio®{n) (degree2m) or P(t) (degre€m — 1) can be
expressed in the form ofl.g), i.e. asp(t) " M (&) ¢(t) with M (¢) affine in the unknowns, with

tm L
o(t)=| D+ét1(1Aﬂ)—IBtI*[g g] (16)
I
and
A=U,®I, B= [ Z”;‘l ] ® I,
(17)

I, ~ | Zm
C—|:Z;:|®In7 D—|: 1 :|®In-
whereU; € R¥*? is a matrix containing’s in the first upper diagonal artts elsewhere, ang; € R*
is a column vector containings in all its entries.

For example, forn = 1, we have

.
tl P iP tl
P(t) = Py + Pit + Pot? = { I } { J QPol ] [ I ] (18)

IN'[ATP,+P, A PA+P, Hu] 19)

T Sy = | !
A P(t)JrP(t)AJFP(t){[] [ s ATPy+ P A+ Py
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B(t) = [ " ] . {‘ﬁ] . (20)

5. ROBUST SIMULATION: LINEAR CASE

whereP(t) = P, + 2Pt and

O NIO

Employing the tools of the two previous section, we can aravour first main result, in the form
of a theorem.

Theorem 5
Consider the continuous linear time-invariant system2n If there existsD; = D] = 0, G; =
—G), Dy =D, = 0andG, = —G, such that

,..,T ~ ~ T B
A R A i | A BT
[CTY e f I 0]"[-2Dy t;Da+Go] [T O . -
pr|MelC Pl s B | N e 22)
[t L
with  ¢(t)=| : | =D+CtI(I - At)"'B=1tI* [ g g } =S Piti, (P =
I
Pli=0,--- ,2_m), M, and M- (affine in the coefficients aP(¢)) such that
6(t) Mig(t) = —P(t), (23)
o(t) " Magp(t) = P(t) + AT P(t) + P(t)A (24)
then
2(0) " P(0)x(0) < 1= V(x(t),t) = z(t) P(t)x(t) <1, Vte[0,tf]. (25)
Proof

The direct application of Lemma (generalized KYP) means that the inequaliti2s) (and @2)
imply the ones in Lemma, for P(¢) in the chosen polynomial form. This subsequently proves the
theorem statement. O

Algorithm 6

As conditions 21) and @2) are LMIs with respect to the unknowng( . .., Poy, D1, D2, Giand
G»), we can find the solution of Probleth for ellipsoids centered in the origin, i.e. ellipsoids
E(P(t),0) containing all the points fot € [0,t;] for given P(0) = P, andm, making sure that
the end points for = ¢, are enclosed by the smallest possible ellipsoid, by maxgithe trace
of P(ty) (i.e. minimizing the sum of the semiaxes of the ellipsoidjlen@1) and @2). Such a
maximization is an optimization problem under LMI congtitaj a convex problem solvable with
standard toolsd5, 26]. Notice that the ellipsoids found in this way are not neeesstight. The
value ofm should be high enough to ensure that the polynomial matrixacaurately describe the
evolution of the system, but not too high in order to keep trmputational complexity of the LMI
low.

Remark 7
Notice also that, even if not explicitly stated in the theonreve can also search for ellipsoids not
centered in the origin. It is sufficient to extend the statgter(t) to a stater(t) = [z(t) T 1], with
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A replaced by

. [ a0 ] . 26)
An ellipsoid of matrixP defined for such a state is equivalent to an off-centerepisalid, as
T
(m—c)TP(x—c)Sl(:){alj] [—gP CTJ;CC][T}él (27)

P
This lets Theoremb to be used also for computing any ellipsoids with respechyditial condition,
not only for those centered in the origin.

6. ROBUST SIMULATION: RATIONAL CASE

Theorem5 can be extended to systems with rational dynamics, leadirggractical solution for
Problem2. In order to do so, as said previously, we make use of the tgaba which can be found
in the sum of squares (SOS) literatufe?], which basically allow relaxing polynomial problems
into linear algebra ones. As seen before, we define the vectoR” as the vector containing
all the possible monomials obtainable framfrom degree0 up to m,, allowing us to write
polynomial expressions up to degreg as a linear combination of. Moreover, it is also possible
to express polynomials up to degree,, as quadratic forms with respect{gi.e. p(z) = x' Sy,
with S = ST € Rr*», This quadratic expression of a polynomial is not unique tiuthe fact that
different products of monomials can yield the same resoiitekampler? is eitherz? times1 or a4
timesz;. This implies that there exist linearly independent slacirinesQ,, = Q, € R**?, with
k=1,...,.suchthaty" Q,x = 0. The number of such matrices is

2
) e
2 My My 2my
This implies that, for a giver, a polynomial of degre2m or less can be expressed as

plz) =x" (5 + ZWQk) X (29)

k=1

foranyy € RY, ¢ = [¢1, Yo, ... U] .
We can then formulate the theorem below, which can be usettkbet Problen®. This theorem

has the same structure of Theorémwith some important modifications.

Theorem 8

Consider the continuous time-invariant system descrilyatiddifferential equatiord), wherey (¢)
expresses all the possible monomials:@f), I is such thatz(¢) = I'x(¢) andE' € R?*™. If 1) there
existD; =D] =0,G1 = —G; , D2 =D] =0,G> = -G, , ; € R, Q € RP*? such that

~ T T
¢’ Y A |4 0] [-2D0 D+ G| [ 0

I M [CT D]+ [fl’ B * 0 i g | =0 (30)
d//T 1 U I 0 ’ —2Ds thQ + G I 0
5| M [C" D"+ |4 go . 0 i g | 20 (31)

Q4+ Z%‘Qi =0 (32)

i=1
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where
Al o% " I
¢/(t)tf*|:g/ g/:| ,
In
{1 311 "l
¢//(t) =tl % |: g” g// :| = I s
M; and M, are such that ’ -
¢'(t) Mi¢'(t) = —P(t), (33)
¢"(t) Mz () = FTP()L + T P(t)F + O(t) + 3(t) + > _ vi(£)Q (34)

=1
(the matrixM; is affine in the coefficients dP(¢), whereas the matrix/; is affine in the coefficients
of P(t), v;(t) and®(t) which is bi-linear inP(¢) andr(z)), with

o 7(x(t)) = x(t) " Qx(t), a polynomial inz(t) of degree2m,, — 2,
%(t), a polynomial matrix in ¢ of degree 2m such that x(t)"S(t)x(t) =
(x(t) T P(t)x(t))d(x(t))
e O(t), a polynomial matrix int of degree 2m such that x(t)"TO(t)x(t) = (1 -
x(t) " P(t)z () (x(t)),
o u; (t) = 22" vi it with arbitraryw; ;,
. =S Pt (P =P ,i=0,---,2m),
and 2) if
d(z(t)) > 0, Ya(t) | z(t) T P(t)z(t) < 1Vt € [0,t4], (35)
then
Va(0) | (0) T P(0)x(0) < 1= V(x(t),t) = z(t) P(t)z(t) <1, Vt€[0,tg]. (36)
Proof

The application of Lemmd to inequalities 80) and @1) implies that 83) is negative definite
and that 84) is negative semi-definite. To hav83) negative definite implies that (z(t),t) =
z(t) T P(t)z(t) > 0 as required inX1). For what concerns the negative semi-definitenes8Hf (
we multiply both sides by (¢) and then we get

()T (FTP(t)FJrFTP(t)FJr@(t)+E(t)+i vi(t)Qi> x(t) <0 (37)

In (37), the termx(t)" (3, vi(t)Q;)x(t) is a slack term that equals 0. Then, thanks to the
S-procedure (with an-varying multiplier R7)), if (1 — x(¢) " P(t)=(t)) > 0, which is what we
demand, ana(x(t)) > 0, which is implied by 82), then

N(a()) T P(t)a(t) +a(t) T P(E)N (2(1)) + (z(t) " P(t)z(t))d(x(t)) < 0. (38)
Dividing by d(x(t)), which is possible due to the condition i85}, we have

()T P(t)x(t) + z(t) T P(t)i(t) + z(t) T P(t)z(t) <0 (39)
which meang/ (z(t),t) < 0, i.e. the value of will not grow, implying (36). a

Algorithm 9

Problem2 can be solved by maximizing the trace Bft ;) with respect to the three inequalities
(30), (31) and B2), for the unknowns®y, ..., P,,,, D1,Ds,GiandG,), 2 (not a full matrix, but
structured in order to limit the degree ofxz(t)) to 2m, —2), a;, v; ;. Such a maximization
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is unfortunately not a convex optimisation problem, due He bi-linearity of the term(1 —
I'"P(t)I)7(x(t)). Nevertheless, the theorem can be used as in the previoeigithsr by deleting

the disturbing term (it is an arbitrary, conservative ckoaf 7(x(t)) = 0), or by replacing the
P(t) inside it with a guessed terrfH (¢) that overestimates the span of the state, i.e. such that
{z(t)|z(t) " P(t)x(t) < 1} C {x(t)|z(t)TH(t)z(t) < 1}. This guess can subsequently be refined
by iterating the solution. In both these cases the problecnines a convex optimization problem
under LMI constraints. Another possible approach, not@eal in this paper, is of course to try and
solve directly the bilinear matrix inequality with an appriate solver.

The condition ford(x(t)) > 0, if needed, can be verified with a sum of squares kind of
condition, i.e. by testing(x(t)) — n(z(¢))(1 — z(t) " P(t)z(t) ") > 0 for t € [0,¢;], with n(z(t)) >
0 a polynomial.

7. EXAMPLE OF APPLICATION

In order to show the effectiveness of this method, we comgidesry simple nonlinear dynamical
system from biology, namely the Lotka-Volterra model foregator-prey populations2§].
According to this model, the evolution of the populationof a species which is prey for a second
species (the predator) whose populatiomisboth interacting in a closed environment, is described
by

{ l"l = xr1 — ﬁl‘lxg (40)

x'g = (51‘1$2 — YX2

with a, 3, v,  specific constants. This model is of course quite simpld) sgveral approximations
including the fact that the populations are considered meahbers whereas they are obviously
integer.

We pick an arbitrary model witlhv = 0.13 yeart, 3 = 0.0066 year!, v = 0.20 year!, § =
0.0002 year', with an initial population 0f.000 4 100 prey and40 + 4 predators, (which we adapt
into an ellipsoidal description). We try and use AlgoritBrand Theoren8 to simulate the system
for a span ofl5 years, using Matlab with Yalmip2p] and SeDuMi R6]. We have chosem = 4,
and we have verified that it is not possible to simulate thelevhd-year interval in one single go
(i.e., solving the optimisation in Algorithr@ for ¢; = 15 years), so we have cut the interval into
smaller intervals of one year each, and propagated the aiionlat the end of each interval by
using the final result of each step as initial value for théofeing. Moreover, for each time step we
have solved two optimisation problems, as explained in Algm 9; the first optimisation problem
uses a time-constant guessidterm “wide” enough to encompass the evolution of the state fo
all t € [0,¢f], and subsequently we use ti¥¢) result of the first optimisation in order to run a
second one, using this firgt(¢) as H(¢) and refining the result (see Figut® Further iterations
would improve the result even more, but we have decided to atqust two. The choice ofx
and the length of each sub-interval has to be considered ampromise between computational
complexity and accuracy: bigger valuesand smaller time spans lead to more precision, at the cost
of slower computations. A value of too small, or a span which is too long might even lead the
optimization to fail finding a solution, as it is the case fariwe try and compute the solution over
thel5 years.

Figure2 shows the results of the complete simulation, comparedpathts from a Monte Carlo
simulation. We can see that the method effectively boundsuah points, confirming that it is
“safe”, on the other hand we can also see that the boundipgediare not tight, which is a drawback
of the method but which could be partially eased by runningeniterations at each time step.

8. CONCLUSIONS

In this paper we have shown a method which can be employedier to validate the properties of
a continuous-dynamical systems through a robust simulatioe method offers hard mathematical
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Figure 1. Lotka-Volterra model, one iteration. The bluépsk in the center is the set of initial conditions,

the black ellipse is the set enclosed by the guessed timgtaunterm#, the dark red ellipse shows the

result of the first optimisation far= ¢ ¢, whereas the bright red one shows the result of the secoma faga

t = ty. The black dots represent the values of some simulations-at; for states which were in the initial
set att = 0.
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Figure 2. Lotka-Volterra model, evolution of the state-bdimg ellipsoid over several times steps, covering

a period of15 years. The blue ellipse (first on the right) is the set of &hitionditions, the bright red ellipses

are the bounding sets at the end of each year, and the blaslskdotv the values of some Monte Carlo
simulations.

bounds but it requires solving a convex optimisation forhegsimulated time interval, which can
be computationally intensive. In any case, we believe thigtrhethod can be helpful in relevant
application, proposing a different and complementary epghn with respect to the usual Monte
Carlo approach.

Future research will focus on introducing robustness wepect to uncertainties in the model
parameters, which should be possible by using the LMI-baisedry on robust control. We are
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also interested in applying the methods to the simulatioreaf-life systems, and specifically to
aerospace systems. Another interesting approach whidtbaviéxplored is the use of Koopman
operators and their eigenfunctiods’[ 29], which might allow the search for a state transformation
that can linearise a system in the lar§€][ simplifying the simulation problem.
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