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SUMMARY

This paper concerns the simulation of a class of nonlinear continuous-time systems under a set of initial
conditions described by an ellipsoid. By getting inspiration from Lyapunov theory, we show that it is possible
to derive a procedure allowing the computation of a boundingellipsoidal envelope which will enclose all
the states that can be reached from the set of initial conditions. This numerical procedure is based on convex
optimisation, and it makes it possible to set a guaranteed hard bound on the evolution of the state of the
system for all the possible initial conditions. At the end ofthe paper, we show an application of the method
through an academic example.

KEY WORDS: Systematic or robust simulation; rational systems; linear matrix inequalities; sum of
squares

1. INTRODUCTION

Simulation is a tool that is quite often used in the industry in order to validate the functionality and
safety of a system. As the systems are often supposed to work in several different situations, it is
important to run simulations which can validate them for allthe possible cases, to make sure that no
special condition may cause malfunctioning or danger. A practical approach to this problem is the
use of systematic simulation, which consists ideally in checking the behaviour of the system with
respect to all the possible initial conditions and for all the values of the non-constant parameters;
however, this is strictly impossible if initial conditionsand parameter values are assumed to belong
to a dense set, as it would require running an infinite number of simulations. This leads to approaches
based on selected tests or Monte Carlo methods [1], or approaches based on random exploration
[2], or sensitivity analysis [3]. All of these methods unfortunately have the shortcoming on being a
sort of “statistical” validation, in the sense that they do not offer a hard bound on the evolution of
the system, if not for a computational complexity going to infinity. Another possibility consists in
evaluating the effect of the initial condition with respectto an output index that is an indicator of
such effects, but this approach does not establish precise bounds on each state variable [4, 5, 6].

In this article we present a radically different approach tothe problem, based on the so called
“robust simulation” or simulation of sets [7, 8, 9, 10, 11], which offers instead mathematically
guaranteed bounds for the evolution of dynamical systems. Whereas almost all such existing works
approach the problem of systematic simulation for discrete-time systems only, we focus here on
continuous-time systems. In fact, the necessity of working in discrete-time can be a disadvantage, as
it requires a discretisation of the original physical equations (usually, differential equations), which
can introduce approximation errors in itself.

∗Correspondence to: Laboratoire Ampère, UMR CNRS 5005, INSA de Lyon, Université de Lyon, F-69621 Villeurbanne,
France
†e-mail: paolo.massioni@insa-lyon.fr
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The specific method developed in this paper focuses on a classof nonlinear systems, and it is
based on the search of a Lyapunov-like function which allowsbounding the state vector within an
ellipsoid that evolves with time. The method can work on differential equations with polynomial or
rational expressions thanks to the use of the sum of squares (SOS) relaxation [12], which leads to
efficiently solvable convex optimisation problems in the form of linear matrix inequalities (LMIs)
[13]. This approach can subsequently be considered “safe”, as the evolution of all the possible
trajectories of the state are hardly bounded, but on the other hand it is conservative, i.e. the bounds
are not necessarily tight.

Robust simulation is a problem that shares several similarities with many works on stability,
reachability and search for regions of attractions of nonlinear dynamical systems, like those based
on moments [14, 15, 16] or Koopman operators [17]. We would like to stress here that the goal of
this paper is to find the envelope containing the stateat each time instant, and not to understand
whether it is stable or whether it will eventually converge to a set.

The paper is organised as follows. Section2 contains the preliminaries and the problem
formulation. Sections3 and4 provide background on the two main tools used throughout thepaper,
whereas the two main theoretical results can then be found inSection5 and Section6, in the form of
theorems. These results are then applied to an example in Section 7 and then conclusions are drawn
in Section8.

2. PRELIMINARIES

2.1. Notation

We denote byR the set of real numbers, and byRn×m the set of realn×m matrices.A⊤ indicates
the transpose of a matrixA, In is the identity matrix of sizen. The notationA � 0 (A � 0) indicates
that all the eigenvalues of the symmetric matrixA are positive (negative) or equal to zero, whereas

A ≻ 0 (A ≺ 0) indicates that all such eigenvalues are strictly positive(negative). The symbol

(
n

k

)

indicates the binomial coefficient, for which we have
(
n

k

)

=
n!

k!(n− k)!
.

We also defineE(P, c) as the ellipsoid of dimensionn with matrix P ∈ R
n×n, P = P⊤ ≻ 0

and centered inc ∈ R
n, i.e. E(P, c) = {x ∈ R

n | (x− c)⊤P (x− c) 6 1}. At last,⊗ indicates the
Kronecker product, and we employ the symbol∗ to complete symmetric matrix expressions
avoiding repetitions.

2.2. Problem formulation

As stated in the introduction, we are interested in the problem of finding ellipsoidal hard bounds
for the evolution of the state of dynamical continuous-timesystem. Namely, assume we have a
differential equation

ẋ(t) = f(x(t)) (1)

wherex ∈ R
n is the state vector,t ∈ R it the time andf is a generic (nonlinear) function. Let us

assume that the initial state vector is bound to belong to a given ellipsoid, i.e.x(0) ∈ E(P (0), c(0)),
with P (0), c(0) given. The general problem we are interested in is to find the smallest possible
ellipsoidE(P (t), c(t)) such thatx(t) ∈ E(P (t), c(t)) for t ∈ [0, tf ], i.e. to find functionsP (t) and
c(t)) defining such an ellipsoid, withtf > 0 given. In this article, we propose a possible approach
to such problem forf belonging to two different classes.

Problem 1
Consider the linear time-invariant system

ẋ(t) = Ax(t) (2)
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with A ∈ R
n×n, x(0) ∈ E(P (0), c(0))), i.e. (x(0)− c(0))⊤P (0)(x(0)− c(0)) 6 1, for given c(0)

andP (0) ≻ 0. Find the smallest ellipsoidE(P (t), c(t)) with P (t), c(t) such that

(x(t) − c(t))⊤P (t)(x(t) − c(t)) 6 1, for t ∈ [0, tf ]. (3)

This problem can also be extended to rational systems, whosedynamics can be described as

ẋ(t) =
N(x)

d(x)
, (4)

with x = [x1, x2, . . . , xn]
⊤,N(x) ∈ R

n a vector of polynomials of degree up tomx, andd(x) ∈ R

a polynomial of degree up to2mx − 2. If we define the vectorχ ∈ R
ρ which contains all the

possible monomials obtainable fromx from degree0 up tomx (for example, ifn = 2, mx = 2,
thenχ = [x1, x2, x

2

1
, x1x2, x

2

2
, 1]⊤), with

ρ =

(
n+mx

n

)

. (5)

then we have that any polynomial in the variables ofx up to degreemx can be formulated as a linear
function ofχ; so namely we have

N(x) = F⊤χ(t), (6)

with F ∈ R
ρ×n. So, the second class of problems that we consider is formulated as follows.

Problem 2
Consider the rational system (4) where F ∈ R

ρ×n is defined in (6) and χ(t) ∈ R
ρ expresses

all the possible monomials ofx(t) up to degreemx, with x(0) ∈ E(P (0), c(0)), i.e. (x(0)−
c(0))TP (0)(x(0)− c(0)) 6 1, for givenc(0) andP (0) ≻ 0. Find the smallest ellipsoidE(P (t), c(t))
with P (t), c(t) such that

(x(t) − c(t))⊤P (t)(x(t) − c(t)) 6 1, for t ∈ [0, tf ]. (7)

Notice that obviously Problem1 is a special case of Problem2; we have chosen to separate the
two cases in order to be able to tackle the simpler Problem1 first, and then extend the results to
Problem2. This greatly simplifies the reading and understanding of this paper.

Notice also that we do not assume any special stability properties for (2) or (4), i.e. the systems
we are interested in simulating can be stable or unstable. Nevertheless, the approach that we follow
for finding a possible solution for this problem is inspired by Lyapunov’s work on the stability of
systems. We recall the relevant results, and show how to exploit them, in the next section.

3. LYAPUNOV STABILITY AND PSEUDO-LYAPUNOV FUNCTIONS

We first restrict to a linear time-invariant system as in (2), and we define the quadratic formV (x(t))
as

V (x(t)) = x(t)TPx(t), (8)

whereP = P⊤ ∈ R
n×n. According to Lyapunov’s theory [18], system (2) is asymptotically stable

iff there existsV (x(t)) such that
{
V (x(t)) > 0

V̇ (x(t)) < 0
∀x 6= 0 (9)

which is equivalent to the existence of aP = PT such that
{
P ≻ 0
ATP + PA ≺ 0.

(10)
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In this caseV (x(t)) is called a Lyapunov function. There is an interesting interpretation for this
approach: besides asymptotic stability, the existence of aP satisfying (10) allows defining the
class of ellipsoidal setsϑβ = {x|V (x) 6 β} whose boundaries (also known as level curves) can
only be crossed by a state trajectory in an inward motion, since V̇ (x(t)) < 0 for an x following
(1). This means that, if at a giventi, we have thatx(ti) ∈ E(P, 0), i.e. x(ti)⊤Px(ti) 6 1, then
x(t)⊤Px(ti) 6 1 for all t > ti, i.e. x(t) will never get out of the initial ellipsoid. Moreover,
intuitively, if the value of the Lyapunov function decreases strictly with time, the state is necessarily
brought to its only value for whichV (x(t)) = 0, i.e. the origin.

We can adapt this approach to our problem by neglecting the necessity of proving the asymptotic
stability (not our goal) and focusing on the aspect of the level curves. As we do not require anymore
the system state to converge to the origin, we do not need the decreasing value ofV to drag the state
there, so we can account for just a non-positive derivative of V (x(t)), which is enough to ensure
that the initial level curves are never crossed outwards; wecan also account for a time-varying̃V
(i.e. with direct dependence with respect to time) in order to let these level curves accommodate the
evolution of the state. These ideas let us formulate the following preliminary lemma, which is valid
both for stable and unstable systems.

Lemma 3
Consider the system in (2), with x(0)⊤P0x(0) 6 1. If there exists a matrix functionP (t) = P (t)⊤ ∈
R

n×n, with P (0) = P0, such that

{
P (t) ≻ 0

A⊤P (t) + P (t)A+ Ṗ (t) � 0
for t ∈ [0, tf ] (11)

thenx(t)⊤P (t)x(t) 6 1 for t ∈ [0, tf ].

Proof
The first equation in (11), left- and right-multiplied byx(t), implies that the pseudo-Lyapunov
function Ṽ (x(t), t) = x(t)⊤P (t)x(t) > 0, which guarantees the existence of the ellipsoids. The
second equation in (11), again left- and right-multiplied byx(t), yields d

dt
(x(t)⊤P (t)x(t)) 6

0. By integrating with respect to time, we have thatx(t)⊤P (t)x(t) − x(0)⊤P (0)x(0) =
∫ t

0

d
dt
(x(t)⊤P (t)x(t))dt 6 0 if 0 6 t 6 tf , which implies thatx(t)⊤P (t)x(t) 6 x(0)⊤P (0)x(0) 6

1.

Notice that there is no loss of generality in setting the initial time value ast = 0, as a shift or
change of coordinates in the time axis is always possible.

Lemma3 contains the key idea which will lead to the main results of this paper; in fact, finding a
P (t) satisfying (11) is quite close to finding a solution to Problem1. Finding such a matrix function
satisfying (11) is quite close to a classical LMI problem, with the relevantissue that the unknown
P (t) is not a constant but a function of a parameter, namelyt. By searching through the literature,
we can see that there are a number of similar problems with parameter-dependent LMIs, with a
known computationally feasible solution [19, 20, 21, 22]. For the sake of this work, we will use
a generalised version of the famous Kalman-Yakubovich-Popov (KYP) lemma [23], which is the
topic of the next section.

4. THE KALMAN-YAKUBOVICH-POPOV LEMMA

The Kalman-Yakubovic-Popov lemma or KYP [23] is a widely celebrated result for dynamical
systems that allows turning frequency-dependent inequalities into frequency-independent ones, by
exploiting a state-space formulation. It turns out that such a result can be adapted and generalised
to inequalities depending on any scalar parameter. Namely,we will use the following generalised
version of the KYP.
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Lemma 4(Generalized KYP [19])
Consider

M(ξ) =M0 +

l∑

i=1

ξiMi, (12)

with ξ ∈ R
l a vector of decision variables andMi =M⊤

i ∈ R
nM×nM , i = 1, ..., l. The quadratic

constraint
φ(θ)

⊤
M(ξ) φ(θ) ≺ 0 for θ ∈ [θ, θ] (13)

is verified if and only if there existD = D⊤ ≻ 0 andG = −G⊤ such that
[
C̃⊤

D̃⊤

]

M(ξ)
[
C̃ D̃

]

+

[
I 0

Ã B̃

]⊤ [
−2D (θ + θ)D + G

(θ + θ)D − G −2θθD

] [
I 0

Ã B̃

]

≺ 0

(14)

with Ã ,B̃, C̃ andD̃ such that

φ(θ) = D̃ + C̃θI(I − ÃθI)−1B̃ = θI ⋆

[
Ã B̃

C̃ D̃

]

, (15)

where the operator⋆ implicitly defined above is known as the Redheffer product [24].
The lemma applies as well if the sign≺ in (13) is replaced by�: in this case replace≺ with � in

(14) as well.

Notice that the lemma above can only be applied if the unknowns ξ are not depending on the
parameterθ (t, in our case). So this means that this lemma cannot be appliedto find a solution
for Lemma3 as theP (t) there depends on time. This problem can be overcome by assuming a
pre-established form for the time-dependence ofP (t). For example, we can assumeP (t) to be a
polynomial of degree2m, with m > 1, i.e. P (t) =

∑
2m

i=0
Pit

i, (Pi = P⊤

i , i = 0, · · · , 2m) (this of
course adds some conservatism, which can be progressively reduced by increasing the degree of
the polynomial). In this way, the constant termsPi (for i = 1, · · · , 2m) are the unknowns, anḋP (t)
can be explicitly expressed (notice thatP0 instead is a known constant, corresponding to the initial
ellipsoid). Subsequently, any affine expression inP (t) (degree2m) or Ṗ (t) (degree2m− 1) can be
expressed in the form of (13), i.e. asφ(t)⊤M(ξ)φ(t) with M(ξ) affine in the unknownsξ, with

φ(t) =






tmI
...
I




 = D̃ + C̃tI(I − ÃtI)−1B̃ = tI ⋆

[
Ã B̃

C̃ D̃

]

(16)

and

Ã = Um ⊗ In, B̃ =

[
zm−1

1

]

⊗ In,

C̃ =

[
Im
z⊤m

]

⊗ In, D̃ =

[
zm
1

]

⊗ In.

(17)

whereUi ∈ R
i×i is a matrix containing1’s in the first upper diagonal and0’s elsewhere, andzi ∈ R

i

is a column vector containing0’s in all its entries.
For example, form = 1, we have

P (t) = P0 + P1t+ P2t
2 =

[
tI

I

]⊤ [
P2

1

2
P1

∗ P0

] [
tI

I

]

(18)

A⊤P (t) + P (t)A+ Ṗ (t)=

[
tI

I

]⊤[
A⊤P2+P2A P1A+P2

∗ A⊤P0+P0A+ P1

][
tI

I

]

(19)
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whereṖ (t) = P1 + 2P2t and

φ(t) =

[
tI

I

]

= tI ⋆





0 I

I 0
0 I



 . (20)

5. ROBUST SIMULATION: LINEAR CASE

Employing the tools of the two previous section, we can arrive at our first main result, in the form
of a theorem.

Theorem 5
Consider the continuous linear time-invariant system in (2). If there existsD1 = D⊤

1
≻ 0, G1 =

−G⊤
1

, D2 = D⊤
2
≻ 0 andG2 = −G⊤

2
such that

[
C̃⊤

D̃⊤

]

M1

[
C̃ D̃

]
+

[
I 0

Ã B̃

]⊤ [
−2D1 tfD1 + G1

∗ 0

] [
I 0

Ã B̃

]

≺ 0 (21)

[
C̃⊤

D̃⊤

]

M2

[
C̃ D̃

]
+

[
I 0

Ã B̃

]⊤ [
−2D2 tfD2 + G2

∗ 0

] [
I 0

Ã B̃

]

�0 (22)

with φ(t) =






tmI
...
I




 = D̃ + C̃tI(I − ÃtI)−1B̃ = tI ⋆

[
Ã B̃

C̃ D̃

]

, P (t) =
∑

2m

i=0
Pit

i, (Pi =

P⊤

i , i = 0, · · · , 2m),M1 andM2 (affine in the coefficients ofP (t)) such that

φ(t)
⊤
M1φ(t) = −P (t), (23)

φ(t)⊤M2φ(t) = Ṗ (t) +A⊤P (t) + P (t)A (24)

then
x(0)⊤P (0)x(0) ≤ 1 ⇒ Ṽ (x(t), t) = x(t)⊤P (t)x(t) 6 1, ∀t ∈ [0, tf ]. (25)

Proof
The direct application of Lemma4 (generalized KYP) means that the inequalities (21) and (22)
imply the ones in Lemma3, for P (t) in the chosen polynomial form. This subsequently proves the
theorem statement.

Algorithm 6
As conditions (21) and (22) are LMIs with respect to the unknowns (P1, . . . , P2m, D1,D2,G1and
G2), we can find the solution of Problem1 for ellipsoids centered in the origin, i.e. ellipsoids
E(P (t), 0) containing all the points fort ∈ [0, tf ] for givenP (0) = P0 andm, making sure that
the end points fort = tf are enclosed by the smallest possible ellipsoid, by maximizing the trace
of P (tf ) (i.e. minimizing the sum of the semiaxes of the ellipsoid) under (21) and (22). Such a
maximization is an optimization problem under LMI constraints, a convex problem solvable with
standard tools [25, 26]. Notice that the ellipsoids found in this way are not necessarily tight. The
value ofm should be high enough to ensure that the polynomial matrix can accurately describe the
evolution of the system, but not too high in order to keep the computational complexity of the LMI
low.

Remark 7
Notice also that, even if not explicitly stated in the theorem, we can also search for ellipsoids not
centered in the origin. It is sufficient to extend the state vectorx(t) to a statex(t) = [x(t)⊤ 1]⊤, with
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A replaced by

A =

[
A 0
0 0

]

. (26)

An ellipsoid of matrixP defined for such a state is equivalent to an off-centered ellipsoid, as

(x− c)⊤P (x− c) 6 1 ⇔

[
x

1

]⊤ [
P −Pc

−c⊤P c⊤Pc

]

︸ ︷︷ ︸

P

[
x

1

]

6 1. (27)

This lets Theorem5 to be used also for computing any ellipsoids with respect to any initial condition,
not only for those centered in the origin.

6. ROBUST SIMULATION: RATIONAL CASE

Theorem5 can be extended to systems with rational dynamics, leading to a practical solution for
Problem2. In order to do so, as said previously, we make use of the techniques which can be found
in the sum of squares (SOS) literature [12], which basically allow relaxing polynomial problems
into linear algebra ones. As seen before, we define the vectorχ ∈ R

ρ as the vector containing
all the possible monomials obtainable fromx from degree0 up to mx, allowing us to write
polynomial expressions up to degreemx as a linear combination ofχ. Moreover, it is also possible
to express polynomials up to degree2mx as quadratic forms with respect toχ, i.e. p(x) = χ⊤Sχ,
with S = S⊤ ∈ R

ρ×ρ. This quadratic expression of a polynomial is not unique, due to the fact that
different products of monomials can yield the same result, for examplex2

1
is eitherx2

1
times1 or x1

timesx1. This implies that there exist linearly independent slack matricesQk = Q⊤

k ∈ R
ρ×ρ, with

k = 1, . . . , ι such thatχ⊤Qkχ = 0. The number of such matrices is

ι =
1

2

((
mx + n

mx

)2

+

(
mx + n

mx

))

−

(
n+ 2mx

2mx

)

. (28)

This implies that, for a givenS, a polynomial of degree2m or less can be expressed as

p(x) = χ⊤

(

S +

ι∑

k=1

ψkQk

)

χ (29)

for anyψ ∈ R
ι, ψ = [ψ1, ψ2, . . . ψι]

⊤.
We can then formulate the theorem below, which can be used to tackle Problem2. This theorem

has the same structure of Theorem5 with some important modifications.

Theorem 8
Consider the continuous time-invariant system described by the differential equation (4), whereχ(t)
expresses all the possible monomials ofx(t), Γ is such thatx(t) = Γχ(t) andF ∈ R

ρ×n. If 1) there
existD1 = D⊤

1
≻ 0, G1 = −G⊤

1
, D2 = D⊤

2
≻ 0, G2 = −G⊤

2
, αi ∈ R

ι, Ω ∈ R
ρ×ρ such that

[

C̃′
⊤

D̃′
⊤

]

M1

[
C̃′ D̃′

]
+

[
I 0

Ã′ B̃′

]⊤ [
−2D1 tfD1 + G1

∗ 0

] [
I 0

Ã′ B̃′

]

≺0, (30)

[

C̃′′
⊤

D̃′′
⊤

]

M2

[
C̃′′ D̃′′

]
+

[
I 0

Ã′′ B̃′′

]⊤ [
−2D2 tfD2 + G2

∗ 0

] [
I 0

Ã′′ B̃′′

]

�0, (31)

Ω+

ι∑

i=1

αiQi � 0 (32)
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where

φ′(t) = tI ⋆

[
Ã′ B̃′

C̃′ D̃′

]

=






tmIn
...
In




,

φ′′(t) = tI ⋆

[
Ã′′ B̃′′

C̃′′ D̃′′

]

=






tmIρ
...
Iρ




,

M1 andM2 are such that
φ′(t)

⊤
M1φ

′(t) = −P (t), (33)

φ′′(t)
⊤
M2φ

′′(t) = F⊤P (t)Γ + Γ⊤P (t)F +Θ(t) + Σ(t) +

ι∑

i=1

vi(t)Qi (34)

(the matrixM1 is affine in the coefficients ofP (t), whereas the matrixM2 is affine in the coefficients
of P (t), vi(t) andΘ(t) which is bi-linear inP (t) andτ(x)), with

• τ(x(t)) = χ(t)⊤Ωχ(t), a polynomial inx(t) of degree2mx − 2,
• Σ(t), a polynomial matrix in t of degree 2m such that χ(t)⊤Σ(t)χ(t) =
(x(t)⊤Ṗ (t)x(t))d(x(t))

• Θ(t), a polynomial matrix in t of degree 2m such that χ(t)⊤Θ(t)χ(t) = (1−
x(t)⊤P (t)x(t))τ(x(t)),

• vi(t) =
∑

2m

j=0
vi,jt

j , with arbitraryvi,j ,

• P (t) =
∑

2m

i=0
Pit

i, (Pi = P⊤

i , i = 0, · · · , 2m),

and 2) if
d(x(t)) > 0, ∀x(t) | x(t)⊤P (t)x(t) 6 1 ∀t ∈ [0, tf ], (35)

then
∀x(0) | x(0)⊤P (0)x(0) ≤ 1 ⇒ Ṽ (x(t), t) = x(t)⊤P (t)x(t) ≤ 1, ∀t ∈ [0, tf ]. (36)

Proof
The application of Lemma4 to inequalities (30) and (31) implies that (33) is negative definite
and that (34) is negative semi-definite. To have (33) negative definite implies that̃V (x(t), t) =
x(t)⊤P (t)x(t) > 0 as required in (11). For what concerns the negative semi-definiteness of (31),
we multiply both sides byχ(t) and then we get

χ(t)⊤

(

F⊤P (t)Γ+Γ⊤P (t)F+Θ(t)+Σ(t)+

ι∑

i=1

vi(t)Qi

)

χ(t) 6 0 (37)

In (37), the termχ(t)⊤(
∑ι

i=1
vi(t)Qi)χ(t) is a slack term that equals 0. Then, thanks to the

S-procedure (with anx-varying multiplier [27]), if (1− x(t)⊤P (t)x(t)) ≥ 0, which is what we
demand, andτ(x(t)) ≥ 0, which is implied by (32), then

N(x(t))⊤P (t)x(t) + x(t)⊤P (t)N(x(t)) + (x(t)⊤Ṗ (t)x(t))d(x(t)) 6 0. (38)

Dividing by d(x(t)), which is possible due to the condition in (35), we have

ẋ(t)⊤P (t)x(t) + x(t)⊤P (t)ẋ(t) + x(t)⊤Ṗ (t)x(t) 6 0 (39)

which meansV̇ (x(t), t) 6 0, i.e. the value of̃V will not grow, implying (36).

Algorithm 9
Problem2 can be solved by maximizing the trace ofP (tf ) with respect to the three inequalities
(30), (31) and (32), for the unknowns (P1, . . . , P2m, D1,D2,G1andG2), Ω (not a full matrix, but
structured in order to limit the degree ofτ(x(t)) to 2mx − 2), αi, vi,j . Such a maximization
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is unfortunately not a convex optimisation problem, due to the bi-linearity of the term(1−
Γ⊤P (t)Γ)τ(x(t)). Nevertheless, the theorem can be used as in the previous case either by deleting
the disturbing term (it is an arbitrary, conservative choice of τ(x(t)) = 0), or by replacing the
P (t) inside it with a guessed termH(t) that overestimates the span of the state, i.e. such that
{
x(t)|x(t)⊤P (t)x(t) 6 1

}
⊂
{
x(t)|x(t)⊤H(t)x(t) 6 1

}
. This guess can subsequently be refined

by iterating the solution. In both these cases the problem becomes a convex optimization problem
under LMI constraints. Another possible approach, not explored in this paper, is of course to try and
solve directly the bilinear matrix inequality with an appropriate solver.

The condition ford(x(t)) > 0, if needed, can be verified with a sum of squares kind of
condition, i.e. by testingd(x(t)) − η(x(t))(1 − x(t)⊤P (t)x(t)⊤) > 0 for t ∈ [0, tf ], with η(x(t)) >
0 a polynomial.

7. EXAMPLE OF APPLICATION

In order to show the effectiveness of this method, we consider a very simple nonlinear dynamical
system from biology, namely the Lotka-Volterra model for predator-prey populations [28].
According to this model, the evolution of the populationx1 of a species which is prey for a second
species (the predator) whose population isx2, both interacting in a closed environment, is described
by

{
ẋ1 = αx1 − βx1x2
ẋ2 = δx1x2 − γx2

(40)

with α, β, γ, δ specific constants. This model is of course quite simple, with several approximations
including the fact that the populations are considered realnumbers whereas they are obviously
integer.

We pick an arbitrary model withα = 0.13 year−1, β = 0.0066 year−1, γ = 0.20 year−1, δ =
0.0002 year−1, with an initial population of1000± 100 prey and40± 4 predators, (which we adapt
into an ellipsoidal description). We try and use Algorithm9 and Theorem8 to simulate the system
for a span of15 years, using Matlab with Yalmip [25] and SeDuMi [26]. We have chosenm = 4,
and we have verified that it is not possible to simulate the whole 15-year interval in one single go
(i.e., solving the optimisation in Algorithm9 for tf = 15 years), so we have cut the interval into
smaller intervals of one year each, and propagated the simulation at the end of each interval by
using the final result of each step as initial value for the following. Moreover, for each time step we
have solved two optimisation problems, as explained in Algorithm 9; the first optimisation problem
uses a time-constant guessedH term “wide” enough to encompass the evolution of the state for
all t ∈ [0, tf ], and subsequently we use theP (t) result of the first optimisation in order to run a
second one, using this firstP (t) asH(t) and refining the result (see Figure1). Further iterations
would improve the result even more, but we have decided to stop at just two. The choice ofm
and the length of each sub-interval has to be considered as a compromise between computational
complexity and accuracy: bigger valuesm and smaller time spans lead to more precision, at the cost
of slower computations. A value ofm too small, or a span which is too long might even lead the
optimization to fail finding a solution, as it is the case for us if we try and compute the solution over
the15 years.

Figure2 shows the results of the complete simulation, compared withpoints from a Monte Carlo
simulation. We can see that the method effectively bounds all such points, confirming that it is
“safe”, on the other hand we can also see that the bounding ellipses are not tight, which is a drawback
of the method but which could be partially eased by running more iterations at each time step.

8. CONCLUSIONS

In this paper we have shown a method which can be employed in order to validate the properties of
a continuous-dynamical systems through a robust simulation. The method offers hard mathematical
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Figure 1. Lotka-Volterra model, one iteration. The blue ellipse in the center is the set of initial conditions,
the black ellipse is the set enclosed by the guessed time-constant termH, the dark red ellipse shows the
result of the first optimisation fort = tf , whereas the bright red one shows the result of the second again for
t = tf . The black dots represent the values of some simulations att = tf for states which were in the initial

set att = 0.
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Figure 2. Lotka-Volterra model, evolution of the state-bounding ellipsoid over several times steps, covering
a period of15 years. The blue ellipse (first on the right) is the set of initial conditions, the bright red ellipses
are the bounding sets at the end of each year, and the black dots show the values of some Monte Carlo

simulations.

bounds but it requires solving a convex optimisation for each simulated time interval, which can
be computationally intensive. In any case, we believe that this method can be helpful in relevant
application, proposing a different and complementary approach with respect to the usual Monte
Carlo approach.

Future research will focus on introducing robustness with respect to uncertainties in the model
parameters, which should be possible by using the LMI-basedtheory on robust control. We are
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also interested in applying the methods to the simulation ofreal-life systems, and specifically to
aerospace systems. Another interesting approach which will be explored is the use of Koopman
operators and their eigenfunctions [17, 29], which might allow the search for a state transformation
that can linearise a system in the large [30], simplifying the simulation problem.
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2. Donzé A, Maler O. Systematic simulation using sensitivity analysis.Hybrid Systems: Computation and Control.

Springer, 2007; 174–189.
3. Dang T, Donzé A, Maler O, Shalev N. Sensitive state-spaceexploration.47th IEEE Conference on Decision and

Control, IEEE, 2008; 4049–4054.
4. Tierno J, Murray R, Doyle J, Gregory I. Numerically efficient robustness analysis of trajectory tracking for nonlinear

systems.Journal of guidance, control, and dynamics1997;20(4):640–647.
5. Jönsson U. Robustness of trajectories with finite time extent.Automatica2002;38(9):1485–1497.
6. Chesi G, Hung Y. Analysis and synthesis of nonlinear systems with uncertain initial conditions.IEEE Transactions

on Automatic Control2008;53(5):1262–1267.
7. Kantner M, Doyle J. Robust simulation and nonlinear performance.35th IEEE Conference on Decision and Control,

vol. 3, IEEE, 1996; 2622–2623.
8. Kishida M, Braatz R. Ellipsoid bounds on state trajectories for discrete-time systems with time-invariant and time-

varying linear fractional uncertainties.50th IEEE Conference on Decision and Control and European Control
Conference (CDC-ECC), IEEE, 2011; 5671–5676.

9. Topcu U, Packard A, Seiler P. Local stability analysis using simulations and sum-of-squares programming.
Automatica; 44(10).

10. Calafiore G. Set simulations for quadratic systems.IEEE Transactions on Automatic Control2003;48(5):800–805.
11. Massioni P, Scorletti G. Guaranteed systematic simulation of discrete-time systems defined by polynomial

expressions via convex relaxations.Submitted paper; .
12. Parrilo P. Semidefinite programming relaxations for semialgebraic problems.Mathematical programming2003;

96(2):293–320.
13. Boyd S, El Ghaoui L, Feron E, Balakrishnan V.Linear matrix inequalities in system and control theory, vol. 15.

SIAM, 1994.
14. Henrion D, Korda M. Convex computation of the region of attraction of polynomial control systems.IEEE

Transactions on Automatic Control2014;59(2):297–312.
15. Korda M, Henrion D, Jones C. Convex computation of the maximum controlled invariant set for polynomial control

systems.SIAM Journal on Control and Optimization2014;52(5):2944–2969.
16. Shia V, Vasudevan R, Bajcsy R, Tedrake R. Convex computation of the reachable set for controlled polynomial

hybrid systems.53rd IEEE Conference on Decision and Control, IEEE, 2014; 1499–1506.
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