
A

Mining Redescriptions with Siren

Esther Galbrun, Inria Nancy – Grand Est
Pauli Miettinen, Max Planck Institute for Informatics

In many areas of science, scientists need to find distinct common characterizations of the same objects and,
vice versa, to identify sets of objects that admit multiple shared descriptions. For example, in biology, an
important task is to identify the bioclimatic constraints that allow some species to survive, that is, to describe
geographical regions both in terms of the fauna that inhabits them and of their bioclimatic conditions. In
data analysis, the task of automatically generating such alternative characterizations is called redescription
mining.

If a domain expert wants to use redescription mining in his research, merely being able to find redescrip-
tions is not enough. He must also be able to understand the redescriptions found, adjust them to better match
his domain knowledge, test alternative hypotheses with them, and guide the mining process towards results
he considers interesting. To facilitate these goals, we introduce Siren, an interactive tool for mining and
visualizing redescriptions.

Siren allows to obtain redescriptions in an anytime fashion through efficient, distributed mining, to
examine the results in various linked visualizations, to interact with the results either directly or via the
visualizations, and to guide the mining algorithm toward specific redescriptions. In this paper, we explain the
features of Siren and why they are useful for redescription mining. We also propose two novel redescription
mining algorithms that improve the generalizability of the results compared to the existing ones.

CCS Concepts: rInformation systems→Data mining; rHuman-centered computing→ Visualization
systems and tools; Graphical user interfaces;

Additional Key Words and Phrases: redescription mining; interactive data mining; visual data mining

ACM Reference Format:
Esther Galbrun and Pauli Miettinen. 2016. Mining Redescriptions with Siren. ACM Trans. Knowl. Discov.
Data. V, N, Article A (January YYYY), 30 pages.
DOI: 0000001.0000001

1. INTRODUCTION
This paper presents Siren, a tool for exploratory, interactive, and visual redescription
mining, as well as two new algorithms for mining the redescriptions.1

To support the interactive exploration of data using redescriptions, Siren provides
multiple state-of-the-art techniques, including, but not limited to, anytime mining algo-
rithms, multiple linked interactive visualizations, and significance testing. Redescrip-
tions have not been visualized earlier, and hence we had to develop new visualizations
for them. In particular, we based our visualizations on the parallel coordinates plots and

1Siren source code and packages for Linux, MS Windows, and Mac OS are available from http://siren.gforge.
inria.fr/main/.

Authors’ addresses: E. Galbrun, Inria Nancy – Grand Est, 615 Rue du Jardin botanique, FR-54600 Villers-lès-
Nancy, France; email: esther.galbrun@inria.fr. P. Miettinen, Max Planck Institute for Informatics, Saarland In-
formatics Campus Building E1.4, DE-66123 Saarbrücken, Germany; email: pauli.miettinen@mpi-inf.mpg.de.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© YYYY Copyright held by the owner/author(s). Publication rights licensed to ACM. 1556-4681/YYYY/01-

ARTA $15.00
DOI: 0000001.0000001

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:2

decision tree diagrams. We give a formal definition of redescription mining in Section 3
and describe the features of Siren and the different visualizations in-depth in Section 4.

The two new algorithms we present are both based on decision tree induction, and
are presented in Section 5. Section 6 contains an experimental evaluation assessing the
quality of the proposed tree-based algorithms, comparing our algorithms’ capability of
finding redescriptions that generalize to unseen data, and studying the ability of the
mining processes to scale and to parallelize. Section 7 provides an outline of work on
interactive pattern mining, both retrospective and prospective.

This work is partially based on, and significantly extends, our earlier publications
[Galbrun and Miettinen 2012a; 2012c; 2014; Zinchenko et al. 2015]. In short, the main
contributions of this paper are as follows: i) we present Siren in a consolidated and
coherent way, including a thorough discussion about the interactive mining process, ii)
we present a framework for parallel computation to support this process and study its
efficiency, iii) we present new tree-based algorithms for redescription mining, extending
the presentation of Zinchenko et al. [2015], and iv) we evaluate the algorithms imple-
mented in Siren for both their scalability in parallel workloads and for the predictive
power of the redescriptions returned by them.

But to begin, we would like to give the reader a first taste of what the matter of the
discussion is. To do so, in the following section we introduce the main concepts of the
data analysis task and present the workflow for carrying out exploratory redescription
mining using Siren informally, by means of an example use case.

2. PROLOGUE: FINDING BIOCLIMATIC NICHES
Let us now walk through a typical use case scenario of Siren. Our example application
is bioclimatic niche-finding: The bioclimatic niche, or envelope, of a species is defined
by a set of constraints on the bioclimatic conditions that need to be satisfied for the
species to survive [Grinnell 1917]. Naturally, knowing the species’ niches is important,
as it can, for example, help to predict the consequences of global warming [Pearson and
Dawson 2003].

In this use case scenario, our task is to automatically find the niches of European
mammal species (or groups thereof). Our data describes, on one hand, the presence and
absence of various mammal species in a (rough) grid of fifty-by-fifty kilometer squares
over Europe. On the other hand, we have data on bioclimatic variables (monthly
minimum, maximum, and average temperatures and rainfall) over the same grid.

Note that these datasets characterize the same entities over two different sets of
variables, that is, the spatial areas of Europe are characterized by Boolean variables
representing mammal species on one hand, and by real-valued variables representing
monthly climate statistics on the other hand. From now on, we refer to the species data
as the left-hand side and the bioclimatic data as the right-hand side data.

Our aim when analysing this data is to characterize the habitat of certain species
with a climatic profile. That is, we want to identify spatial areas that constitute the
habitat of a species or group of species while also sharing a specific climatic profile. The
species or group of species that inhabits the area of interest constitutes a query over
the first set of variables, while the climatic pattern constitutes a query over the second
set of variables. Thus, they provide alternative descriptions for the same set of entities.
We call such a pair of queries a redescription.

In the optimal scenario, we would like to find perfect redescriptions: cases where the
habitat of the group of species (the support of the first query) matches perfectly with the
areas where the considered climate prevails (the support of the second query). However,
due to a variety of reasons – such as missing sightings, erroneous climate records, or
the impact of external factors on species distribution – mismatches might occur. Hence,
rather than look for perfect matches, we would like to find pairs of queries such that

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:3

Fig. 1. The list of left-hand side variables, of right-hand side variables, and of entities, from left to right
respectively.

Fig. 2. The list of redescriptions where results appear as they are obtained by the algorithm.

their supports are as similar as possible and measure the similarity of the supports
using the Jaccard coefficient. Given two sets, this coefficient takes a value between 0
and 1, with higher values meaning that the sets are more similar.

We start by loading the data into Siren from a pair of CSV-formatted files (one file
for the species dataset and one for the bioclimatic dataset). Once the data is loaded into
the interface, we can view the list of entities, as well as the lists of variables for each
side respectively (see Figure 1).

The most natural next step is to start mining redescriptions. Siren provides a GUI
for selecting the algorithm to be used and setting its parameters. The actual mining is
conducted in the background, and works in an anytime [Dean and Boddy 1988] fashion:
As soon as the first redescriptions are obtained, they start appearing in the list. More
and more results continue to be added as they are found, until the mining process
completes or is stopped.

While the mining process runs in the background, the user can start examining the
redescriptions obtained so far (see Figure 2). In addition to the queries constituting the
redescription, the listing shows a few measures including the Jaccard coefficient (J),

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:4

Fig. 3. A redescription visualized as a parallel coordinates plot and projected on a map.

indicating the accuracy of the redescription, and the number of entities for which both
queries are true (|E1,1|), i.e. the support of the redescription.

For instance, one of the redescriptions listed consists of the following two queries:

qL = common shrew ∧ ¬Etruscan shrew
qR = [t2+ ≤ 7.2] ∧ [14.0 ≤ t7+ ]

This redescription indicates that the areas inhabited by the common shrew but not
by the Etruscan shrew are typically areas where the maximum temperature reaches
at most 7.2 ◦C in February and at least 14.0 ◦C in July. Having a Jaccard coefficient of
J = 0.791, this is a rather accurate redescription.

But is this result intuitive? As the data points are associated with geographical areas,
Siren can visualize the redescription over a map, as shown in Figure 3 (right). Areas
where the left-hand side query qL holds true but the right-hand side query qR does not
are those areas inhabited by the common shrew but not by the Etruscan shrew and
where the maximum temperature in February or July is outside the specified range.
They are denoted as E1,0 and drawn in red. Similarly, areas where the left-hand side
query qL does not hold true but the right-hand side query qR does are denoted as E0,1

and drawn in blue. Areas where both queries hold, denoted as E1,1, are drawn in purple.
This way, we easily notice that most of the mismatches consist of areas where the

specified climate prevails but the records of species do not conform (areas belonging to
E0,1, in blue), located mainly across Romania and the north-east of France.

The map-based visualization is a great way to understand where the queries qR and
qL hold (and do not hold). However, it does not tell us why they hold (or do not). To that

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:5

Fig. 4. Interactively editing a redescription through the visualizations. Areas selected on the map are
highlighted across visualizations. Using the parallel coordinates plot (center), the bound of a variable is
adjusted. The map for the recomputed redescription (right) can be compared to the original one (left).

end, we can use the parallel coordinates visualization, as shown in Figure 3 (left). In
parallel coordinates, the data points (in this case grid areas) are represented by lines
going through a series of parallel vertical axes, one for each condition appearing in the
queries. The position where a line crosses an axis indicates the value of the associated
variable for the corresponding area. On each axis, a grey box represents the range of
values of the variable that satisfy the specified conditions. An extra axis separates the
two sides and shows the support of the queries. The same color code is used as with the
map. In addition, grey lines represent areas that do not support either query (E0,0).

Merely seeing the same redescription visualized in two different ways – over a map
and using parallel coordinates – is not all that helpful, however. To benefit from the
different visualizations, we need a way to connect the displayed information across
visualizations. To do this, Siren supports a brush-and-link workflow [Heer and Shnei-
derman 2012]: By selecting an area on the map, we can highlight the corresponding line
in the parallel coordinates plot and inspect the values taken by the variables at play in
this particular location. For instance, upon selecting a few blue areas in eastern France
from the map shown on the left-hand side of Figure 4, the corresponding lines get
highlighted in yellow in the parallel coordinates plot shown in the middle of Figure 4.
We can then see that the common shrew does not inhabit this area, which is why the
left-hand side does not hold. On the other hand, the line crosses the axes associated to
the temperatures within their respective specified ranges, so that the right-hand side
query does hold.

We can also see from the parallel coordinates that February’s maximum temperature
in this area is close to the top of the specified range. Hence, we could change the query

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:6

Fig. 5. A redescription visualized as tree diagram, and a simplified variant obtained by removing a branch
from the right-hand side query.

by lowering the upper bound for February’s maximum temperature, although this would
also affect many areas where the query currently holds. Still, we can edit the query
simply by dragging the top of the grey box for t2+ down to, say, 6.18 degrees Celsius.
The queries, plots, and statistics are immediately updated to reflect the change, the
resulting map is shown on the right-hand side of Figure 4. We notice that, as a result
of the edit, most of southern England no longer match the climate profile, so that the
number of areas supporting the queries decreases from 1301 to 1200 and the accuracy
drops from 0.791 to 0.758. So, it is best that we revert to the original redescription.

Let us now consider a more complex redescription:

qL = (Kuhl’s pipistrelle ∧ ¬Alpine marmot)
∨ (¬Kuhl’s pipistrelle ∧ house mouse ∧ ¬ common shrew)

qR = ([t3+ ≤ 11.05] ∧ [6.375 ≤ t3∼ ] ∧ [3.55 ≤ t1+ ])

∨ ([11.05 ≤ t3+ ] ∧ [−3.95 ≤ t2− ])

We can use the parallel coordinates to visualize this redescription as well, but the
alternating conjunctions and disjunctions make the parallel coordinates harder to
interpret. Instead, we can plot it as a pair of decision trees as shown on the left-hand
side of Figure 5. Looking at the query qR, the root splits the entities into two sets,
depending on whether March’s maximum temperature is below or above 11.05 ◦C. But
when it is below (top right branch in the figure), only very few areas contribute to E1,1.
Indeed, there are only few purple lines coming out of that leaf. Consequently, we could
consider removing the top branch, leaving only

qR = [11.05 ≤ t3+ ] ∧ [−3.95 ≤ t2− ]

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:7

as the right-hand side query. Indeed, if we do so by clicking on the branch, the accuracy
drops from 0.691 to 0.665 but the query is much simpler. The simplified tree diagram is
shown on the right-hand side of Figure 5.

Now, we would be interested in finding redescriptions involving a particular species,
namely the southwestern water vole. We can do so simply by selecting the chosen
variable and letting the algorithm automatically extend it into redescriptions. For
instance, the best extension we obtain has an accuracy of J = 0.647:

qL = southwestern water vole ∨ Savi’s pine vole
∨Mediterranean monk seal

qR = [11.2 ≤ t3+ ] ∧ [0.51 ≤ t1∼ ≤ 11.333]

∧ [50.556 ≤ p11∼ ≤ 176.75]

We can also expand the redescription only on one side, say, expanding only the query
over the bioclimatic variables, or forbid disjunctions from being used in the query over
species, for instance. Further, Siren lets us disable some variables, to prevent them
from appearing in the queries.

After the mining process has returned a number of redescriptions, and possibly com-
pleted, some of these results might cover approximately the same areas, even if they
have somewhat different sets of variables. It can be useful to filter redundant redescrip-
tions, to remove redescriptions that do not convey substantially new information. We
can either select a redescription and ask Siren to filter out all redescriptions that are
redundant with respect to it, or we can let the algorithm go through the whole list of
redescriptions to filter out all redescriptions that are redundant with respect to some
earlier-encountered (i.e. better) redescription.

For instance, the results returned during the extensions mentioned previously may
contain many redundant redescriptions found at different steps. We can easily sort
them, e.g. by accuracy, select one of interest and filter out all the following results that
are redundant with respect to it.

Having filtered, visualized, edited, and refined the redescriptions, we can save those
we short-listed, together with the data and parameters into a dedicated file, making
it handy to continue the analysis later on. Alternatively, we can also export the list of
redescriptions and save our favorite plots in publication-ready formats.

3. REDESCRIPTION MINING
Our aim here is to present the Siren interface and discuss its interactive and visual
features. However, since Siren is a tool dedicated to redescription mining, some back-
ground about this data mining task is in order, before delving into a more systematic
and detailed discussion of the features of our system.

3.1. Previous Work on Redescription Mining and Related Methods
The problem of mining redescriptions was introduced by Ramakrishnan et al. [2004].
They proposed an algorithm called CARTwheels based on decision trees, with an alter-
nating approach to grow decision trees from which redescriptions are then extracted
(see also Kumar [2007]).

Apart from decision trees, algorithms have been proposed for Boolean redescription
mining, based on approaches including co-clusters [Parida and Ramakrishnan 2005],
and frequent itemsets [Gallo et al. 2008].

Algorithms employing heuristics to produce pairs of queries that are almost equiva-
lent on the given dataset were presented by Gallo et al. [2008]. Theses algorithms rely

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:8

on different strategies to prune the search space. By means of an efficient on-the-fly dis-
cretization, such heuristics were extended to real-valued data, resulting in the ReReMi
algorithm [Galbrun and Miettinen 2012b].

The main feature of redescriptions is their ability to describe data from different
points of view, i.e. their “multi-view” aspect. A similar approach is taken by some
other methods such as multi-label classification [Tsoumakas et al. 2010], emerging
patterns [Novak et al. 2009], and subgroup discovery [Umek et al. 2009] to name a few
(see Galbrun and Miettinen [2012b] for more details). The main differences between
redescription mining and these methods are that redescription mining aims to find
multiple descriptions simultaneously for a subset of entities which is not specified a
priori, that it selects only relevant variables from a potentially large number, and that
it is symmetric, in the sense that it considers both sides of the data similarly.

3.2. Concepts and Definitions
The input of redescription mining consists of entities with two sets of characterizing
variables, thus forming a dataset with two sides.

Throughout this paper, we refer to the two sides as the left- and right-hand sides. We
represent the data using two matrices DL and DR over two sets of variables, VL and VR,
respectively. The set of entities characterized by the two sides is denoted by E, hence
both matrices have |E| rows. The value of DL(i, j) is the value of variable vj ∈ VL for
entity ei ∈ E.

If v ∈ V is Boolean, we interpret the column corresponding to it as a truth value
assignment for e ∈ E in a natural way. For categorical and real-valued variables, truth
value assignments are induced by relations [v = c] and [a ≤ v ≤ b], respectively, where c
is some category and [a, b] is an interval. These truth assignments and their negations
constitute literals which can be combined using the Boolean operators ∧ (and) and ∨
(or) to form queries. Then, a redescription is simply a pair of queries over variables from
the two sets.

The support of a query q is the subset of entities for which the query holds true, that
is, supp(q) = {e ∈ E : q is true for e}. We refer to the two sets of variables informally
as left- and right-hand side data, and the queries over them as left- and right-hand
side queries, denoted as qL and qR, respectively. Then, a redescription is simply a pair
of queries over variables from the two sets, R = (qL, qR). We denote as E1,1 the set of
entities for which both queries hold, which we also call the support of the redescription.
We further denote as E1,0 the set of entities for which only the left-hand side query
holds (i.e. E1,0 = supp(qL) − supp(qR)), E0,1 those for which only the right-hand side
query holds, and E0,0 those for which neither of the queries hold.

The main quality of a redescription is the similarity of the supports of its two queries,
also called its accuracy. The Jaccard similarity coefficient is the measure of choice to
evaluate the accuracy of redescriptions, being at once simple, symmetric, and intuitive.
It is defined as follows:

J(R) = J(qL, qR) =
|supp(qL) ∩ supp(qR)|
|supp(qL) ∪ supp(qR)|

=
|E1,1|

|E1,1| + |E1,0| + |E0,1|
.

Beside accuracy, several other factors impact the quality of a redescription. For
instance, we are not interested in redescriptions which are supported by only a handful
of entities or conversely by almost all of them, i.e. redescriptions for which |E1,1| is too
small or too large.

Furthermore, redescriptions should be statistically significant. To evaluate the signif-
icance of results, we compute a p-value that represents the probability that two random
queries with marginal probabilities (i.e. the fraction of entities supporting them) equal
to those of qL and qR have an intersection equal to or larger than |E1,1|. This probability

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:9

uses the binomial distribution and is given by

pvalM(qL, qR) =

|E|∑
s=|E1,1|

(
|E|
s

)
(pR)

s(1− pR)
|E|−s ,

where pR = |supp(qL)| |supp(qR)| / |E|2 . The higher the p-value, the more likely it is to
observe such a support for independent queries, and the less significant the query.

In short, given two data matrices, redescription mining is the task of searching for
the best matching pairs of queries, with one query over each of the datasets.

The formulation of redescription mining presented here assumes that the describing
variables are partitioned into two sets a priori, and looks for a pair of queries over
these two sets. This can be naturally adapted to settings with a single set of describing
variables. One might then search for pairs of queries, with the constraint that the two
subsets of variables appearing in the queries of any redescription be disjoint. Otherwise,
the user can be enabled to interactively determine the split between the variables.

The results of redescription mining, the redescriptions, can be approached from two
points of view. On one hand, the variables and conditions appearing in the queries
provide valuable information in themselves; on the other hand, the support set of the
redescriptions, i.e. the subset of entities where both queries of a redescription hold,
forms a particularly coherent group.

When the data is geospatial, that is, the entities are connected to geographical
locations, the task is called geospatial redescription mining. A meaningful geospatial
redescription should define coherent areas using expressive queries.

3.3. Application Domains
Finding multiple ways to characterize the same entities, the motivating principle of
redescription mining, is a problem that appears in many areas of science.

The task of finding bioclimatic niches, as illustrated in Section 2, is one instance
in the field of biology where the goal is to describe geographical regions in terms of
both their bioclimatic conditions and the fauna that inhabits them. In bioinformatics,
redescription mining has been used to find ways to describe the different isolates of S.
aureus [Gaidar 2015] as well as to find patterns linking the expression levels of yeast
genes during stress tests and the taxonomic categories to which they belong in the Gene
Ontology [Ramakrishnan and Zaki 2009].

In political sciences, redescription mining can be used to study the links between peo-
ple’s socio-economical status and their answers to opinion polls [Galbrun and Miettinen
2016]. On the other hand, exact redescriptions (that is, redescriptions with exact match
on the left and right support sets) can be used to reduce the search space in sequential
equivalence checking of circuits [Goel et al. 2010].

4. THE FEATURES OF SIREN
Siren provides a complete environment for redescription mining, from loading the data
to finally exporting the results into various formats, through mining, visualizing, and
editing the redescriptions. Siren allows for a seamless interaction with both mining
and visualization, enabling the user to interactively edit the redescriptions and to call
the mining algorithm, for instance to extend the current results.

The analysis is — or at least should be — done by a domain expert, as only a domain
expert can judge what kind of results are surprising or useful. But to allow the domain
expert to perform the data analysis as effectively as possible, the process should be as
seamless as possible. Typically, it is unreasonable to assume that the domain experts
are proficient on using half a dozen different programs, often with arcane command-line

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:10

interfaces, to deploy the full analysis process. There are two common ways to achieve the
desired consistency: either via a workflow integrated into a well-known general-purpose
analysis framework, such as R or Matlab, or via a special-purpose tool specifically
designed for the task at hand. Siren takes the latter approach, aiming to answer the
data analyst’s needs by providing means to interact with the mining algorithm and to
visualize and edit the results in an intuitive way within an integrated framework.

To analyse the redescriptions, the ability to visualize their support and the variables
involved in the queries is very helpful. That is, visualizing simultaneously the conditions
and the support of the queries and how the former affects the latter, as enabled by
parallel coordinates plots and tree diagrams, helps understand and interpret the
redescriptions. Furthermore, data mining is generally an iterative process, with the
results obtained at one step giving rise to hypotheses which will be tested at a further
step, and redescription mining is no exception. Providing means to the user to easily
interact with the mining process greatly improves the analysis. Therefore, a static
display of the results is not enough: the user must also be able to interact with the
program. This interaction can be conceptually divided into two sub-phases: interacting
with the data mining algorithm and interacting with the resulting visualization. The
analysis is an alternation of these two phases, with the user moving back-and-forth
between issuing commands to find new results and examining those obtained. We argue
that a good interactive data mining tool should support both types of interaction and
facilitate the alternation between the different phases.

Below, we discuss the features of the Siren interactive and visual redescription
mining tool in a systematic manner. We divide the discussion between visualizing,
editing, and interacting, though we emphasize that these goals are not independent.
Additional screenshots and videos are available on the tool’s webpage.2

4.1. Visualizing Redescriptions
The most fundamental goal when designing a tool for visual data analysis is, of course,
to have good visualizations. Indeed, visualization is the key to understanding the results
of the mining process.

In all visualizations in Siren, colors encode whether an entity belongs to the support
of the left-hand side query (E1,0), the right-hand side query (E0,1), or both (E1,1). The
colors can be chosen by the user. By default, we use red, blue, and purple, respectively.

2D projections. The simplest among available visualizations are the various projec-
tions of the data into the 2D space. Different types of projections have been studied
intensively, and Siren provides a number of them, including Karhunen–Loève trans-
form (i.e. PCA), multi-dimensional scaling, and various scatter plots. Figure 6 (left)
shows an Isomap embedding [Tenenbaum et al. 2000] of a redescription.

With geospatial redescriptions, a map is the most natural 2D projection, and a
very informative one, and Siren is capable of plotting redescriptions over entities
with geospatial information on a map. The choice of the map projection might alter the
visualization significantly. For example, in Figure 6, the same redescription is plotted on
a map using both the familiar Mercator projection (middle) and the Lambert azimuthal
equal area projection3 (right). Notice how the Mercator projection makes the blue area
in the Svalbard archipelago look huge compared to the Lambert projection. On the other
hand, when the data is from a smaller geographical area, the Mercator projection can
provide more natural-looking maps. To allow the user to select the best projection for

2http://siren.gforge.inria.fr/main/
3Lambert azimuthal equal area projection is the recommended map projection for statistical analysis and
display in the EU [Annoni et al. 2004].

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:11

Fig. 6. A redescription visualized using an Isomap embedding (left), a Mercator projection (middle), and a
Lambert azimuthal equal area projection (right).

the data, Siren supports multiple different projections. Obviously, the map projection
is only available for geospatial data. Note that it is the only 2D projection, and more
generally the only visualization, with this restriction.

Parallel coordinates plot. With minor enhancements, parallel coordinates plots [In-
selberg 2009] are particularly suited for visualizing redescriptions. In such a plot, the
entities are represented by lines going through a series of parallel vertical axes, one for
each literal appearing in the queries. The position where a line crosses an axis indicates
the value of the associated variable for the corresponding entity. For each literal, the
range of values that make the truth assignment hold is represented by a grey interval
box. An extra axis separates the two sides and registers the support of the queries.
Figure 7 shows an example of a parallel coordinates plot. The same color code is used
for the entities as with other visualizations. In addition, grey lines represent entities
that do not support either query (E0,0).

Fig. 7. A parallel coordinates plot.

Parallel coordinates plots are partic-
ularly suited to show queries that take
the form of conjunctions as they best il-
lustrate how constraints on value ranges
can be combined to select a set of entities.

Recently, Palmas et al. [2014] proposed
a method of bundling the edges in the par-
allel coordinates plots to reduce the clut-
ter. Their technique could also be used in
Siren, although the possibility to see a
line corresponding to every entity is still
important for interaction, as we explain
below.

Trees diagram. When the queries con-
tain nested conjunctions and disjunc-
tions, parallel coordinates can become dif-
ficult to interpret. Queries that are (or

can be transformed into) disjunctive normal form (DNF) can be expressed as a pair of
decision forests. While the transformation to DNF can make the query itself look more
complex and difficult to interpret, as is the case for example of the queries shown in
Figure 8, the decision forests are easy to understand.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:12

Fig. 8. The visualization of a redescription
as a decision tree diagram.

Visualizing a decision tree is, of course, a well-
known and not overly complicated problem. What
makes our setting special, is that instead of one
decision tree, we must visualize two decision trees
(or forests) that are linked in their leaves. We
visualize this linkage by drawing lines between
the leaves: a line connects two leaves if the data
has an entity for which the corresponding paths
in the trees hold true. Not every path in the tree
participates in the query – otherwise we would
always cover the whole data – and the color of
the line encodes this information, using the same
color code as in other visualizations. Furthermore,
we do not draw the lines to overlap each other,
but next to each other. This allows the user to
see the volume of entities connecting different
leaves, and hence estimate the importance of the
corresponding branch: if only very few entities

travel to some leaf, the corresponding branch can often be removed from the query.
For instance, the tree diagram displayed in Figure 8 helps interpret the corresponding
queries, which appeared somewhat intricate at first glance.

Coordinated views. As, for example, Heer and Shneiderman [2012] argued, having
multiple concurrent visualizations of the same data reinforces their explanatory power.
Siren supports the brush-and-link workflow, where several views and the data are
coordinated and modifications made to a redescription are reflected immediately on the
different views

For instance, the user can highlight an entity by clicking or hovering over the corre-
sponding line or dot in a view, it will then be highlighted in the other views, allowing to
identify it across the different visualizations.

Fig. 9. The main window split into two frames showing the list of redescriptions and a grid of visualizations
beneath.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:13

Siren supports showing the visualizations either in their own windows separate from
the main application window, or in a dedicated grid of illustrations in the main applica-
tion window. The latter option facilitates the presentation of multiple visualizations
without having to worry about one visualization hiding parts of other visualizations. As
shown in Figure 9, the main window can also be split horizontally into two frames in
order to examine at the same time a list of redescriptions and several visualizations.

4.2. Editing the Queries

Fig. 10. Editing a
redescription in a
parallel coordinates
plot.

A redescription can be edited from any visualization by using the
text fields under the plot. Thus, the user might adjust the conditions
in the queries, add or remove variables, as well as build entirely
new redescriptions by hand. Upon editing a query, the plot and the
statistics of the redescription are recomputed to account for the
modifications. Siren allows for simple editing of the redescriptions
thanks to flexible parsing of different representations.

Editing through the visualizations. It is also possible to edit the
queries directly from the parallel coordinates plot by dragging the
interval boxes to modify the bounds or categories for the variables.
For example, in Figure 10, we can simply drag the bottom of the
grey box up to exclude some of the blue areas from the support
(and, incidentally, some purple areas as well). Of course, this will
trigger the re-computation of the statistics of the redescription and
the update of all the associated visualizations.

In a tree diagram, the user can modify the query by adding or
removing a branch of the decision tree just by clicking on the cor-
responding leaf. Then, the user may also simplify a query, letting
the tool automatically remove variables and branches that no longer
affect the query, because they are only involved in tautological con-
straints, for instance.

4.3. Interacting with the Mining Process
Editing the queries is the most elementary form of redescription mining, as it basically
allows to construct patterns manually, without any automation.

Fully automated mining. Obviously, the core of Siren is mining the redescriptions.
This can be done fully automatically from the application, which also provides a graph-
ical interface for selecting the mining algorithm and setting its various parameters.
However, mining all the redescriptions from a dataset can be a time-consuming task.
To avoid extensive waiting times, mining redescriptions in Siren is an asynchronous
any-time process, meaning that the user will start seeing results from the mining
algorithm as soon as the first (partial) results are ready. The user can start working
with and editing these redescriptions while the mining algorithm continues in the
background.

Partially automated mining. In between the two extremes of automation lies a mode
of partial automation, where the mining algorithm and the analyst collaborate to the
construction of results.

For instance, when exploring the data, the user often wants to extend existing rede-
scriptions, either those returned by the algorithm or some queries he has constructed
himself, e.g. to test a hypothesis about the data. Siren allows to use an existing rede-
scription as a starting point for the mining process. The user can also decide to let only
one side of the redescription be extended. In bioclimatic niche finding, for example, this

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:14

can be used to see how good a bioclimatic envelope the algorithm can find for a chosen
combination of species.

Like with the fully automated mining, the extensions are computed in an anytime
fashion so that the first results are returned almost instantly.

Fig. 11. The polygon selection tool allows to
highlight contiguous areas, which can then
be used to orient the mining process.

Furthermore, the user may specify a subset of
entities that he wants to be emphasized during
the mining process. For example, if the user wants
to remove some entities (in this case, geographic
areas of Svalbard) from the support of the rede-
scription shown in Figure 11, he can highlight
them using the polygon selection tool and ask
Siren to extend the given redescription on the
right-hand side with emphasis on excluding them
from the support. In other words, the user can ma-
nipulate a redescription both through its queries
and through its support.

The user can also disable variables and/or enti-
ties so that they will not be used in the mining pro-
cess. For example, there can be known anomalous
areas (e.g. coastal regions or valleys in mountain
ranges) that the user might want to exclude, to
prevent them from affecting the algorithm. The
user can also disable the entities after the mining
is done, in which case Siren will automatically
update the support and accuracy of all redescrip-
tions.

Post-processing: Redundancy filtering. Siren al-
lows automatic filtering of redundant redescrip-

tions. That is, redescriptions that cover approximately the same entities even if they
have (somewhat) different sets of variables. The user can select a redescription and
ask Siren either to filter out all redescriptions that are redundant with respect to
the selected one, or to go through the whole list of redescriptions while filtering out
all redescriptions that are redundant with respect to some redescription encountered
earlier (and hence consider to be better). Naturally, the decisions made by Siren can be
reverted whenever the user wishes to.

Significance testing and k-fold mining. Siren provides the user with a powerful set of
tools to guide the mining process and to edit the resulting redescriptions. Powerful tools
increase the risk that the user tailors the results to match his a priori expectations.
Miettinen [2014] has argued that interactive data analysis tools should provide methods
to warn the user about potential overfitting. To that end, Siren employs two standard
techniques. The first is to consistently compute the p-value, as explained in Section 3.2.

The second is to study how well the redescriptions mined using a particular set of
parameters generalize to unseen entities. In k-fold mining, the entities are partitioned
into k sets, each of which is left out in turn while the mining algorithm is re-started.
The redescriptions found on the training data are re-evaluated over the hold-out data,
and their behaviour (e.g. the Jaccard coefficient) is studied. If the Jaccard coefficient
is consistently significantly worse in the hold-out data than in the training data, the
user can conclude that the parameters used led to overfitting. Siren facilitates such
k-fold mining experiments by allowing to easily partition the data, run the algorithm
on a selected subset of the data and compare accuracy and support of the results across
training and hold-out subsets.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:15

4.4. Implementation details
The main design goals of Siren were platform independence, easy extensibility to
new methods (both for mining and visualization), and general responsiveness. The
platform independence was obtained using Python and the wxPython4 open source GUI
toolkit together with the matplotlib5 plotting library to plot the various visualizations.
Some visualizations, such as the trees diagrams, maps, and parallel coordinates, use a
mixture of off-the-shelf and custom-made parts, while the various 2D-projections use
the implementations from the scikit-learn6 package.

Using Python also allowed easy extensibility: The parent visualization, providing the
main interactivity and layout primitives, can be inherited and enriched with refined
visualization methods. New 2D-projections are even easier, as they only need to accept
a numpy7 matrix and return the corresponding 2D coordinates; Siren will take care of
the plotting and linking. New redescription mining algorithms can also be added with
relative ease, especially when they are implemented in Python.

Responsiveness is a crucial part of any interactive data mining system. Here, the use
of Python has some drawbacks, as the interpreted Python code is not as fast as native
code. Furthermore, the mining itself, and computation of some of the visualizations,
especially some 2D-projections, is computationally heavy. Naturally, Siren performs
these tasks in background threads, thereby exploiting modern multi-core processors to
keep the GUI responsive even during heavy computations.
Siren implements a basic framework for parallel redescription mining. The greedy

ReReMi algorithm (see Section 5) grows the redescriptions from initial pairs, which
can be computed using multiple threads. For all algorithms currently supported, the
initial candidates can also be distributed for growing. A master thread creates at most a
chosen number of new threads, each one growing a candidate separately. These threads
report back results to the master thread, that appends them to the collected results and
filters away redundant ones. A new thread is then launched to grow the next candidate,
and so on, until all initial candidates have been processed.

To improve the responsiveness even further, and to allow the mining and exploration
of datasets too large to be handled on conventional desktop or laptop computers, Siren
can also offload the computations onto external servers. The anytime behaviour of the
algorithms in Siren allows the user to launch time-consuming mining operations in a
computing server, and start analysing the results soon after, when the first redescrip-
tions return. The server module in Siren is naturally multi-threaded, and utilizes the
client–server architecture, enabling it to serve multiple clients simultaneously. The
Siren server module can run both from a local computing server (e.g. university) or
from a cloud server (e.g. Amazon’s EC2).

Finally, Siren facilitates distributing the results and sharing information. It can
handle any data provided in a compatible format. Redescriptions can be exported in
easy-to-read format and their visualizations can be readily converted to publication-
ready graphics. Data, settings and pre-mined redescriptions can be saved in dedicated
archives that can be easily reloaded later on.

5. MINING ALGORITHMS
At the core of Siren, feeding the results to be visualized and interacted with, are
the mining algorithms. Currently, Siren supports the greedy ReReMi algorithm and a
number of algorithms based on classification and regression trees (CART). In what

4https://wxpython.org, accessed 18 October 2016.
5http://matplotlib.org, accessed 18 October 2016.
6http://scikit-learn.org, accessed 18 October 2016.
7http://www.numpy.org, accessed 18 October 2016.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:16

follows, we will give a quick recap of the ReReMi algorithm (Galbrun and Miettinen
[2012b] provide a full explanation), and proceed to explain our two novel CART-based
algorithms in more detail in Section 5.2.

5.1. The Greedy Approach
Building on the work of Gallo et al. [2008], Galbrun and Miettinen [2012b] designed
a greedy algorithm called ReReMi using efficient on-the-fly discretization to extend
redescription mining to categorical and numerical variables. The queries ReReMi builds
can be parsed in linear order, without trees, with every variable allowed to appear only
once. They constitute a subset of Boolean formulae that provides a good compromise
between expressive power, difficulty of search, and interpretability.

Yet, the search space remains exponential and we resort to heuristic pruning. We
use a strategy similar to beam-search to explore the solution space. The basic idea is to
construct queries bottom-up, starting from singleton redescriptions (i.e. both queries
contain only one literal) and progressively extending them by appending operators and
literals. After evaluating all possible one-step extensions, we select the best candidates
and extend them in turn. This process stops when no new redescription can be generated.
Redescriptions with too high p-value can be filtered out during the search. We exploit
some simple observations to make the computation of accuracy more efficient, allowing
faster evaluation of the candidates, which is particularly important for an interactive
tool.

Owing to this beam-search-like behavior, ReReMi is an any-time algorithm. The
intermediate redescriptions explored during the search are returned at each step. This
way, the user is able to see the candidates present in the beam and might stop the
extension process if he wishes. The possibility to remove a candidate from the beam,
cutting off a less promising branch from the search, remains to be implemented.

5.2. The Tree-based Approach
Decision tree induction [Quinlan 1986] presents an alternative approach for mining
redescriptions. This idea was originally introduced by Ramakrishnan et al. [2004]. Our
algorithms, however, differ from the existing ones both in their inner working and in
their capabilities. Indeed, unlike existing tree-based methods, the family of algorithms
based on decision tree induction that we propose can handle non-binary data and
scale well. As evidenced by our experiments, they allow to find intuitive and accurate
redescriptions that, importantly, generalize well to unseen data.

More specifically, our approach consists in growing two trees in opposite directions,
gradually increasing their depth and matching their leaves. We use classification and
regression trees (CART) [Breiman et al. 1984] for this purpose, but any other approach
to induce decision trees can be exploited as well.

Growing Trees. Our input is a pair of data matrices and we use Boolean, categorical or
sparse numerical variables to initialize our procedure. Specifically, the initialization of
the algorithm requires a binary target vector for building the first tree. Boolean variable
columns directly provide such binary vectors. Each categorical variable can be turned
into as many binary target vectors as it has categories, by considering membership in
each category separately. Finally, sparse numerical variables also provide binary target
vectors by considering zero vs. non-zero entries. The vector of predictions output at one
step is then used as the target vector when growing a tree over attributes from the
other side during the next step, in alternating iterations. Without loss of generality
and for simplicity of exposition, we assume that the initialization variable is from the
left-hand side, so that the first tree will be induced over the right-hand side variables.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:17

Input: A pair of data matrices (DL, DR),
an initialization variable vi ∈ VL, and max depth κ.

Output: A redescription R = (qL, qR).
1: τL ← initialize the target with vi
2: for k ← {1..κ} do
3: TR ← induce tree over DR with target τL and depth k
4: τL ← extract classification vector from TR

5: TL ← induce tree over DL with target τR and depth k
6: τR ← extract classification vector from TL

7: end for
8: qL ← extract query from positive branches of TL

9: qR ← extract query from positive branches of TR

10: return (qL, qR)

Fig. 12. The SplitT algorithm.

This procedure continues to alternate between growing trees over either side of the
data, until one of the following three stopping conditions is met: i) no tree can be induced
with the given parameters, ii) the maximal tree depth chosen by the user is reached, or
iii) the prediction vector obtained from the new tree is identical to the one previously
obtained on that side, in other words, the tree growing procedure has reached a fixed
point.

A tunable parameter, lmin, controls the minimum number of entities allowed in any
leaf of the tree. It allows us to combat overfitting and terminate the tree induction
earlier.

We present two algorithms which follow the process described above but differ in
their strategy for growing trees.

The SplitT Algorithm. Our first algorithm grows a new classification tree at each
iteration while progressively increasing their depth. An outline of the SplitT algorithm
is shown in Figure 12. As explained above, a variable vi ∈ VL is initially used to provide
a target vector to induce a tree over the variables on the other side, i.e. over the matrix
DR. This first iteration produces a tree of depth one with two leaves, which are labelled
according to the majority class of the entities they contain, one positive and one negative.
The corresponding binary prediction vector for the entities is then used as a target
vector to grow a new tree over DR, this time of depth two. In turn, the prediction vector
is used as a target to learn a tree of depth two over DR from scratch, and so on.

The LayeredT Algorithm. Our second algorithm grows trees layer by layer instead
of building a new tree from scratch in each iteration. One layer is added to the current
candidate tree by appending a new decision tree of depth one to each of its branches,
each of which is learnt independently from the others. An outline of the LayeredT
algorithm is shown in Figure 13.

Extracting Redescriptions. At the end of the alternating process, we obtain a pair
of decision trees, over either sets of variables. The extraction of a redescription from
such a pair of decision trees is illustrated in Figure 14. It works as follows. Each leaf
corresponds to the set of entities that satisfy the conditions specified along the branch
leading up to it (this relation is represented by grey arrows leading from the leaves, on
both sides, to the entities, in the middle). Each leaf is labelled as belonging either to the
positive or the negative class according to the majority label (from the last round of tree
induction) among the entities associated to the leaf. This way, the trees are matched by
their leaves through the common entities.

From either tree we obtain a query over the variables from that side charaterizing
the positive class. One literal is constructed for each node of the decision tree using the
associated splitting variable and threshold. Then, literals leading to the positive leaves

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:18

Input: A pair of data matrices (DL, DR),
an initialization variable vi ∈ VL, and max depth κ.

Output: A redescription R = (qL, qR).
1: τL ← initialize the target with vi
2: T (1,∅)

R ← induce tree over DR with target τL and depth 1
3: τL ← extract classification vector from TR

4: T (1,∅)
L ← induce tree over DL with target τR and depth 1

5: τR ← extract classification vector from TL

6: for k ← {2..κ} do
7: for each leaf ` of TL do
8: T

(k,`)
R ← induce tree over the subset of DR contained in ` with target τL and depth 1

9: end for
10: τR ← extract classification vector from the right-hand side trees at level k, T (k,∗)

R
11: for each leaf ` of TR do
12: T

(k,`)
L ← induce tree over the subset of DL contained in ` with target τR and depth 1

13: end for
14: τL ← extract classification vector from the right-hand side trees at level k, T (k,∗)

L
15: end for
16: qL ← extract query from positive branches of stacked trees T (∗,∗)

L

17: qR ← extract query from positive branches of stacked trees T (∗,∗)
R

18: return (qL, qR)

Fig. 13. The LayeredT algorithm.

va

vb

vc

1

01

0

Yes

No

Yes

No

Yes

No

vx

vy

vz

0

11

0

Yes

No

Yes

No

Yes

No

...

qL = (va ∧ vb) ∨ (¬va ∧ vc) qR = (vx ∧ ¬vy) ∨ (¬vx ∧ vz)

Fig. 14. Extraction of a redescription from a pair of matched trees. On either side, the tree represents a
succession of tests on some variables’ values (represented as square nodes) and leading to a classification
decision (represented as circular leaf nodes). The label (positive or negative) assigned by the tree to each
entity is represented as a circle (filled or empty, respectively). The support obtained when matching the trees
is shown at the center using the color code as in other visualizations. Finally, the branches leading to positive
leaf nodes, which participate in the queries, are highlighted in yellow.

(highlighted in yellow in the schema) are combined into a query, using conjunctions
(∧) to combine literals within one branch and disjunctions (∨) to combine different
branches.

The output of our algorithms consists of the collected redescriptions over all induced
tree pairs.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:19

6. EXPERIMENTAL EVALUATION
We now turn to the empirical evaluation of the algorithms. We start by studying how
well the proposed tree-based algorithms work on finding planted redescriptions and
evaluating the interpretability of the results (Section 6.2). We then investigate how
well the results from different redescription mining algorithms (the tree-based ones,
ReReMi, and CARTwheels) generalize to unseen data (Section 6.3). Finally, we evaluate
the scalability of Siren’s multi-threaded redescription mining framework (Section 6.4).
But first, let us introduce the real-world datasets used in this section.

6.1. Datasets
Our first dataset, Bio, is the dataset used in the bioclimatic niche-finding task (see
Section 2). The entities represent geographic areas of Europe, the left-hand side records
the presence of various mammal species [Mitchell-Jones et al. 1999] while the right-
hand side consists of bioclimatic variables, that is, monthly average rainfall and monthly
average, minimum, and maximum temperatures [Hijmans et al. 2005] (number of
entities |E| = 2575, number of left-hand side variables |VL| = 194, and number of
right-hand side variables |VR| = 48).

To allow experiments with the CARTwheels algorithm, we extract a subset of this data,
which we denote as BioS , by selecting only areas from Northern Europe, namely areas
located at latitudes between 50 and 71◦ North, and keeping only the average monthly
temperatures and rainfall (|E| = 1271, |VL| = 194, and |VR| = 24).

To demonstrate the scalability of our algorithms, we consider a dataset similar to Bio
but spanning the entire globe rather than only Europe. This Globe dataset contains the
same set of bioclimatic variables as Bio and all terrestrial mammals from the IUCN Red
List spatial data [IUCN 2014]. The alignment of the two data sets was done by Lawing
et al. [2016]. The resulting dataset is significantly larger than Bio, having |E| = 54013,
|VL| = 4754, and |VR| = 48.

The Cover dataset is another large dataset, with more than half a million entities, but
with only a few dozen variables. It comes from the UCI Machine Learning repository.8
Entities once again represent geographic areas. As the right-hand side variables, we
consider the wilderness area, soil type, and cover type variables and keep the other
variables such as elevation and slope on the left-hand side (|E| = 581012, |VL| = 10, and
|VR| = 45).

Finally, the DBLP dataset is extracted from the popular computer science bibliography
database.9 The entities are researchers and one side records the co-authorship graph,
while the other side records the number of their publications in each of the major
conferences considered (|E| = 2345, |VL| = 2345, and |VR| = 19).

6.2. Behavior of the tree-based algorithms
Finding Planted Redescriptions. Before tackling these real-world datasets, we tested

our algorithms on synthetic data where we planted redescriptions corrupted by noise.
We generated synthetic datasets in which we hid redescriptions to assess whether our

algorithms are able to recover them, following a procedure similar to that of Galbrun
and Miettinen [2012b]. Specifically, we generated binary matrices with 300 entities
(rows) and 10 variables (columns) and planted a query involving three variables in each
of them so as to obtain pairs of datasets containing a perfectly accurate redescription
supported by 30 to 50 entities. We then added random noise with densities ranging
between 0.01 and 0.1 and which could either be destructive (i.e. potentially reducing the
accuracy of the planted redescription) or not. The data on one side of these synthetic

8https://archive.ics.uci.edu/ml/datasets/Covertype
9http://www.informatik.uni-trier.de/∼ley/db/

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:20

pairs of matrices was turned into real values by substituting zeros and ones by values
sampled uniformly at random from the intervals [0, 0.25] and [0.75, 1] respectively.

Both algorithms behaved as expected, recovering the planted redescriptions with
the lowest noise densities and returning redescriptions with better accuracy than the
planted ones under higher levels of noise, because more accurate redescriptions can be
incidentally created as a result of inserting noise.

Quality of the redescriptions. To further explore the behavior of our algorithms, this
time on real-world data, we conducted experimental runs with both our algorithms
while varying their parameters. In particular, we used either the Gini coefficient or the
information gain as the impurity measure for learning the decision trees and set the
minimum number of entities per leaf, lmin, to 1, 5, 10 or 50. In all these experiments, we
considered versions of the datasets which consist of a Boolean side and a numerical
side and used the variables from the Boolean side of the data (VL) to initialize the tree
algorithms.

On the Bio dataset, both algorithms always returned statistically significant rede-
scriptions (p-value < 0.01). All other conditions being equal, using the Gini coefficient
as impurity measure with SplitT resulted in slightly deeper trees and, consequently, in
longer redescriptions. Using the information gain produced more duplicate redescrip-
tions for both algorithms.

We present examples of redescriptions mined by our algorithms from the Bio dataset.
The LayeredT algorithm with information gain and lmin = 50 found the following
redescription of accuracy J = 0.691 and support |E1,1| = 663:

qL = (Kuhl’s pipistrelle ∧ ¬Alpine marmot)
∨ (¬Kuhl’s pipistrelle ∧ house mouse ∧ ¬ common shrew)

qR = ([t3+ < 11.05] ∧ [6.375 ≤ t3∼ ] ∧ [3.55 ≤ t1+ ]) ∨ ([11.05 ≤ t3+ ] ∧ [−3.95 ≤ t2− ])

The SplitT algorithm with Gini coefficient and lmin = 20 found the following redescrip-
tion of accuracy J = 0.865 and support |E1,1| = 1716:

qL = (mountain hare ∧wild boar ∧ ¬European snow vole) ∨ (¬mountain hare)
qR = ([t5∼ < 10.35] ∧ [t7+ < 13.45]) ∨ ([10.35 ≤ t5∼ ] ∧ [13.55 ≤ t6∼ ])

The corresponding tree diagrams are shown respectively in Figure 5 (left) and Figure 8.

Comparison of SplitT and ReReMi on the Globe data. We use the Globe dataset to
highlight some differences between the typical results obtained using the SplitT and
ReReMi algorithms. Particularly, in this data, the results given by SplitT explained small
numbers of entities, while ReReMi returned redescriptions with very high support. One
type of result is not, per se, better than the other, but they do highlight the differences
in the way the algorithms work. We would also like to emphasize that restricting the
minimum or maximum support would allow the user to steer the algorithms towards
redescriptions with more (or fewer) entities in the support sets. Here, we used 15 and
500 as the minimum sizes of E1,1 and E0,0 respectively.

We present two example redescriptions in Figure 15. The redescription returned by
SplitT has |E1,1| = 23, concentrating on the west coast of India. It describes the area
where the lesser woolly horseshoe bat lives but neither the dusky leaf-nosed bat nor the
Bengal fox are observed. Notably the right-hand side query qR uses only precipitation
variables.

The right-hand side example of Figure 15 is obtained with ReReMi and has a sig-
nificantly larger support of |E1,1| = 10 875. It describes the areas inhabited either by
the Eurasian or Canada lynx as the areas where March’s maximum temperature is
between −24.4 ◦C and 3.4 ◦C. These are but two examples of redescriptions found from

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:21

qL = lesser woolly horseshoe bat
∧¬dusky leaf-nosed bat
∧¬Bengal fox

qL = Eurasian lynx ∨ Canada lynx

qR = [1109.5 ≤ p7∼ ] ∧ [p5∼ ≤ 292.0]
∧[96.5 ≤ p10∼ ]

qR = [−24.40 ≤ t3+ ≤ 3.40]

J = 0.719, |E1,1| = 23 J = 0.675, |E1,1| = 10875

Fig. 15. Example redescriptions obtained from the Globe data with SplitT (left) and ReReMi (right). The
maps use the Mollweide projection and the left one is restricted between the equator and the latitude 60◦

north and east from the prime meridian.

Table I. Accuracy of redescriptions. We report the number of redescriptions mined
(#), the average accuracy (Jaccard coefficient, J) in the training data and overall
as well as the average of the ratio between the accuracy in the training set and
overall (± standard deviation).

Data Algorithm # J training J overall J ratio

BioS SplitT 46 0.87 (±0.09) 0.86 (±0.09) 0.98 (±0.01)
LayeredT 77 0.61 (±0.17) 0.61 (±0.17) 0.99 (±0.02)

ReReMi 9 0.88 (±0.04) 0.58 (±0.22) 0.66 (±0.24)
CARTwheels 88 0.87 (±0.07) 0.87 (±0.07) 0.99 (±0.01)

Bio SplitT 137 0.82 (±0.12) 0.81 (±0.12) 0.99 (±0.01)
LayeredT 156 0.49 (±0.20) 0.49 (±0.20) 1.01 (±0.01)

ReReMi 56 0.92 (±0.04) 0.55 (±0.27) 0.59 (±0.30)

DBLP SplitT 37 0.75 (±0.19) 0.70 (±0.17) 0.94 (±0.07)
LayeredT 577 0.13 (±0.07) 0.12 (±0.07) 0.96 (±0.11)

ReReMi 23 0.36 (±0.05) 0.06 (±0.04) 0.18 (±0.15)

this data, but they illustrate the different types of redescriptions SplitT and ReReMi
typically find.

6.3. Generalization to unknown
As we argued in Section 4.3, testing how well the results generalize to unseen data is
an important step in preventing the user from being carried away by the power of the
interactive mining tool. Besides, generalizability is of course a very desirable feature for
any data analysis result, irrespective of how it was obtained. Given that the different
redescription mining algorithms find very different types of queries (trees versus the
linearly parseable queries of ReReMi) and find them in different ways, it is not clear how
well the results of the different methods generalize.

We compared the redescriptions obtained with the SplitT and LayeredT algorithms
proposed in this article, to those returned by the ReReMi algorithm (see Section 5.1) and
the CARTwheels algorithm [Ramakrishnan et al. 2004] (implementations provided by
the authors).

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:22

To study the ability of the redescriptions to generalize to unseen data, we selected
80% of the entities, mined redescriptions from this training set, then assessed their
accuracy on the full original datasets.

For the DBLP dataset, entities were split at random between training set and hold-out
set. For Bio and BioS , we had to take into account the north–south trends in climate
data. Predicting conditions in northern areas with data from southern ones (or vice
versa) is unlikely to succeed. Hence we sampled longitudinal stripes, and the hold-out
set consisted of all points lying (roughly) on the sampled longitudes (in total 20% of
observations were held out).

With Bio and BioS , we set the minimum support to 200 and the maximum support to
1800 (with DBLP, to 5 and 1300 respectively) and the maximum p-value to 0.05 for all
algorithms and all datasets.

The CARTwheels algorithm was able to handle only the BioS data, running out of
memory with the other datasets. As CARTwheels also requires fully binary data, we
discretized the climate data on BioS . We tested various techniques, and the results we
report here are based on segmenting each numerical variable into 4 segments, as this
gave the best results among all of the tested methods.

Statistics for this experiment are reported in Table I. As our goal is to find redescrip-
tions that hold well in the unseen data, we measure the quality of the generalization
using the average ratio of the accuracy of the redescriptions in the training data to
their accuracy in the full data. If this ratio is substantially below 1, we conclude that
the redescriptions did not generalize well.

On BioS , SplitT and CARTwheels achieve essentially the same quality, both return-
ing high-accuracy redescriptions that generalize well. CARTwheels’ larger number of
redescriptions is due to the fact that it returned multiple almost-identical redescrip-
tions. LayeredT also reported redescriptions that generalize well, although their overall
accuracy was lower than with the other methods, while ReReMi apparently overfitted.
On Bio, we observe similar behaviors from SplitT, LayeredT, and ReReMi (CARTwheels
could not be used on this data) as in BioS , with SplitT giving the best overall results.

On the DBLP data, SplitT is the only algorithm returning results that are accurate
and also generalize well, although most of its redescriptions had lower supports than
the redescriptions returned by the other methods: LayeredT returns redescriptions with
very low accuracy, and while ReReMi’s accuracy is better on the training data, it again
overfits and has very low generalizability.

6.4. Scalability
In our final experiment, we studied how well Siren’s parallel redescription mining
framework scales to multiple processors. Recall from Section 4.4 that Siren can dis-
tribute the computation of the initial pairs and of candidate expansions to different
threads. Meanwhile, the main thread collects the redescriptions produced and filters
them. This adds some overhead to the otherwise embarrassingly parallel workload, and
the purpose of the experiments in this section is to study the effects of that overhead.

In this experiment, we use five datasets. The first two are variants of the DBLP
dataset with both sides consisting of either Boolean or numerical variables, respectively.
The next two datasets are the full Bio and the Globe datasets, both with Boolean
variables on one side and numerical variables on the other. The last one is the Cover
dataset, with numerical variables on one side and mostly Boolean variables on the
other. We applied the ReReMi and SplitT algorithms on each dataset in turn, with 1, 2,
4 and 8 threads, while limiting the number of candidates expanded to 500 for all but
the Globe dataset, which contains a large number of variables and for which we thus
set this threshold to 1000.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:23

Bool. DBLP Num. DBLP Bio Globe (1000 pairs) Cover

1 2 4 8
0

1

2

·103

Number of threads

R
un

ni
ng

ti
m

e
(s

)

1 2 4 8
0

1

2

·104

Number of threads
1 2 4 8

0

1

2

3

·103

Number of threads
1 2 4 8

0

10

20

30

·103

Number of threads
1 2 4 8

0

5

10
·104

Number of threads

0 200 400
0

5

10

Candidate index

R
un

ni
ng

ti
m

e
(s

)

0 200 400
0

10

20

Candidate index
0 200 400

0

5

10

15

Candidate index
0 400 800

0

20

40

Candidate index
0 200 400

0

2

4

·102

Candidate index

Fig. 16. Running times for the ReReMi algorithm with increasing numbers of threads. The top row of plots
shows the total running time and the running time for generating initial pairs (purple and blue curves
respectively) with standard deviation interval. The bottom row of plots shows the running time per candidate
expansion as a function of the index of the candidate in the processing queue, averaged over a sliding window
of 15 candidates, from using a single thread (green curve) to using 8 threads (red curve).

Bool. DBLP Num. DBLP Bio Globe (1000 pairs) Cover

1 2 4 8
0

1

2

·103

Number of threads

R
un

ni
ng

ti
m

e
(s

)

1 2 4 8
0

1

2

3

4

·103

Number of threads
1 2 4 8

0

10

20

30

Number of threads
1 2 4 8

0

10

20

30

·103

Number of threads
1 2 4 8

0

1

2

·103

Number of threads

0 200 400
0

10

20

Candidate index

R
un

ni
ng

ti
m

e
(s

)

0 200 400
0

10

20

Candidate index
0 200 400

0

0.2

0.4

0.6

Candidate index
0 400 800

0

1

2

·102

Candidate index
0 200 400

0

1

2

·102

Candidate index

Fig. 17. Running times for the SplitT algorithm with increasing numbers of threads. The top row of plots
shows the total running time with standard deviation interval. The bottom row of plots shows the running
time per candidate expansion as a function of the index of the candidate in the processing queue, averaged
over a sliding window of 15 candidates, from using a single thread (green curve) to using 8 threads (red
curve).

Figure 16 shows the running times for applying the ReReMi algorithm with an in-
creasing number of threads. The top row of plots shows the total running time and
the running time for generating initial pairs (purple and blue curves respectively)
with the respective standard deviation intervals. The bottom row of plots, on the other

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:24

hand, shows the running time per candidate expansion as a function of the index of the
candidate, that is, depending at which stage of the algorithm execution the candidate
is handled. The green curve corresponds to using a single thread and the red curve to
using 8 threads, with intermediate cases in between. To remove minor variations, we
averaged these values with a sliding window of 15 candidates.

Similarly, Figure 17 shows the running times for applying the SplitT algorithm with
an increasing number of threads. Note that in this case, we do not report the running
times for computing the initial target vectors. This is because this computation, done for
each suitable variable separately, is already very efficient and therefore not distributed.

In Figure 16 we notice that increasing the number of threads clearly speeds up
the mining process overall. As could be expected, however, the benefits of adding new
threads tend to diminish as the number of threads increases. Looking at the running
time per candidate we can see a trend, most noticeable for the Boolean DBLP and the
Globe datasets, where later candidates require more time than earlier ones. This is
mainly due to the filtering performed by the main thread, which requires to compare
the newly built redescription to previously retained results. As the mining advances,
the number of those results increases and the filtering becomes slower. For the initial
pairs, using two threads rather than only one requires to divide the task without adding
much computing power, hence the latter is actually more efficient. This can be reversed
by adding further threads. An important benefit of using multiple threads is that the
first initial pairs can already start being expanded and redescriptions obtained before
the initial pair computation completes. Hence, the first results can be returned much
earlier to the user.

This is particularly visible with the Globe dataset (see Figure 16, top row, second
column on the right) where the number of variable pairs is very large and their compu-
tation takes up a major part of the runtime. In fact, with two threads the expansion of
1000 candidates pairs completes before all variables pairs have been tested. In this case,
the initial pair generation is interrupted to avoid generating pairs needlessly. On the
plot, we indicate with a cross the runtime of the full initial pair generation when using
two threads. Depending on cases, it could be interesting to distribute the load of initial
pairs generation and candidates expansion differently among the available threads.

Having multiple threads is even more useful with the Cover dataset (see Figure 16,
top row, first column on the right). There, the computation of initial pairs is very fast,
since the number of variables is small, but the computation of individual expansions is
quite demanding, due to the very large number of entities. Therefore, computing the
candidates in a distributed fashion is very beneficial.

When applying the SplitT algorithm on the Bio dataset, the number of initial vectors
is limited by the number of Boolean variables, hence there are only few candidates
to grow, the computation completes quickly, and the addition of threads does not help
much, if at all. For both variants of the DBLP dataset, however, this is not the case and
the effect of adding threads is similar to the one observed with the ReReMi algorithm.
For the Boolean variant, we see a clear drop in the running time per candidate after
about the first 300 candidates. This is because the candidates are processed starting
with the most promising ones, at some point the candidates cease to produce expansions
of acceptable quality and the growing procedure is cut short.

Similarly, with the Cover dataset the SplitT algorithm has very few candidates to
expand (at most one per variable) and hence distributing their computation comes with
a high overhead but no benefit at all.

In summary, we observed that the use of multiple processors can produce substantial
speed-ups in many cases and especially with the ReReMi algorithm, so that the overall
mining only requires half of the time needed with a single thread or even less. Clearly,
this helps improve the responsiveness of Siren.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:25

7. DISCUSSION AND RELATED WORK
In this section, we first briefly point out some earlier interactive data mining tools. We
then discuss issues regarding the manipulation of sets of redescriptions, the selection of
good patterns, provenance and sensemaking, meanwhile providing directions for future
work.

7.1. Existing tools for interactive pattern mining
The Knowledge Factory, presented by Webb [1996] as a knowledge acquisition environ-
ment, has possibly been the first attempt to design an interface for a data mining task,
in this case association rule learning. A more recent notable example is the KNIME
system [Berthold et al. 2009], allowing users to build data analysis workflows. Paurat
et al. [2014] presented a method for interactively creating 2D embeddings, while MIME
[Goethals et al. 2011] is a tool for interactive and visual pattern mining. Apolo [Chau
et al. 2011] and TourViz [Chau et al. 2012], on the other hand, are both dedicated to
the interactive analysis of graphs. Very recently, Mihelčić and Šmuc [2016] proposed
InterSet, a tool for the interactive exploration of sets of redescriptions.

7.2. Handling sets of redescriptions

InterSet [Mihelčić and Šmuc 2016] provides visualizations and an interface for working
with sets of redescriptions. Incorporating a similar capability to Siren would be useful,
as well. The ability to visualize and compare several redescriptions is important for
exploring the results of full and partial automated mining, for supporting the process of
redundancy filtering, as well as when tuning the settings and examining the effect of
different constraints.

In particular, redescription mining often suffers from redundant results, where many
redescriptions redescriptions describe the same phenomenon. Redundancy filters can
be used to automatically weed through a list of redescriptions and select non-redundant
ones based on support and variables overlap. Highlighting differences in supports using
projections, and differences in conditions on the variables using parallel coordinate
plots, would support the understanding of these filters. Recent work by Kalofolias et al.
[2016] presents an approach fo computing how surprising a redescription is given the
already-seen redescriptions; if some redescription is not sufficiently surprising, it can
be considered redundant and removed.

In addition, at a higher level, contrasting the statistics of different collections of
redescriptions would also facilitate the comparison of results obtained under different
constraints, with some areas emphasized, with some variables enabled or disabled, and
so on, thereby allowing to better understand the effect of different parameterizations.

7.3. Pattern selection and associated pitfalls
Recently, research interest has arisen at the crossroads of interactive data mining and
pattern selection [Boley et al. 2013; van Leeuwen 2014; Miettinen 2014].

At the heart of interactive data mining is the user’s ability to tell the algorithm that
he wants more or less of a certain type of results. In principle, this is not a problem in
Siren: the user could simply select a redescription he wants to remove from the beam
search or to extend further. The problem, however, is that there can be (and usually
are) other, similar redescriptions that the user might also want to remove or extend. He
can do that manually, of course, but with large numbers of redescriptions, the process
becomes unbearably tedious very soon.

A solution to this problem would be to remove (or extend) all similar redescriptions.
But how should similarity be defined? To give an example, consider a case where the
user finds a redescription saying that the area where the polar bear lives is the area

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:26

with January’s mean temperature below −20 ◦C, in other words, polar bears live in a
cold climate. This is hardly a surprising result, and the user might want to remove
it (and other similar results) from the search. But we can characterize the cold areas
using other variables than just January’s mean temperature, so it is not enough to just
stop extending any redescription with the polar bear and January’s mean temperature
in it. Also, we cannot just remove all the redescriptions with the polar bear – that could
remove some very interesting redescriptions, too. Finally, we could consider the area in
which the redescription holds. But even that leaves a lot to be hoped for: If we remove
all redescriptions that contain that area, we probably remove too many redescriptions,
but if we instead remove redescriptions contained in the area, we probably miss most of
the redescriptions we should remove.

The problem of removing and extending similar redescriptions is closely related to
that of redundancy reduction. There are often multiple redescriptions that represent
the same phenomenon (think of the polar bear living in cold areas), and ideally, we
would like to present only one of them to the user. In other words, we do not want to
present to the user any redescription that does not add any (or add only marginally) new
information over the redescriptions he has already seen. But as with deciding which
redescription is similar to a selected one, also quantifying the redundancy between
redescriptions is a difficult problem.

The goal of data mining is to find new and interesting information from the data.
In interactive data mining in general, and with the tools discussed in this paper in
particular, the user can guide the data mining method towards the results he prefers.
This raises new problems. First, we have to control that the data supports the results the
user finds and second, we must be careful that the user actually finds new information,
not just the information he already knew.

The first problem, making sure that the obtained results are supported by the data, is
ages old in sciences. In short, it is the question of testing the significance of a hypothesis,
and there is a vast body of statistical literature tackling it. Our proposed algorithms
mitigate the problem by computing a p-value, but as it is based on a fixed null hypothesis,
it is not adequate in every case.

The second problem is more conceptual: Taken to an extreme, the interactivity
removes the data mining from the interactive data mining. If the user more or less
directly tells the algorithm the redescription he wants to see, the Siren program turns
into a mere plotting interface. Even on the less extreme case, the user can easily (and
unwittingly) guide the algorithm towards the kind of results he wanted to see. Together
with the fact that we can only check against a fixed null hypothesis, this causes a
considerable risk of false findings. The onus is on the user to make sure he does not
misuse the tool.

7.4. Provenance and sensemaking
The term ‘sensemaking’ denotes the process by which the user of a visual tool makes
sense of information presented to him. Originating in concepts developed in the cognitive
sciences, recent works aim at studying and modeling this workflow, in order to adapt
interactive tools to better support it [Endert et al. 2014a; Endert et al. 2014b; Sun et al.
2014; Pienta et al. 2015].

In the context of data analytics, ‘provenance’ has been used to refer to the history
of changes made to the data and interactions with the interface that occur during the
sensemaking process [Ragan et al. 2016]. Authors have argued that better logging could
help elucidate the sensemaking process [Guo et al. 2016] and improve the analytics
tools [Alspaugh et al. 2014].

Indeed, when interpreting a redescription, one should bear in mind the assumptions
attached to it. For example, whether some variables were disabled or whether the focus

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:27

was put on some area when it was generated. Hence, keeping track of the constraints
used when mining a redescription is essential. However, if the user is allowed to stop
the extension process, modify the constraints, and resume the search, this might be
fairly intricate and interpretation of the results become impossible.

Recording the interaction history would provide a logging mechanism that would
support provenance, by keeping track of the operations applied to the data, and of the
settings that gave rise to the results. Furthermore, in order to support the sensemaking
process, the tool should support annotation in order to keep track of the thought
path during the analysis. For example, this could be achieved by generating annotable
screenshots of the current window of interest, and by adding comments to the interaction
history and macros. Organizing the history and macros into blocks would help to further
clarify the logical structure of the analysis. In addition, with the ability to link to objects
in the current environment – such as redescriptions, groups of entities, or literals –
these could be explicitly related to each other. Exporting and importing easily such
annotations and macros is a very important feature to support collaboration and
deferred interpretation of the results.

Currently, as a preliminary solution, a history of edits made to redescriptions is
kept in the form of a list of intermediate results. Also, the active settings can be saved
alongside the data and results in dedicated archives, but nothing guarantees that
all the results in the archive were obtained with the stored settings. Clearly, much
work remains to be done in this direction. To be relevant, such features should best be
developed in close collaboration with a community of users of the tool, a development
process that comes with its own set of challenges.

8. CONCLUSION
Our contributions in this work are two-fold. On one hand, we presented the Siren tool
for interactive and visual redescription mining. On the other hand, we also presented
two new algorithms for redescription mining based on decision tree induction. Siren
provides a framework to which new visualizations and redescription mining algorithms
can be added easily. Its state-of-the-art features, such as linked and interactive visu-
alizations, have proven to be very useful in practice. The new tree-based algorithms
are capable of finding different types of redescriptions compared to our older ReReMi
algorithm. Subjectively, the redescriptions found with these methods are not clearly
superior to those found with ReReMi, but our experiments indicate that the tree-based
methods are capable of finding redescriptions that generalize better to unseen data.

Further work is needed to properly assess the usefulness of the various visualizations
in Siren, either via a controlled study, or by gathering user experiences from real-world
use cases. The users’ ability to control the mining process is somewhat limited, and a
possibility to indicate a preference (or lack thereof) toward a particular type of results
could open up new interaction methods, as we argued in the previous section. In general,
the current redescription mining algorithms find large redescriptions sets, while it is
probably preferable to aim at finding a good set of redescriptions instead.

REFERENCES
Sara Alspaugh, Archana Ganapathi, Marti Hearst, and Randy Katz. 2014. Better Logging to Improve

Interactive Data Analysis Tools. In Proceedings of the ACM SIGKDD Workshop on Interactive Data
Exploration and Analytics (IDEA ’14). 19–25. Retrieved 23 October 2016 from http://poloclub.gatech.edu/
idea2014/

A. Annoni, Lars Bernard, Arvid Lillethun, Johannes Ihde, Javier Gallego, Michael Rives, Erik Sommer, Hugo
Poelman, Sophie Condé, Mark Greaves, Pertti Uotila, Jorge Teixeira Pinto, João Agria Torres, Raino
Lampinen, Maxime Kayadjanian, Volker Schmidt-Seiwert, Andrus Meiner, Claude Luzet, and Albrecht
Wirthmann. 2004. Short Proceedings of the 1st Workshop on European Reference Grid. JRC-Institute for
Environment and Sustainability, Ispra, Italy.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:28

Michael R. Berthold, Nicolas Cebron, Fabian Dill, Thomas R. Gabriel, Tobias Kötter, Thorsten Meinl, Peter
Ohl, Kilian Thiel, and Bernd Wiswedel. 2009. KNIME — the Konstanz Information Miner: Version 2.0
and Beyond. SIGKDD Explor. Newsl. 11, 1 (2009), 26–31. DOI:http://dx.doi.org/10.1145/1656274.1656280

Mario Boley, Bo Kang, Pavel Tokmakov, Michael Mampaey, and Stefan Wrobel. 2013. One Click Mining — In-
teractive Local Pattern Discovery through Implicit Preference and Performance Learning. In Proceedings
of the ACM SIGKDD Workshop on Interactive Data Exploration and Analytics (IDEA ’13). ACM, New
York, 27–35. DOI:http://dx.doi.org/10.1145/2501511.2501517

Leo Breiman, Jerome H Friedman, Richard A Olshen, and Charles J Stone. 1984. Classification and regression
trees. Wadsworth International Group, Belmont, CA.

Duen Horng Chau, Leman Akoglu, Jilles Vreeken, Hanghang Tong, and Christos Faloutsos. 2012. TourViz:
Interactive Visualization of Connection Pathways in Large Graphs. In Proceedings of the 18th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’12). ACM, New York,
1516–1519. DOI:http://dx.doi.org/10.1145/2339530.2339769

Duen Horng Chau, Aniket Kittur, Jason I. Hong, and Christos Faloutsos. 2011. Apolo: Making Sense of
Large Network Data by Combining Rich User Interaction and Machine Learning. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (CHI ’11). ACM, New York, 167–176.
DOI:http://dx.doi.org/10.1145/1978942.1978967

Thomas Dean and Mark Boddy. 1988. An Analysis of Time-Dependent Planning. In Proceedings of the Seventh
National Conference on Artificial Intelligence (AAAI ’88). MIT Press, Cambridge, 49–54.

Alex Endert, M. Shahriar Hossain, Naren Ramakrishnan, Chris North, Patrick Fiaux, and Christopher
Andrews. 2014a. The human is the loop: new directions for visual analytics. J. Intell. Inf. Syst. 43, 3
(2014), 411–435. DOI:http://dx.doi.org/10.1007/s10844-014-0304-9

Alex Endert, Chris North, Remco Chang, and Michelle Zhou. 2014b. Toward Usable Interactive Analytics:
Coupling Cognition and Computation. In Proceedings of the ACM SIGKDD Workshop on Interactive Data
Exploration and Analytics (IDEA ’14). 52–56. Retrieved 23 October 2016 from http://poloclub.gatech.edu/
idea2014/

Daria Gaidar. 2015. Mining redescriptions in S. aureus data. Master’s thesis. Saarland University.
Esther Galbrun and Pauli Miettinen. 2012a. A Case of Visual and Interactive Data Analysis: Geospatial

Redescription Mining. In Proceedings of the ECML-PKDD workshop on Instant Interactive Data Mining.
Retrieved 23 October 2016 from http://adrem.ua.ac.be/iid2012/

Esther Galbrun and Pauli Miettinen. 2012b. From black and white to full color: Extending re-
description mining outside the Boolean world. Stat. Anal. Data Min. 5, 4 (2012), 284–303.
DOI:http://dx.doi.org/10.1002/sam.11145

Esther Galbrun and Pauli Miettinen. 2012c. Siren: An Interactive Tool for Mining and Visual-
izing Geospatial Redescriptions. In Proceedings of the 18th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD ’12). ACM, New York, 1544–1547.
DOI:http://dx.doi.org/10.1145/2339530.2339776

Esther Galbrun and Pauli Miettinen. 2014. Interactive redescription mining. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data (SIGMOD ’14). ACM, New York, 1079–1082.
DOI:http://dx.doi.org/10.1145/2588555.2594520

Esther Galbrun and Pauli Miettinen. 2016. Analysing Political Opinions Using Redescription Mining. In
Proceedings of the 2016 IEEE International Conference on Data Mining Workshop (ICDMW ’16). IEEE,
Los Alamitos. To appear.

Adrianna Gallo, Pauli Miettinen, and Heikki Mannila. 2008. Finding Subgroups having Several Descriptions:
Algorithms for Redescription Mining. In Proceedings of the 2008 SIAM International Conference on Data
Mining (SDM ’08). SIAM, Philadelphia, 334–345. DOI:http://dx.doi.org/10.1137/1.9781611972788.30

Neha Goel, Michael S. Hsiao, Narendran Ramakrishnan, and Mohammed J. Zaki. 2010. Mining Complex
Boolean Expressions for Sequential Equivalence Checking. In Proceedings of the 19th IEEE Asian Test
Symposium (ATS ’10). IEEE, Los Alamitos, 442–447. DOI:http://dx.doi.org/10.1109/ATS.2010.81

Bart Goethals, Sandy Moens, and Jilles Vreeken. 2011. MIME: A framework for interactive visual pattern
mining. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD ’11). ACM, New York, 757–760. DOI:http://dx.doi.org/10.1145/2020408.2020529

Joseph Grinnell. 1917. The Niche-Relationships of the California Thrasher. The Auk 34, 4 (1917), 427–433.
DOI:http://dx.doi.org/10.2307/4072271

Hua Guo, Steven R. Gomez, Caroline Ziemkiewicz, and David H. Laidlaw. 2016. A Case Study Using
Visualization Interaction Logs and Insight Metrics to Understand How Analysts Arrive at Insights. IEEE
Trans. Vis. Comput. Graphics 22, 1 (Jan. 2016), 51–60. DOI:http://dx.doi.org/10.1109/TVCG.2015.2467613

Jeffrey Heer and Ben Shneiderman. 2012. Interactive Dynamics for Visual Analysis. Commun. ACM 55, 4
(April 2012), 45–54.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:29

Robert J. Hijmans, Susan E. Cameron, Juan L. Parra, Peter G. Jones, and Andy Jarvis. 2005. Very High
Resolution Interpolated Climate Surfaces for Global Land Areas. Int. J. Climatol. 25 (2005), 1965–1978.

Alfred Inselberg. 2009. Parallel coordinates: Visual multidimensional geometry and its applications. Springer,
New York. DOI:http://dx.doi.org/10.1007/978-0-387-68628-8

IUCN. 2014. The IUCN Red List of Threatened Species. Version 2014.1. (2014). Retrieved 3 July 2016 from
http://www.iucnredlist.org

Janis Kalofolias, Esther Galbrun, and Pauli Miettinen. 2016. From Sets of Good Redescriptions to Good Sets
of Redescriptions. In Proceedings of the 16th IEEE International Conference on Data Mining (ICDM ’16).
IEEE, Los Alamitos. To appear.

Deept Kumar. 2007. Redescription mining: Algorithms and applications in bioinformatics. Ph.D. Dissertation.
Virginia Polytechnic Institute and State University, Department of Computer Science, Virginia Tech.

A. Michelle Lawing, Jussi T. Eronen, Jessica L. Blois, Catherine H. Graham, and P. David Polly. 2016.
Community functional trait composition at the continental scale: the effects of non-ecological processes.
Ecography 39 (2016), 13. DOI:http://dx.doi.org/10.1111/ecog.01986

Pauli Miettinen. 2014. Interactive Data Mining Considered Harmful (If Done Wrong). In Proceedings of the
ACM SIGKDD Workshop on Interactive Data Exploration and Analytics (IDEA ’14). 85–87. Retrieved 23
October 2016 from http://poloclub.gatech.edu/idea2014/

Matej Mihelčić and Tomislav Šmuc. 2016. InterSet: Interactive Redescription Set Exploration. In Pro-
ceedings of the 19th International Conference on Discovery Science (DS ’16). Springer, Cham, 35–50.
DOI:http://dx.doi.org/10.1007/978-3-319-46307-0 3

A. J. Mitchell-Jones, G. Amori, W. Bogdanowicz, B. Krystufek, P. J. H. Reijnders, F. Spitzenberger, M. Stubbe,
J. B. M. Thissen, V. Vohralik, and J. Zima. 1999. The Atlas of European Mammals. Academic Press,
London.

Petra Kralj Novak, Nada Lavrač, and Geoffrey I. Webb. 2009. Supervised Descriptive Rule Discovery: A
Unifying Survey of Contrast Set, Emerging Pattern and Subgroup Mining. J. Mach. Learn. Res. 10 (2009),
377–403.

Gregorio Palmas, Myroslav Bachynskyi, Antti Oulasvirta, Hans-Peter Seidel, and Tino Weinkauf.
2014. An edge-bundling layout for interactive parallel coordinates. In Proceedings of the
2014 IEEE Pacific Visualization Symposium (PacificVis ’14). IEEE, Los Alamitos, 57–64.
DOI:http://dx.doi.org/10.1109/PacificVis.2014.40

Laxmi Parida and Naren Ramakrishnan. 2005. Redescription Mining: Structure Theory and Algorithms. In
Proceedings of the 20th AAAI Conference on Artificial Intelligence (AAAI ’05). MIT Press, Cambridge,
837–844.

Daniel Paurat, Roman Garnett, and Thomas Gärtner. 2014. Interactive Exploration of Larger Pattern
Collections: A Case Study on a Cocktail Dataset. In Proceedings of the ACM SIGKDD Workshop on
Interactive Data Exploration and Analytics (IDEA ’14). 98–106. Retrieved 23 October 2016 from http:
//poloclub.gatech.edu/idea2014/

Richard G. Pearson and Terence P. Dawson. 2003. Predicting the Impacts of Climate Change on the Distri-
bution of Species: Are Bioclimate Envelope Models Useful? Global Ecol. Biogeogr. 12 (2003), 361–371.
DOI:http://dx.doi.org/10.1046/j.1466-822X.2003.00042.x

Robert Pienta, James Abello, Minsuk Kahng, and Duen Horng Chau. 2015. Scalable graph explo-
ration and visualization: Sensemaking challenges and opportunities. In Proceedings of the Interna-
tional Conference on Big Data and Smart Computing (BigComp ’15). IEEE, Los Alamitos, 271–278.
DOI:http://dx.doi.org/10.1109/35021BIGCOMP.2015.7072812

J. R. Quinlan. 1986. Induction of decision trees. Machine Learning 1, 1 (1986), 81–106.
DOI:http://dx.doi.org/10.1023/A:1022643204877

Eric D. Ragan, Alex Endert, Jibonananda Sanyal, and Jian Chen. 2016. Characterizing Provenance in
Visualization and Data Analysis: An Organizational Framework of Provenance Types and Purposes. IEEE
Trans. Vis. Comput. Graphics 22, 1 (2016), 31–40. DOI:http://dx.doi.org/10.1109/TVCG.2015.2467551

Naren Ramakrishnan, Deept Kumar, Bud Mishra, Malcolm Potts, and Richard F. Helm. 2004. Turning
CARTwheels: An alternating algorithm for mining redescriptions. In Proceedings of the 10th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’04). ACM, New York,
266–275. DOI:http://dx.doi.org/10.1145/1014052.1014083

Naren Ramakrishnan and Mohammed J. Zaki. 2009. Redescription Mining and Applications in Bioinformatics.
In Biological Data Mining, Jake Chen and Stefano Lonardi (Eds.). Chapman & Hall/CRC, Boca Raton,
561–586.

Maoyuan Sun, Lauren Bradel, Christopher L North, and Naren Ramakrishnan. 2014. The role of interactive
biclusters in sensemaking. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’14). ACM, New York, 1559–1562. DOI:http://dx.doi.org/10.1145/2556288.2557337

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:30

Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. 2000. A Global Geometric Frame-
work for Nonlinear Dimensionality Reduction. Science 290, 5500 (Dec. 2000), 2319–2323.
DOI:http://dx.doi.org/10.1126/science.290.5500.2319

Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vlahavas. 2010. Mining Multi-label Data. In Data Mining
and Knowledge Discovery Handbook (second ed.), Oded Maimon and Lior Rokach (Eds.). Springer, New
York, 667–685. DOI:http://dx.doi.org/10.1007/978-0-387-09823-4 34

Lan Umek, Blaz Zupan, Marko Toplak, Annie Morin, Jean-Hugues Chauchat, Gregor Makovec, and Dragica
Smrke. 2009. Subgroup Discovery in Data Sets with Multi-dimensional Responses: A Method and a
Case Study in Traumatology. In Proceedings of the 12th Conference on Artificial Intelligence in Medicine
(AIME ’09). Springer, Berlin, 265–274. DOI:http://dx.doi.org/10.1007/978-3-642-02976-9 39

Matthijs van Leeuwen. 2014. Interactive Data Exploration Using Pattern Mining. In Interactive Knowledge
Discovery and Data Mining in Biomedical Informatics. Lecture Notes in Computer Science, Vol. 8401.
Springer, Berlin, 169–182. DOI:http://dx.doi.org/10.1007/978-3-662-43968-5 9

Geoffrey I. Webb. 1996. Integrating machine learning with knowledge acquisition through
direct interaction with domain experts. Knowl.-Based Syst. 9, 4 (1996), 253–266.
DOI:http://dx.doi.org/10.1016/0950-7051(96)01033-7

Tetiana Zinchenko, Esther Galbrun, and Pauli Miettinen. 2015. Mining Predictive Redescriptions with Trees.
In Proceedings of the 2015 IEEE International Conference on Data Mining Workshop (ICDMW ’15). IEEE,
Los Alamitos, 1672–1675. DOI:http://dx.doi.org/10.1109/ICDMW.2015.123

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.


