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The physics of assisted atomization process involves many spatial scales, where a wide variety of liquid inclusions of different sizes are produced. Large density and viscosity ratios associated with strong shearing flows make the process difficult to reproduce numerically. To correctly capture the dynamics of these spatial scales, each one should be resolved with an appropriate method, each one preserving the physical quantities and the correct interface topology. The simulation should reproduce enough physical time to allow reliable statistics. To address these problems, an original multi-scale methodology has been developed. It consists of three main items. The first is a coupled Level Set/Volume of Fluid method (CLSVOF) for accurate capture of the primary atomization process. The second an adaptive mesh refinement technique (oct-tree AMR) to dynamically optimize the structured Cartesian mesh. The third consists of a particle tracking algorithm to capture droplet dynamics. An improved Eulerian-Lagrangian coupling has been developed to assure a smooth transition between the Eulerian and the Lagrangian modelling of the droplets, where both models approach their design limits. The overall procedure is tested on simplified numerical tests and validated on a planar liquid sheet assisted atomization case. Results show its ability to reproduce the whole atomization process, from large scale instabilities to small droplet dynamics. A preliminary statistical spray analysis is performed as well, showing a realistic distribution of droplet sizes and average droplet diameter.

Introduction

The physics of atomization involves a wide range of phenomena and a strongly multi-scale dynamics, where many order of magnitude span between larger and smaller structures. Very different topologies such as drop, ligament, liquid sheet, may appear due to the many instabilities arising ( [START_REF] Stapper | An experimental study of the effects of liquid properties on the breakup of a two-dimensional liquid sheet[END_REF], [START_REF] Mansoura | Disintegration of liquid sheets[END_REF], [START_REF] Gutierrez Fernandez | Dynamic Primary Atomization Characteristics in an Airblast Atomizer[END_REF]). As the detailed simulation of all the spatial scales remains very expensive, the particle tracking method appear interesting for the smallest particles. Following this idea, the problem can be numerically split in two "moments" following the two stages of atomization, in order to adapt the local two-phase modelling. A separated phases model as the VOF or Level-Set could describe the primary atomization, where the two phases are clearly distinguished and the interface in subject to low frequency instabilities, while the dispersed phase model would be better adapted to describe the evolution of the sprays in terms of secondary atomization, transport and eventually evaporation. Indeed, if one consider a medium liquid drop, i.e. a quasi-spherical inclusion whose radius is equivalent to a few mesh cells, the Eulerian formulation is not able to correctly predict its dynamics. Actually, between 6 and 10 grid points per radius are necessary to described the evolution of such drop to avoid disappearance of liquid inclusion due numerical diffusion of level-set method, or less accurate interface representation of the piecewise linear reconstruction of VOF method. Moreover, the Lagrangian tracking could not be applied, the assumption of dispersed phase is not fulfilled any more. Hence, a third modelling scale have to be introduced so that the spatial gap between the two models is filled. In order to tackle these problems, the present work proposes an approach to model this third scale between pure Eulerian and Lagrangian representations: medium drops are supposed to have a rigid spherical shape, and they are followed by rigid translation while their mass and momentum properties are projected on the Eulerian field. This formulation results in a more conservative representation of the initial characteristics of the droplet. The hypothesis of spherical shape allows an efficient coupling with an AMR technique, where allowing a progressive mesh coarsening around the droplet makes the transition between purely Eulerian and Lagrangian formulations consistent. The reciprocal transformation has been adopted to treat the collision between Lagrangian particle with the interface of a large liquid inclusion. A CLSVOF method is used (from [START_REF] Menard | Coupling Level set/VOF/Ghost fluid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet[END_REF] and [START_REF] Sussman | A coupled Level Set and Volume of Fluid method for computing 3D and axisymmetric incompressible two-phase flow[END_REF]) to accurately predict the interface shape with the Level-Set description and to ensure local mass conservation with the VOF formulation. An adaptive mesh refinement (given by the PARAMESH package [START_REF] Macneice | PARAMESH : A parallel adaptive mesh refinement community toolkit[END_REF]) is dynamically performed around the resolved CLSVOF interface throughout the computation, so that jump conditions are accurately satisfied. The smallest particles are tracked with a Lagrangian formulation and a classical drag force, while medium ones are treated using the mixed Eulerian-Lagrangian method previously described. The whole procedure has been paralleized to allow relatively large computational domains. The numerical code is an evolution of the one described in [START_REF] Zuzio | An efficient block parallel amr method for two phase flow simulations[END_REF] and [START_REF] Sarthou | Multiscale Euler-Lagrange method for parallel simulation of atomization induced by air-blast planar injectors[END_REF].

Numerical method

The numerical methodology proposed here aims to solve twophase flows under the incompressibility hypothesis. Hence in each phase we consider the Navier-Stokes equations under free divergence velocity field constraint. Interface tracking between both phases is performed thanks to a CLSVOF ( Coupled Level-Set Volume Of fluid) method [START_REF] Sussman | A coupled Level Set and Volume of Fluid method for computing 3D and axisymmetric incompressible two-phase flow[END_REF] with some further improvements described in [START_REF] Sarthou | Multiscale Euler-Lagrange method for parallel simulation of atomization induced by air-blast planar injectors[END_REF]. Surface tension forces are taken into account by a ghost-fluid method (GFM) as well as viscous jump [START_REF] Kang | A boundary condition capturing method for multiphase incompressible flow[END_REF]. Five order accurate WENO schemes are used to discretize convective terms. AMR (Adaptive Mesh Refinement) is used to refine the grid near the interface. It is bases on the Paramesh library [START_REF] Macneice | PARAMESH : A parallel adaptive mesh refinement community toolkit[END_REF]. Finally pressure Poisson equation is solved by a Krylov BiCG-Stab precondionned by a multilevel algorithm built on the AMR tree. Detailed informations on the full algorithm can be found elsewhere [START_REF] Zuzio | An efficient block parallel amr method for two phase flow simulations[END_REF], [START_REF] Sarthou | Multiscale Euler-Lagrange method for parallel simulation of atomization induced by air-blast planar injectors[END_REF].

Multi-scale approach

The approach proposed in this paper proposes the separate treatment of the liquid inclusions in two main scenarios, depending on the to-be-converted particle size:

1. the droplet size is lesser than the local mesh cell size. This kind of droplet will be called "small inclusion" within this paper;

2. the droplet size is greater than the local mesh size. This kind of droplet will be called "medium inclusion" within this paper.

In the first case, the dispersed phase approach hypothesis are considered as satisfied, so that a classical treatment is done, either in one or two ways coupling1 ; in the second, a kind of penalty method has been developed to allow the more complex interaction of the medium droplets and the underlying flow. The proposed multi-scale approach includes the Lagrangian to Eulerian inverse conversion. This allows in the primary atomization process the droplets to collide and merge with a resolved liquid body. The collision is handled differently for the small and medium particles.

Treatment of medium structures

Handling the medium droplets involves three main items: their detection and subsequent conversion to Lagrangian droplets, their advection and their potential liquid collision.

Detection and transformation

The first step of the multi-scale algorithm is to detect the liquid inclusion to be transformed. A tag-propagation algorithm is employed. As illustrated on figure 1, each liquid inclusion is detected by propagation of a tag over each liquid-cell, i.e. a cell where the volume fraction C i > 0.5. At first, each liquid-cell is tagged with an unique number. Then, the smallest tag is iteratively propagated among each neighbouring liquid-cell. When the tag is entirely propagated among all liquid cells which constitute the liquid inclusion, the tag is then extended to all surrounding cells where 0 < C i < 0.5. Considering a liquid inclusion l, one can evaluate the volume of this inclusion ν l , its center of mass x l and average velocity v l over all cells i l which contains the liquid inclusion through the VOF function:

ν l = V cell ∑ i∈i l C i x l = V cell 1 ν l ∑ i∈i l x i C i v l = V cell 1 ν l ∑ i∈i l v i C i (1)
where v i is the eulerian velocity interpolated at the center of cell i and V cell the volume of the cell.

As it is quite difficult to determine a physical parameter (like Weber number) to determine the stability of any drop and allow the transition between Eulerian and Lagrangian resolution, a possible transition is determined here based on geometrical considerations. Let N l be the total number of cell contained in a liquid inclusion l. For very small inclusions where N l < 2 m , with m the dimension of the considered problem (m = 2 for bidimensional problems, m = 3 for three dimensional cases), the inclusion is automatically treated in a Lagrangian point particle way, without any other arguments. For medium inclusion 2 m ≤ N l ≤ 6 m , a sphericity criterion is used, as illustrated on figure 2. To this way, a sphere of equivalent volume is superimposed on the center of mass of the liquid inclusion, for which the radius is

r p = ν l π 1/m 3 4 (m-2)/m (2) 
and the difference of caracteristic length δ l and volume δ V (dashed part on the right of figure 2 are computed :

δ l = r p -L δ V = V cell ∑ i∈i l |C i -χ i | (3) 
where χ i = 1 if ||x i -x l || ≤ r p , 0 otherwise and L is the smallest length between the center of mass and the interface, i.e. L = φ (x l ). The inclusion is assumed as quasi-spherical if

δ l r p < α δ V ν l < β . (4) 
After some numerical test, α and β have been set between 0.5 and 1 (these values can be increased to force more conversions).

If those two criteria are satisfied, the inclusion becomes a Lagrangian particle of volume ν l , radius r p and initial velocity v p = v l at the location x p = x l . If they are not satisfied, the inclusion is still treated by the Eulerian CLSVOF resolution until a possible stabilization or fragmentation occurs. An original tracking method has been developed for the medium drop, in a way of a penalty method. Indeed, the idea of this method is to project the mass and momentum particle on the Eulerian field. Hence, for a given particle :

(ρ n+1 , µ n+1 , u n ) i = (ρ l , µ l , v p ) if x i -x p ≤ r p (ρ g , µ g , u n i ) otherwise (5) 
Then, the velocity prediction equation is solved on the Eulerian grid with the new values of density, viscosity and velocity updated with respect to particle positions. The pressure inside the drops is corrected by Laplace relation:

p n+1 i → p n+1 i + σ r p if ||x i -x p | ≤ r p (6)
Afterwards, the pressure correction equation is solved with the corrected pressure. Then, the new particle velocity is obtained by averaging the Eulerian velocity inside the considered drop

v p = 1 ν p ∑ i V cell,i C i u n+1 i if |x i -x p | ≤ r p (7)
and finally equation 13 is solved with this new particle velocity. This formulation take implicitly into account the drag force on the particle and lead to a more conservative form than the method presented into previous section, while allowing the de-refinement process as the particle moves away from the interface.

Drop-interface collision

In the present work, a re-impact algorithm is implemented to take into account of a possible collision between particles and the liquid-gas interface. The re-impact is allowed if a given particle is moving throw the interface and if this particle is sufficiently closed to it (see figure 3) i.e.:

C=1 C=0 φ>0 φ<0 φ p v C=1 C=0 φ>0 φ<0
Figure 3: Illustration of the re-impact algorithm. Fat continuous line : interface (φ = 0, C = 0.5), discontinuous line : iso-value of φ . Left : before collision, right : after collision. When a particle is closed to the interface moving throw it, the re-impact is allowed : both VOF and Level Set functions are reconstruct into the drop, and the Lagrangian particle is removed.

v p • ∇φ > 0, |φ p | < r p + ∆ x,min (8) 
where φ p is the interpolation of φ at a location x = x p and ∆ x,min the grid size. If those criterion are satisfied, both Level Set and VOF functions are reconstruct inside the drop:

φ n i = r p -||x p -x i ||,C n i = 1 (9) 
for all cells i inside the drop (i.e.||x p -x i || < r p ). To the drop periphery, the Level Set function is fixed to 0 and the difference between the drop volume and the VOF newly added is equally distributed to the VOF function on all cells at the drop periphery, to ensure mass conservation. Afterwards, the velocity inside de drop is imposed on the Eulerian field with momentum conservation consideration :

u n i → C n i ρ l v p + (1 -C n i )ρ g u n i C n i ρ l + (1 -C n i )ρ g (10) 
which is exactly equal to v p for full cells (i.e. C n i = 1) and is a mass weighted for mixed cells or small droplet (r p ≤ ∆ x,min ). Finally, the redistance algorithm is used to regularize the function φ n into the gas phase.

Small droplets

The detection of droplets smaller than the finest mesh size is performed by detecting any cells characterized by a value of VOF 0 < C i < 0.5 not attached to any larger structure, i.e. surrounded by cells with 0 < C i < 0.5. In this case the Level-Set function does not see any liquid mass, so that for the CLSVOF this liquid would be effectively lost. For these small Lagrangian droplet (i.e. r p ≤ ∆ x,min ), a classical drag coefficient for spherical point particle is used, from Schiller and Neumann:

C D (R e,p ) =
24R -1 e,p (1 + 0.15R 0.687 e,p )if R e,p < 1000 0.424 otherwise [START_REF] Déjean | Experimental study on the influence of liquid and air boundary conditions on a planar air-blasted liquid sheet, Part I: Liquid and air thicknesses[END_REF] with R e,p = 2r p ρ g ||v p -v p,e ||/µ g and where v p,e the Eulerian velocity interpolated at the particle location. These values give a relaxation time in the form τ p = 8ρ l r p /(3ρ g C D ||v p -v p,e ||).Then, the particle velocity and position follow the equations

dv p dt = τ -1 p ||v p -v p,e || (12) 
and its position

dx p dt = v p (13) 
Equations 12 and 13 are integrated using a classical second order Runge-Kutta scheme. The potential collision of these droplets with an interface can happen in two different ways. In the first case, the droplet is considered as small even on the finest mesh, so that its mass and momentum can be directly injected into the local cell. In the second, the particle approaching the interface crosses one or more mesh refinement jumps: once its size exceeds the cell size, it is detected by the medium droplets search algorithm and switches in this category, so that it is projected on the Eulerian field before the actual impact (see paragraph 3.1). Medium droplets entering a coarse enough region are transferred to this category too.

Results and validation

Drop in a uniform flow

In this first example, a three dimensional liquid drop at rest (ρ l = 2 kg.m -3 , µ l = 0.001 kg.m -1 .s -1 ) is immersed into an uniform gas stream (ρ g = 1 kg.m -3 , µ g = 0.001 kg.m -1 .s -1 ) with constant velocity in the x direction u(t = 0) = [U 0 , 0, 0] T with U 0 = 0.1 m.s -1 and a surface tension σ = 0.001 Nm -1 . The computational domain consists of a square box of size L = 0.25 m with slip conditions on the walls tangent to the gas stream and respectively uniform inlet and outlet on the two walls orthogonal to the stream. This lead to following non dimensional numbers, based on the drop radius R = 0.05 m :

W e = ρ l U 2 0 R σ = 1, R e = ρ l U 0 R µ l = 100 (14) 
In order to avoid droplet deformation during its motion, the inlet gas stream in injected with a time ramp U in j = min(U 0 ,U 0 × t/10) so that the acceleration is smooth and the shape stable. The test consists into a study of the acceleration of the droplet up to a physical time of t end = 2 s done with the CLSVOF with increasing refined meshes. The coarsest mesh is composed by 32x32 (M32) cells, which correspond to 7 cells per droplet diameter.

The droplet can still be considered (but barely) as resolved. The more refined meshes are given by 64x64 and 128x128 cells (M64 and M128). The medium Lagrangian droplet computation is performed on the coarsest (M32) of the meshes. The particle is initialized as in the pure Eulerian case, but the multi-scale algorithm 

x drop = Ω l x dv Ω l dv = ∑ i C i x i ∑ i C i v drop = Ω l u dv Ω l dv = ∑ i C i u i ∑ i C i (15) 
A Lagrangian computation with a very coarse mesh (M16) has been plotted as well. The plots clearly show how the Lagrangian medium droplet modelling is able to reach almost the same accuracy as the Eulerian modelling with a mesh size twice as refined.

It is also visible how the inaccurate prediction of the increasing velocity for the M32 CLSVOF solution is affected by an initial plateau between t = 0 s and t = 0.5 s: the initial acceleration being delayed, the following evolution is shifted towards lower values.

Binary drops collision

In this section, the computation of a collision between two drops of the same size and opposite velocities is performed. Those drops are constitued of water (ρ l = 10 3 kg.m -3 , µ l = 1.137 10 -3 kg.m -1 .s -1 ) evolving into air (ρ g = 1.226, µ g = 1.78 10 -5 kg.m -1 .s -1 ), with surface tension σ = 0.072. The drop velocity and radius are respectively v d = 7m.s -1 and R = 0.4mm, leading to a Weber number W e = 272 (based on drop radius). Following Pan et al. [START_REF] Pan | Binary droplet collision at high Weber number[END_REF], the coalescence or separation regime do not occur and a breakup of initial drop is observable, leading to scattering of multiple secondary droplets (Figure 3.c and 4.a of this reference). This scenario is also visible in the present simulation in figures 6 and 7. The simulation are performed as follow : firstable, a classical eulerian resolution is perfomed on a fine mesh (equivalent resolution [128, 256, 256]) until a time t = 0.0045 s (see figure 6).

From this time, two simulations were performed : an Eulerian one with the same resolution and a Lagrangian particle tracking one with a twice coarser resolution. This is shown on figure 7 for later times. One can see that the position, size and global evolution of all 'large' drops are correctly reproduce by the present particle tracking method, whereas the second ring around the central disc is fragmented into a cloud of very small droplet, due to the lack of resolution. However, this cloud of droplet has a good description of the topological evolution of this last ring. We have check, for this simulation that mass is totally conserved throughout the simulation. 

Assisted atomization of a liquid sheet

The whole multi-scale algorithm has been applied to the simulation of the primary atomization of a liquid sheet sheared by two parallel air streams. The considered numerical configuration aims to reproduce a simple atomization device as the one experimentally investigated in [START_REF] Déjean | Experimental study on the influence of liquid and air boundary conditions on a planar air-blasted liquid sheet, Part I: Liquid and air thicknesses[END_REF]. The injector, depicted in figure 8(a), consists of a NACA-shaped injector immersed into a channel gas flow, discharging the liquid by a rectangular fence 300 µm thick (visible in the middle of the device nozzle). Different geometrical configurations as well as liquid and gas flow regimes are considered by the authors. The parameters are summarized in table 1.

The simulation domain, with reference to figure 8 A comparison of some large scale features of the atomization process has been made with respect to the experimental results found in [START_REF] Déjean | Experimental study on the influence of liquid and air boundary conditions on a planar air-blasted liquid sheet, Part I: Liquid and air thicknesses[END_REF]. A comparative visualization of the behaviour of the sheet is given in figure 9. The simulation correctly captures the growing longitudinal instability of the sheet, as well as the transversal modulation. The thin ligaments formed by the primary atomization at the break-up point are fully captured by the CLSVOF eulerian solution. A first wave of droplets is formed at this location. The liquid detached from the main sheet body undergoes further deformation and break-up into a fully threedimensional flow: it can be seen in both images that large liquid parcels coexist with smaller stable droplets. A preliminary analysis has been performed on the droplet spray, the results compared to the experience by laser diffraction system allowing measurement of spray droplet size distributions. The statistics involve the droplets in the whole numerical domain; their characteristics are averaged in time, the samplings taken with a frequency corresponding to an average convection time in order to avoid repeated registrations of the same droplet. The particles of diameter inferior to the finest mesh cell (40 µm) have been discarded, as no physics is involved in their creation. A total of 18457 droplets (40 < D < 320 µm) have been registered. Figure 10 shows the corresponding distribution in volume.

The simulation seems able to capture the predominant diameters around 255 microns, but no information has been extracted from structures larger than 320 microns in diameter, so that the distribution is truncated after this value. It would seem that the evolution of the distribution with decreasing diameters is underestimated, a possible consequence of the considered volume of interest close to the injector and the absence of a secondary atomization model. The numerical diameter is D 32 = 158 µm, where the experimental one is D 32 = 165 µm showing a pretty good agreement.

Conclusion

An innovative multi-scale methodology for the direct numerical simulation of atomization has been presented. It consists of three main items. The first is a coupled Level Set/Volume of Fluid method (CLSVOF) for accurate capture of the primary atomization process. The second an adaptive mesh refinement technique (oct-tree AMR) to dynamically optimize the structured Cartesian mesh. The third consists of a particle tracking algorithm to capture droplet dynamics. An improved Eulerian-Lagrangian coupling has been developed to assure a smooth transition between the Eulerian and the Lagrangian modelling of the droplets, where both models approach their design limits. Results show its ability to reproduce the whole atomization process, from large scale instabilities to small droplet dynamics. A preliminary statistical spray analysis is performed as well, showing a realistic distribution of droplet sizes and average droplet diameter.
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 1 Figure 1: Illustration of liquid inclusion detection.
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 2 Figure 2: Sphericity criterion for medium inclusion
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 4 Figure 4: (a) x(t = t end ) position of the droplet (b) x velocity component of the droplet versus time. Continuous lines : Eulerian computation, dotted lines: Eulerian/Lagragian.

Figure 5

 5 shows a direct comparison between the mesh converging Eulerian results and the Lagrange medium droplet formulation. The visualization clearly shows that the final position of the droplet (x(t = t end ) is shifted forward when a more accurate resolution is performed. The M32 mesh droplet is clearly late in comparison with the reference result of the M128 mesh. Conversely, the Lagrangian result (on M32 mesh) shows a good agreement with the most accurate M64 and M128 meshes. The velocity field obtained with the mixed formulation is close to the one obtained with the Eulerian, whereas a classical Lagrangian dragforce model fails to correctly reproduced the flow topology.

Figure 5 :

 5 Figure 5: Advection of the liquid droplet at t end = 2 s. From left to right, three CLSVOF results with increasing mesh refinement (M32, M64, M128) and the result of the multi-scale computation. The colour field is the z component of the velocity u. The vertical dotted white line represents the x position of the droplet center of mass, as calculated with the CLSVOF M128 (the finest) mesh.
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 6 Figure 6: Binary drop collision at W e = 272. Eulerian simulation at time t = 0, 3, 3.5, 4 ms on the finest grid Time increase from left to right.

Figure 7 :

 7 Figure 7: Binary drop collision at W e = 272. Top eulerian simulation at time t = 5, 5.64 ms, bottom : mixed Eulerian/Lagrangian formulation at time t = 5, 5.64 ms. Time increase from left to right. yellow : interface, green : Lagrangian particle.
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 8 Figure 8: (a) Actual liquid sheet injector device. (b) Numerical computation set-up.
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 9 Figure 9: Snapshots of both experimental visualization and simulation, arbitrary time step.

Figure 10 :

 10 Figure 10: Droplet volume distribution obtained from the simulation dispersed phase, comparison with the experience.

Table 1 :

 1 Dimensionless parameters of the 3D atomization simulation.
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In the application foreseen in this paper, the one way approach is considered as sufficient, even if the small droplets can in practice have almost the size of the cell