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Abstract We introduce relational redescription mining, that is, the task of finding
two structurally different patterns that describe nearly the same set of object pairs
in a relational dataset. By extending redescription mining beyond propositional
and real-valued attributes, it provides a powerful tool to match different relational
descriptions of the same concept.

We propose an alternating scheme for solving this problem. Its core consists of
a novel relational query miner that efficiently identifies discriminative connection
patterns between pairs of objects. Compared to a baseline Inductive Logic Pro-
gramming (ILP) approach, our query miner is able to mine more complex queries,
much faster. We performed experiments on three real world relational datasets,
and present examples of redescriptions found, exhibiting the power of the method
to expressively capture relations present in these networks.

1 Introduction

With the increasing amount of data available from heterogenous sources nowadays,
establishing links between different perspectives on the same concept becomes ever
more important, as recognized, for instance, in schema matching and ontology
alignment for the semantic web (Shvaiko and Euzenat, 2005) and can contribute
to the discovery of patterns in knowledge bases (Galárraga et al, 2013). One way
of creating such links is to find sets of objects together with their descriptions in
different terminologies, as done in redescription mining (Ramakrishnan et al, 2004;
Galbrun and Miettinen, 2012). However, this technique has so far only considered
propositional or real valued attributes. In this paper, we extend redescription min-
ing to the relational or network-based setting. In other words, we consider the task
of finding two structurally different patterns that describe nearly the same set of
object pairs in a relational dataset. We focus on a restricted language (binary
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Fig. 1 Example of redescription from the Kinship dataset: (a) kinship relation Awaadya
between (#A,#Z) and (b) corresponding genealogical connection. The description formalism
is introduced in Section 2.

relations with object identity) amenable to efficient graph mining techniques, re-
sulting in an exploratory method that relies primarily on occurrence information
and requires no extensive background knowledge such as a declarative bias.

Consider the following example from the Kinship dataset, which provides in-
formation about kinship terminology and family relationships within an Australian
indigenous community (cf. Section 6). In Figure 1, graph (a) represents the kinship
relation Awaadya between the speaker #A and another person #Z, correspond-
ing to the relation between a child and his older brother, as given by graph (b).
These two graphs are alternative ways to describe the same pairs of individuals
(#A,#Z) and hence form a redescription.

Given a dataset and a query language, the underlying principle of redescription
mining is to find pairs of queries, i.e. descriptions, that are structurally different yet
describe (nearly) the same entities. Propositional redescription mining considers
as its entities single objects characterized by their individual properties. Instead,
in this novel relational setting, entities consist of pairs of objects characterized by
both relations linking them and individual properties.

To find pairs of descriptions, redescription mining can adopt an alternating
approach: one description is fixed, the other one is updated, and roles are swapped
in the next iteration (Ramakrishnan et al, 2004). Following this approach, we
present Arrm, an algorithm for Alternating Relational Redescription Mining.

Our alternating scheme relies on an approach to finding relational descriptions,
such as relational query mining (Dehaspe and Toivonen, 1999; De Raedt and Ra-
mon, 2004). However, the generate-and-test approach of query mining systems re-
quires large numbers of expensive coverage tests based on subgraph isomorphism.
More importantly, they typically do not ensure that patterns connect the nodes of
interest, thus producing many patterns that do not correspond to redescriptions.
Hence, we propose an efficient algorithm, which we call FpQm, that finds descrip-
tions for a given set of example pairs. It first mines for path patterns that connect
many example pairs, then combines those into more expressive graph patterns.
This reduces the number of coverage tests needed by constructing queries based
on the data.

A comparison of FpQm to a baseline ILP tool on real world data shows that
our approach can identify complex descriptions matching known ones, and is much
faster. Examples of results obtained with Arrm illustrate the power of the method
to capture the relations present in a network. Compared to individual relational
queries, the added expressivity brought by redescriptions permits to better eluci-
date different uses of the same predicate and find more accurate patterns.
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This paper extends upon our previous work (Galbrun and Kimmig, 2012).
As our main contributions, we define Relational Redescription Mining, present
novel algorithms to solve this task and provide an experimental evaluation of the
proposed approach. Compared to the earlier version, we improved the combination
and selection procedures of the query mining algorithm, realized an alternating
scheme to address the full relational redescription mining problem, and performed
extended experiments including two additional datasets, UMLS and UWCSE.

We proceed as follows. Section 2 introduces relational redescription mining,
Section 3 discusses related work, Sections 4 and 5 present the proposed path-
based relational query miner and alternating scheme for relational redescription
mining, respectively. Both are then experimentally evaluated in Section 6, before
we conclude in Section 7.

2 Definitions and Notations

This paper introduces relational redescription mining, the task of finding two struc-
turally different queries that describe nearly the same set of object pairs in a rela-
tional dataset. Informally, we view descriptions as connected graphs expressed in
terms of attributes of the data. For instance, graph (b) in Figure 1 is an example
of such descriptions for the objects of interest #A and #Z in terms of relations
and attributes spouse, parent, male, female and age<. We now introduce the
concepts required for a more formal definition of the problem. We focus on binary
relations, as these can be represented in the form of graphs, allowing us to base
our algorithms on graph concepts.

We view relational data as a directed graph (O,R), where nodes correspond to
the objects O, and edges to relations R between them. Two families of functions,
N and E , label nodes and edges with their attributes, respectively.

For instance, in the kinship domain, O is the set of individuals from the com-
munity. Node attributes are N = {sex, age} and edge attributes E = {kin, gen},
where kin maps into the set of kinship terms and the values of gen are the ge-
nealogical relations parent and spouse.

From node and edge attributes, we obtain three types of Boolean functions,
or predicates, that serve as basic building blocks of queries. The first type, a node
predicate νvNi

(o), is true for an object o if and only if the node label Ni(o) is defined
and takes value v. The second type, an edge predicate εuEi

(o1, o2), is true for a pair
of objects (o1, o2) if and only if the edge label Ei(o1, o2) is defined and takes value
u. The third type, a comparison predicate φrelNi

(o1, o2) for a binary relation rel over
the range of node labeling function Ni is true for a pair of objects (o1, o2) if and
only if both node labels Ni(o1) and Ni(o2) are defined and rel(Ni(o1), Ni(o2))
holds.

As an example, graph (b) in Figure 1 uses, among others, node predicates
νmalesex (#1) and νfemalesex (#2), edge predicates εparentgen (#A,#1) and εspousegen (#1,#2),
and comparison predicate φ<age(#A,#Z).

For an object o, the set FN (o) of its node features contains the node predicates
that hold true for that object. For a pair of objects (o1, o2), the sets FE(o1, o2)
and FC(o1, o2) of edge and comparison features contain the edge and comparison
predicates that hold true for that pair, respectively. Note that the data, or network,
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is fully specified by the features of all objects, which implicitly provide all relevant
information about the objects and their relations and attributes.

A graph query is a definite clause of the form q(X,Y ) : - b1, . . . , bn, where the
body elements bi are node, edge or comparison predicates, q is a special predicate
denoting the pattern and the query variables X and Y in the head also occur in the
body. Instantiations of query variables are the object pairs of interest. We require
graph queries to be linked, meaning that the set of edge predicates in the body
connects the query variables. That is, a query is linked if there exists a sequence
of variables Z0, . . . , Zk with Z0 = X, Zk = Y , such that for all i = 1, . . . , k, there
is an index j such that bj ∈ FE(Zi−1, Zi)∪FE(Zi, Zi−1). A path query is a graph
query whose query variables are connected by an acyclic path consisting of all
edge predicates in the body. We denote the set of attributes for which the body
of query q contains predicates by att(q).

In the remainder of this paper, we use #A and #Z to denote the query variables
and #1, #2, et cetera to denote any other intermediate variables. Node attributes
are indicated inside the node under the identifier, using lowercase, as for the edge
attributes also. For instance, graph (b) in Figure 1 corresponds to the graph query

qb(#A,#Z) : - εparentgen (#A,#1), εparentgen (#A,#2), νmalesex (#1),

εspousegen (#1,#2), εspousegen (#2,#1), νfemalesex (#2),

εparentgen (#Z,#1), φ<age(#A,#Z), νmalesex (#Z).

This query has attribute set att(qb) = {sex, gen, age} and is linked due to the
spouse and parent edges. Note that the age< edge in the graphical representation
corresponds to a comparison predicate and is thus not considered for linkage and
represented with a dotted line.

As common in graph mining, we use subgraph isomorphism or, in terms of
logic, θOI -subsumption (Esposito et al, 1994), to match queries against the data
graph. That is, each variable in the query has to be matched to a different node in
the graph, respecting the predicates in the query body. This choice is motivated
by the intuitiveness and interpretability of the resulting queries and the ease of
search. We denote such a match of variables Vj to objects oij by the corresponding
substitution θ = {V1/oi1 , . . . , Vn/oin}; θ reduced to query variables is called an-
swer substitution. The set of all (distinct) answer substitutions of query q on the
given network is its support, supp(q). For instance, for query qb above, the support
contains all pairs of nodes (na, nz) such that when matching #A to na and #Z
to nz, there is at least one match of #1 and #2 to other nodes that satisfies the
query body.

For simplicity, we use the closed world assumption throughout this work. In
other words, given a set of positive example pairs, all remaining pairs are consid-
ered to be negative examples. Altering the functions for scoring and filtering the
queries presented in Section 4.3 allows to modify this assumption.

For a given set of example pairs E+ and query q, we denote the sets of true
positives (example pairs covered), false positives (other pairs covered) and false
negatives (example pairs not covered) by E1,1 = supp(q) ∩ E+, E0,1 = supp(q) \
E+, and E1,0 = E+ \ supp(q), respectively.

A redescription is a pair of queries R = (qL, qR). Extending the previous
notation, let E1,0 be the set of entities (i.e. object pairs) which support only
the first query (i.e. E1,0 = supp(qL) \ supp(qR)), E0,1 those which support only
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the second query and E1,1 those which support both queries. The accuracy of a
redescription is commonly measured using the Jaccard coefficient, that is,

J(qL, qR) =
|supp(qL) ∩ supp(qR)|
|supp(qL) ∪ supp(qR)| =

|E1,1|
|E1,0 + E0,1 + E1,1|

.

This measure takes values in the unit interval without using the number of all
existing pairs of nodes for scaling, which would result in practically undistinguish-
able values. Furthermore, E1,0 and E0,1 are weighted equally, in agreement with
the symmetric view of redescription mining.

In order to avoid trivial redescriptions in the form of queries that are small
variants of each other, we impose a syntactic requirement on the queries, which
need to have disjoint attribute sets. While it would also be possible to require the
use of attributes from two disjoint vocabularies, such a fixed split may not always
be easily specified upfront. If available, such a split can be incorporated into the
disjointness condition.

Given this background, we define relational redescription mining as follows:

Problem 1 (Relational Redescription Mining) Given a relational dataset
in the form of node, edge and comparison features {FN , FE , FC} and an accu-
racy threshold j, find redescriptions (qL, qR) such that att(qL) ∩ att(qR) = ∅ and
J(qL, qR) ≥ j.

For simplicity of exposition, we restricted our discussion to queries of arity
two. However, the definitions extend naturally to queries of higher arity, that is,
queries whose body consists of binary predicates but with more than two variables
occuring in their head.

3 Related Work

Redescription mining emphasizes the insights obtained from expressive, inter-
pretable patterns and their instances in the given data rather than prediction
over unseen data. Relational pattern languages are thus a natural candidate for
redescriptions, but existing approaches have focused on propositional features (Ra-
makrishnan et al, 2004) and real-valued attributes (Galbrun and Miettinen, 2012).
They operate on matrices with a row for every object in the data and a column
for every attribute or feature. Our Arrm algorithm follows an alternating scheme
similarly to the former method.

These approaches have been shown to find simple redescriptions of single nodes
in a bibliographic network, describing a researcher either in terms of the confer-
ences he publishes at, or in terms of his co-authors, that is, using only attributes in
the form of the labels of neighboring nodes (Gallo et al, 2008; Galbrun and Mietti-
nen, 2012). However, as we illustrate in Section 6, considering pairs of objects and
features based on their connections in terms of complex longer distance relations
would inflate the size of the matrix and thus the search space of the algorithm.
In contrast, our relational approach dynamically adapts the feature space to the
subtask at hand, allowing for more focused exploration of connection patterns.

Learning relational queries is a key goal in Inductive Logic Programming (ILP)
and multi-relational data-mining, and a central component of our relational rede-
scription mining scheme. Multi-relational query miners often use a refinement op-
erator to extend frequent queries found at the previous level, typically by adding
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a literal with at least one already used variable to the end of the clause body (De-
haspe and Toivonen, 1999; De Raedt and Ramon, 2004). While this principle re-
sults in connected clauses for unary patterns, patterns of higher arity are likely to
ignore some of the query variables, or to contain disconnected components around
individual query variables, and thus fail to provide insight into the relations be-
tween them. This connectivity problem has been addressed by relational pathfind-
ing (Richards and Mooney, 1992; Ong et al, 2005) and function learning (Santos
et al, 2009). Pathfinding refines clauses by adding a sequence of literals if no single
literal is able to connect query variables, where candidate sequences are generated
based on connections of a single example’s query variables in the data rather than
by enumerating abstract paths. Function learning avoids evaluating unconnected
queries by generating candidate queries from individual examples. The queries in
our method are similarly anchored in the data, but are directly selected based on
their frequency across all examples, in an approach inspired by graph mining tech-
niques (Yan and Han, 2002). Furthermore, to reduce the search-space, logic-based
methods typically make heavy use of declarative bias, which needs to be provided
by the user. This is not the case with our method, where the search space is pruned
using solely occurrence information computed on the dataset.

Relational patterns play an important role in various techniques that explore
and analyze relational datasets. For instance, the aim of subgroup discovery (Wro-
bel, 1997; Lavrac et al, 2002) is to identify groups of objects that differ from the
overall population in an interesting way. There, individual objects are described
in terms of the relations they participate in. In contrast, relational redescription
mining is interested in finding pairs of queries that describe different connection
patterns between two objects. In the context of making predictions based on rela-
tional patterns, query mining has also been extended to learn association rules with
conjunctive heads (Goethals and Van den Bussche, 2002), which can be seen as
associations between conjunctive redescriptions, and to flexible numbers of query
variables (Goethals et al, 2005). Yet, the type of rules mined is fairly restrictive
compared to the descriptions considered in our approach. These complex associ-
ation rules are similar to the tuple-generating dependencies used in schema map-
ping and data exchange. The CLIO system learns such mappings by exploiting
relational dependencies in the two schemata, where the user indicates some corre-
spondences between attributes, as input (Miller et al, 2000). Our work uses shared
objects to determine attribute correspondences, and does not rely on explicit in-
formation on how relations can be combined. Aligning or mapping objects can also
be considered part of the overall discovery process, as for instance in the PARIS
approach to ontology alignment (Suchanek et al, 2011), which discovers correspon-
dences on the level of both instances and schemas. But as most other approaches
to schema matching (Shvaiko and Euzenat, 2005), PARIS focuses on one-to-one
mappings of relations and does not consider more complex queries. A recent ex-
ception is the work of Zhang et al (2012), who nevertheless only consider paths
up to length four and rely on approximation schemes for Markov Logic inference
to keep the approach feasible.

Recently, there is increasing interest in large knowledge bases like DBpedia (Auer
et al, 2007), NELL (Carlson et al, 2010) or YAGO (Suchanek et al, 2007), which
store binary relations between millions of objects. Such massive amounts of incom-
plete and often noisy information are a challenge for most existing relational learn-
ing approaches, and call for adapted representations and learning methods (Ret-



Finding Relational Redescriptions 7

Input: A network with a set of positive examples E+, a frequency threshold γ, an extension
threshold κ, a contribution threshold δ and a set of quality criteria Γ .
Output: A set of relational queries Q.

1: Q← ∅; D ← ∅; S ← ∅; T ← ∅
2: C ← FrequentPQ(E+, γ, κ)
3: for e ∈ E+ do
4: a← AlignedBottomClause(e, C)
5: T ← T ∪ {(e,ToTransaction(a))}
6: for f ∈ FIMGraphs(T , γ) do
7: q ← computeQuery(f)
8: if q is acceptable according to Γ then
9: D ← D ∪ {q}

10: for q ∈ D ordered according to Γ do
11: if |E1,1(q) \ S| ≥ δ then
12: Q← Q ∪ {q}
13: S ← S ∪ E1,1(q)

14: return Q

Fig. 2 FpQm: Frequent-paths based relational query miner. Details on FrequentPQ are
provided in Figure 3 and discussed in Section 4.1; ToTransaction is discussed in Section 4.1,
AlignedBottomClause, FIMGraphs and computeQuery in Section 4.2.

tinger et al, 2012), such as the graph based techniques used in our redescrip-
tion miner. Nebot and Llavori (2012) propose to extract relational association
rules from a medical ontology by applying frequent itemset mining. Their method,
however, requires extensive expert knowledge. In the context of NELL, weighted
combinations of path patterns, learnt based on random walks, have been used for
retrieval tasks (Lao et al, 2011; Lao and Cohen, 2010). In contrast to our approach,
paths are not combined into graphs, but are instead weighted by their importance.
Galárraga et al (2013) introduce a fast association rule mining approach that, as
our work, is inspired by ILP techniques, but tailored towards binary relations, in
this case using a database with aggressive indexing to speed up querying.

4 The Frequent-Paths Based Relational Query Miner

Before introducing the alternating relational redescription mining algorithm in
Section 5, we now discuss its core component, FpQm, a novel relational query
miner based on frequent paths. Given a network, FpQm aims to find the best
graph queries with respect to quality criteria Γ that discriminate a set of positive
object pairs E+. The specific criteria in Γ are discussed in Section 4.3.

An outline of the FpQm algorithm is presented in Figure 2. The three-phase
approach considers only linked queries and limits the number of costly subgraph
isomorphism-based coverage tests. First, the path queries that cover at least a
given number of positive examples are mined (line 2). Second, such path queries
are combined to construct graph queries (lines 3–9). Finally, the best describing
among these graph queries are selected and returned (lines 10–13). We now discuss
each of these steps in turn.
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Input: A network with a set of positive example object pairs E+, a frequency threshold
γ, and an extension threshold κ.
Output: A set of frequent paths queries C.

1: k ← 0
2: Pk ← paths of length 0, i.e. starting nodes in E+

3: while Pk 6= ∅ do
4: k ← k + 1; Pk ← ∅; T ← ∅
5: for each P ′ ∈ Pk−1 do . P [i] is node at position i in path P
6: for each n ∈ neighbors(P ′[k − 1]) do
7: P ← P ′

8: if n 6∈ P then
9: P [k]← n

10: Pk ← Pk ∪ {P}
11: if (P [0], P [k]) ∈ E+ then . example pair connected
12: T ← T ∪ {((P [0], P [k]),ToTransaction(P ))}
13: F ← FIMPaths(T , γ)
14: C ← C ∪ F
15: Ek ← Ek−1 ∪

⋃
f∈F E1,1(f)

16: if k > κ and Ek−κ = Ek then . no new example pair covered for κ steps
17: Pk ← ∅
18: return C

Fig. 3 FrequentPQ: Mining frequent path queries from a network. Details on ToTransac-
tion and FIMPaths are provided as part of the discussion in Section 4.1.

4.1 Mining Frequent Path Queries

The first phase of FpQm (line 2) finds the set of linked path queries that are
frequent among the example pairs, as any frequent graph query connecting pairs
of interest has to be a combination of such paths. It is similar in spirit to relational
pathfinding, but using frequency, that is, the number of positive examples covered,
as a selection criterion. The key idea behind this phase of the algorithm is to
transform the problem into a sequence of constrained frequent itemset mining
tasks, which can be solved efficiently using an off-the-shelf tool. More specifically,
these subtasks are defined as follows:

Given a set of transactions T , each representing all features of a path of length k
connecting a positive example pair, and a frequency threshold γ,

find all itemsets that (a) cover transactions for at least γ different example pairs,
and (b) correspond to a path query, that is, contain an edge feature for every
pair of neighboring nodes on the path.

Algorithm FrequentPQ, detailed in Figure 3, extracts linked paths of increas-
ing length that connect example pairs in the network, for each length creating and
solving the corresponding frequent itemset mining task. We use the set of all start-
ing nodes in the examples (line 2) as seed paths for the main loop that processes
paths of increasing length. The algorithm terminates if no example pair has been
covered for the first time in the last κ iterations. In the kth iteration, the nested
loop in lines 5–12 extends paths in Pk−1 to paths of length k, discards cyclic
paths, and stores the resulting paths in Pk. For each path connecting an example
pair, ToTransaction produces the corresponding transaction, and adds it along
with the connected example pair to T (line 12). Next, frequent path queries for a
given frequency threshold γ are mined from T (line 13) and added to the set C of
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queries to be returned. We keep track of the set Ek of covered examples for the
termination criterion.

For a given path, ToTransaction creates a transaction based on the following
encoding. An item is a tuple (i, f), where i is either a single node or a pair of nodes,
and f a feature. We refer to pairs of nodes adjacent on a path as backbone edges,
and to all other pairs of nodes appearing in the path as crossing edges. Given a path
of length k, its first and last nodes receive identifiers #A and #Z, respectively, and
intermediate nodes along the path #1 to #(k−2). The corresponding transaction
created by ToTransaction contains an item (n, a) for each node feature a of
a node n on the path, an item ((n,m), e) for each edge feature e of a backbone
edge (n,m), and an item ((n,m), c) for each comparison feature c of a backbone
or crossing edge (n,m). For example, the path of length three (#A, #1, #Z) from
Figure 1(b) is represented by the following itemset:

{((#A,#1), parent), (#1, male), ((#Z,#1), parent), ((#A,#Z), age<), (#Z, male)}.

Note that this encoding is reversible, that is, given any transaction, we can extract
the corresponding path query, replacing each identifier by a unique variable.

The transactions for all paths of the current length form the input for the
corresponding frequent itemset mining task (line 13). Any algorithm that solves
this mining task could be used here. Our solution exploits a declarative approach
to mining patterns under constraints (Guns et al, 2011), as the corresponding sys-
tem allows for user-defined constraints on frequent itemset mining tasks. This is
important for our approach, as the definition of support employed when mining
for frequent path queries in T differs from the usual: the support of an itemset is
not the number of transactions that contain it, but instead the number of distinct
corresponding example pairs. In other words, we count the number of answer sub-
stitutions rather than the number of instantiations and are interested in finding
path queries that connect many different example pairs rather than path queries
having many instances for a given pair. Furthermore, in order to maintain con-
nectivity, we require that some item corresponding to an edge constraint must
be present for each backbone edge. More specifically, the approach of Guns et al
(2011) combines a declarative task specification language with a generic constraint
programming solver. The user provides the transactions to mine itemsets from and
specifies the desired constraints on itemsets in this language. The system inter-
prets the task as a constraint program, to which it finds all solutions by calling the
constraint solver. Algorithm FIMPaths thus simply combines the transactions T
with a specification of our support and connectivity constraints, passes them to
the system of Guns et al (2011) to obtain the result, and transforms each itemset
in the result into the corresponding path query as discussed above.

4.2 Combining Path Queries into Graph Queries

The second phase of FpQm obtains more expressive graph queries by combining
frequent path queries. Again, we use a reduction to frequent itemset mining to
obtain frequent queries. For each positive example pair, we combine the frequent
paths covering it into a graph and represent it as a transaction (Figure 2, lines 3–
5). Frequent graph queries are then mined from these transactions and further
filtered based on user-defined acceptance criteria (lines 6–9).
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Fig. 4 Example of three graph queries (q3-q5) combining path queries p1 and p2

As an illustration of graph queries, Figure 4 depicts two path queries p1 and
p2 as well as three example graph queries that are obtained by merging query
variables, and potentially other nodes as well, of one or more copies of these
paths. Clearly, allowing multiple copies of a path permits an infinite number of
combinations. However, merging intermediate nodes that assign conflicting values
to attributes results in invalid queries, and only finitely many among the valid
queries are supported by the data. Therefore, we merge paths based on their
instantiations in the data rather than based on their query representation. This
ensures that we only construct valid queries with non-empty support.

More specifically, given a set C of path queries with query variables (#A,#Z)
and a positive example (o1, o2), we call bottom clause the union of all possible
instantiations of bodies of queries in C that map (#A,#Z) to (o1, o2). This is
similar to the bottom clause obtained in some ILP approaches, but consists only
of features from frequent path queries.

In order to represent such a bottom clause as a transaction, we need to assign
identifiers to its intermediate nodes. This is done by AlignedBottomClause
(line 4), which iteratively labels nodes based on the identifiers of nodes they in-
stantiate in the paths queries as well as their neighboring nodes. This identifies
groups of nodes occurring in the same context. Figure 5 illustrates the alignment
of the bottom clause for positive example (13, 82) and two path queries p1 and p3.
The graph with rectangular nodes and numerical identifiers represents the relevant
part of the data network. In this example, node 44 and node 81 both are instan-
tiated by identifier #1 in p3 only, with identical neighbors, and therefore receive
the same new identifier #2. While such duplicate variables are interesting from an
expressivity point of view (as under θOI -subsumption they implement counting),
they also result in multiple query instantiations for the same pair of answer nodes,
which can be undesirable from an efficiency point of view. In this paper, we do
not exploit the extra expressivity. Such duplicate variables receive the same label
and will not be distinguished later on. Note that multiple copies do not necessarily
generate duplicate nodes. For instance, in Figure 4, nodes #3 and #2 of query q3
both correspond to node #2 of p1 in two copies, yet are no duplicates because one
is combined with node #1 of p2 and the other is not.

Once the bottom clauses have been aligned via the new identifers, all their
features are collected into transactions using ToTransaction (line 5) as in Sec-
tion 4.1. Given these transactions T and the frequency threshold γ, the next step
consists in finding all itemsets that are frequent among T . As each example has
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Fig. 5 Example of construction of an aligned bottom clause; see Section 4.2 for details

at most one associated transaction, the support of an itemset here is simply the
number of distinct transactions containing it, that is, a frequent itemset covers at
least γ transactions. Similarly to FIMPaths, FIMGraphs (line 6) combines the
transactions T with a specification of this frequency constraint and passes them to
the system of Guns et al (2011) to obtain the result. We do not include connectivity
constraints, as those cannot be enforced at the time of mining here. As its last step,
FIMGraphs therefore filters out unconnected queries. For each frequent itemset
returned by FIMGraphs, computeQuery recovers the corresponding query as
discussed for path queries above, maps it onto the data to determine all instances
and computes the support (line 7). Note that only graphs that are frequent among
positive examples are generated as a result of this procedure. Queries satisfying
the user provided criteria Γ (discussed next) are collected in D.

4.3 Selecting a Subset of Queries

The final phase of FpQm (lines 10–13) greedily selects a subset of best queries
with limited overlap among the ones stored in D. The queries are processed in
turn, from best to worst according to the ranking criterion in Γ . If the part of the
support of the current query that has not yet been covered, called its contribution,
is sufficiently large (larger than δ), it is accepted and supported positive examples
are marked as covered. Otherwise it is rejected. All accepted queries are returned
as the output of FpQm.

More specifically, Γ offers a number of parameters that can (but need not) be
used to orient the search toward queries with preferred characteristics and to rank
queries. First, thresholds can be imposed on the coverage of queries, including the
following:

cover diff. = |E1,1| − |E0,1| support = |E1,1|+ |E0,1| precision =
|E1,1|

|E1,1|+|E0,1|
cover ratio =

|E1,1|
|E0,1| accuracy =

|E1,1|
|E1,0|+|E1,1|+|E0,1| recall =

|E1,1|
|E1,0|+|E1,1| .

Second, additional constraints can be imposed on the form of queries. For
instance, one can restrict the number of nodes or edges to limit the complexity of
the patterns and facilitate interpretation, or require intermediate nodes to have a
minimum number of instantiations in order to exclude queries that only apply in
the neighborhood of a specific node.
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The frequency threshold γ used in the two frequent itemset mining steps can be
automatically determined from the minimum support as well as from the accuracy
or the recall, given the number of positive examples.

4.4 An Efficient Relational Query Miner

To summarize, FpQm mines frequent path queries, combines them into graph
queries, and finally selects a good subset of queries.

As discussed above, we filter out duplicate variables when constructing graph
clauses to avoid a combinatorial explosion of the number of instances. To reduce
the amount of filtering necessary, the frequent path mining step drops paths with
high multiplicity, that is, with a number of instances a factor greater than the
number of supporting pairs, as these will likely create duplicate variables. Also,
when mapping the queries onto the data, we fix a limit on the number of instances
that can be generated. For each query edge, the number of instances that will
be obtained after mapping it is estimated from the current number of instances
and the number of matching data edges. Query edges with lowest estimates are
processed first and if the current estimate crosses the chosen threshold, remaining
edges are dropped from the query.

To further improve efficiency, the computationally costly operation of finding
graph instances is shared between queries. Indeed, if an itemset I is a subset
of another itemset J , the query represented by J will be a refinement of that
corresponding to I. Hence, the instances of I’s query are a superset of those of
J ’s query and can be used to initialize its mapping. Only the extra predicates will
have to be added to the mapping.

5 An Alternating Scheme for Relational Redescription Mining

We now turn to the alternating scheme for finding relational redescriptions, Arrm,
sketched in Figure 6. Given an initial set of queries, the algorithm first grows a
forest of queries by repeatedly running FpQm to find the best descriptions of
each query, which it adds as the query’s children. The second phase then extracts
redescriptions from this forest.

5.1 Initialization

The algorithm expects an input set I of queries, based on which its two key
data structures, the candidate list K and the set of explored descriptions M are
initialized (lines 2–4). The simplest means to generate this input set is to consider
the queries obtained from each edge predicate taken individually, that is, for each
value v of each edge predicate a

c(#A,#Z) : - εva(#A,#Z).

In addition, one might consider simple combinations such as

c(#A,#Z) : - εva(#A,#1), εva(#Z,#1), or

c(#A,#Z) : - εva(#1,#A), εva(#1,#Z).
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In particular, this might be useful in cases where the nodes that appear in the first
(respectively second) position of edges supporting εva do not appear in any other
predicate. The user may also specify a set of initial queries manually.

5.2 Growing a Forest of Queries

Given the current candidate list K, each query K in K is processed in turn, using
the FpQm algorithm presented above to find new queries describing the same set
of examples, but using different attributes (lines 5–12).

That is, the supporting pairs of the current candidate K constitute the positive
examples, and the network for that round is obtained from the original network
by removing all predicates based on attributes used in K. Given this input, FpQm
is used to find the best describing children queries (line 7), which are added to the
set of explored descriptions M, linked to the candidate in the query forest, and,
if they meet criteria discussed below, appended to the list of candidates K. This
process is repeated until K is empty.

The algorithm thus grows a forest of queries breadth first, branching from the
initial candidates. A branch might be interrupted for one of three reasons. First, if
no child is returned by the query mining procedure the expansion stops naturally.
Second, if a child has a support (modulo symmetry) and attributes set identical
to some query found previously (non empty E , line 11), it is not added to the
candidates for expansion. Indeed, since the algorithm is entirely deterministic this
would not generate new queries but practically introduce a loop in the exploration.
Third, a maximum exploration depth τ can be fixed as part of Γ and branches
that reach this length will not be expanded further (line 11).

The shape of the forest is affected primarily by the quality criteria Γ (cf.
Section 4.3). Strict criteria limit the fertility of queries, i.e. the number of results
returned by FpQm, and thus the branching factor of the forest. With high fertility,
only shallow exploration will be manageable. On the other hand, stricter selection
of the children, provided that some degree of diversity is maintained, allows one
to explore more generations. To direct the exploration towards more accurate
queries, the accuracy of the current query can be applied as a filtering criterion
for its children queries.

5.3 Retrieving Redescriptions

Once the candidate list K has been exhausted, the next step consists in retrieving
good redescriptions from the forest of queries. We gather into U all pairs of adjacent
queries along the forest. By construction, such pairs have overlapping supports and
disjoint attribute sets. Also, we scan the forest for pairs of queries that are not
adjacent but have identical support and disjoint attribute sets. These form extra
candidate redescriptions that are added to U (line 13).

Finally, the same greedy procedure as in FpQm, but considering redescriptions
instead of individual queries, is applied to U to select the final set of redescriptions
(lines 14–17).
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Input: A network, a set of initial queries I and quality criteria Γ .
Output: A set of relational redescriptions R.

1: S ← ∅; M← ∅; K ← ∅;
2: for i ∈ I do
3: K.query ← i; K.parent← ∅; K.generation← 0
4: K ← K ∪ {K}; M←M∪ {K}
5: while ∃K ∈ K do
6: K ← K \ {K}
7: for q ∈ FpQm(supp(K.query), Γ ) do
8: L.query ← q; L.parent← K; L.generation← K.generation+ 1
9: E ← {S ∈M, supp(S) = supp(L) ∧ att(S) = att(L)}

10: M←M∪ {L}
11: if L.generation ≤ τ ∧ E = ∅ then
12: K ← K ∪ {L}
13: U ← {(M,N) ∈M2, (M.parent = N) ∨ (supp(M) = supp(N) ∧ att(M) ∩ att(N) = ∅)}
14: for R ∈ U ordered according to Γ do
15: if |E1,1(R) \ S| ≥ δ then
16: R← R∪ {R}
17: S ← S ∪ E1,1(R)

18: return R

Fig. 6 Arrm: Alternating Relational Redescription Mining

6 Experiments

We now turn to the experimental evaluation of our approach. In the first exper-
iment, we focus on FpQm alone. We explore the influence of its parameters and
compare the approach to an existing relational query miner, which we use as a
baseline for both pattern quality and running time. The second set of experiments
concerns the full alternating scheme. It again explores algorithm parameters, com-
pares to a propositional approach, and also provides a qualitative assessment of
redescriptions discovered.

Our algorithm was implemented in Python, using Fim Cp (Guns et al, 2011) to
mine path and graph queries (FIMPaths and FIMGraphs). In all experiments,
it was run on a single core of an 8 core Intel Xeon 2.8GHz processor and with
32GB of memory. In all runs, we limited the number of trials for mining paths to
κ = 2, the number of instances when mapping queries to 20000, the mining time
per Fim Cp call to 1min and the absolute minimum support of any query to 3.

The implementation of our algorithms and the prepared datasets are available
online.1

6.1 Datasets

Three relational datasets are used throughout the experiments. The first dataset,
Kinship, was extracted from the Alyawarra Ethnographic Database.2 The other
two datasets, UWCSE and UMLS, were obtained from the Alchemy repository.3 Table 1
summarizes the characteristics of the datasets.

1 http://www.cs.helsinki.fi/u/galbrun/redescriptors/
2 http://habc.eu/csac/wiki/knsrc/KinSources/AU01Alyawarra1971
3 http://alchemy.cs.washington.edu/
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Table 1 Datasets statistics: number of nodes, edges, node predicates, edge predicates and
comparison predicates

Dataset #nodes #edges #node. pred. #edge. pred. #comp. pred.

Kinship 381 24053 3 31 1
UMLS 135 4181 – 46 –
UWCSE 1042 1674 6 7 5

Kinship provides personal and genealogical information about individual mem-
bers of an indigenous community of Australia, the Alyawarra, as well as the kinship
terms they use for their relationships to other persons. A glossary of kinship terms
is available, to which we can compare our findings. To simplify the notation, we
use the indices of kinship terms from the glossary, rather than the terms them-
selves. For instance, awaadya is later denoted as kin10. Kinship information is
not available for all living individuals; we mark as relevant those for whom it is
complete.

UMLS characterizes the relations between biomedical concepts in terms of the
Unified Medical Language System ontology.

UWCSE contains information about relationships between persons and courses
within the computer science department of the university of Washington. It in-
cludes two predicates of arity three, namely taught by(Course,Person,Time) and
ta(Course,Person,Time), which our algorithm cannot handle natively. We there-
fore split those into binary predicates linked together by a newly introduced course
identifier.

6.2 Mining Relational Queries

The first series of experiments focuses on our proposed path-based relational
query mining algorithm, FpQm. After reporting general observations about the
behaviour of the algorithm, it is compared to a baseline relational query miner.

Algorithm behaviour. As expected, the minimum support γ strongly affects the
number of path queries found in the first step of FpQm (for instance, from 2 when
γ = 0.30 up to 368 when γ = 0.05, on average for Kinship). Raising γ can actually
result in increased running times because in the absence of frequent short queries,
paths will be extended to greater lengths, possibly at high computational expenses
and without success. On the other hand, the algorithm will be overwhelmed by
the quantity of patterns when γ is set too low. Clearly, it is advisable to set γ as
low as possible according to the size and density of the dataset.

Raising the extension threshold κ can lead to the generation of numerous varia-
tions of shorter connecting paths. This potential for enriching the queries typically
comes at a high computational cost and κ should thus be kept low.

We also studied the effect of the greedy selection of queries on the cover of
positive examples. The aim of this phase is mainly to reduce the high redundancy
of the results. Indeed, we observed that before greedy selection, we easily obtained
hundreds of queries, but a very limited number of queries (1–3) is generally suf-
ficient to obtain almost the same cover. Hence, this pruning phase is crucial for
limiting the fertility of clauses while maintaining the coverage quality.
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Table 2 Comparison of c-armr and FpQm on Kinship: number of positive examples |E+|,
number of true and false positives |E1,1| and |E0,1|, aggregated accuracy J, number of
queries |Q|, and running time (T) in seconds

c-armr FpQm

Predicate
∣∣E+

∣∣ |E1,1| |E0,1| J |Q| T(s) |E1,1| |E0,1| J |Q| T(s)

kin1 228 16 50 0.06 12 531 12 7 0.05 1 5
kin2 489 38 29 0.07 5 532 154 74 0.27 4 40
kin3 231 36 102 0.11 14 423 78 40 0.29 5 41
kin4 379 24 31 0.06 179 663 0 0 0.00 0 7
kin5 493 11 9 0.02 12 564 0 0 0.00 0 2
kin6 508 87 2 0.17 20 433 148 33 0.27 4 19
kin7 453 50 7 0.11 6 462 209 93 0.38 8 20
kin8 817 56 1 0.07 21 502 92 1 0.11 2 2
kin9 805 64 203 0.06 6 513 166 33 0.20 3 19
kin10 462 41 3 0.09 7 413 49 41 0.10 2 1
kin11 505 38 4 0.07 6 442 42 34 0.08 2 0
kin12 739 75 11 0.10 23 598 81 61 0.10 2 1
kin13 299 0 0 0.00 0 396 159 123 0.38 14 46
kin14 447 0 0 0.00 0 449 87 17 0.19 2 14
kin15 43 0 0 0.00 0 445 20 6 0.41 3 10
kin16 943 130 148 0.12 15 551 203 53 0.20 3 85
kin17 1256 157 127 0.11 11 582 0 0 0.00 0 93
kin18 392 61 3 0.15 9 466 61 3 0.15 1 3
kin19 569 36 24 0.06 16 507 0 0 0.00 0 88
kin20 13 0 0 0.00 0 338 7 0 0.54 2 5
kin21 272 43 13 0.15 6 437 109 38 0.35 4 48
kin22 142 20 132 0.07 9 453 49 32 0.28 6 8
kin23 193 0 0 0.00 0 343 53 29 0.24 5 15
kin26 6 0 0 0.00 0 219 0 0 0.00 0 3

Relational Query Miner Comparison Next, we compare our proposed path-based
algorithm FpQm to a baseline relational query miner on the three datasets. For
each edge predicate in turn, we take the supporting pairs of nodes as positive
examples and mine queries over the remaining attributes. We do not consider
cases with less than four positive examples. Furthermore, with Kinship we only
consider pairs of nodes that are both relevant.

As a baseline, we use a modified version of c-armr (De Raedt and Ramon,
2004) (implemented in Prolog) that mines top-k queries with respect to the differ-
ence in support on positive and negative examples. Given a set of positive examples
and considering all remaining pairs of nodes as negative examples, we allowed c-
armr to mine for top-5 queries with positive score. As discussed in Section 3,
the implementation does not ensure that query variables are linked. To address
this problem, we refine unlinked queries if they cover at least one positive exam-
ple, but never include them in the result. This is similar in spirit to generating
candidates based on the data as common in relational pathfinding and function
learning (Richards and Mooney, 1992; Ong et al, 2005; Santos et al, 2009), but
avoids the need to adapt the canonical refinement operator used in our implemen-
tation. Experiments with c-armr have been performed on a single core of a C2Q
machine (2.4GHz 4GB for Kinship, 2.83GHz 8GB for UMLS and UWCSE).

In order to obtain results comparable to c-armr’s, we also use the cover dif-
ference to select queries with FpQm (cf. Section 4.3). Similarly, only positively
scoring queries are output. In addition, we require the accuracy of the queries to
exceed j = 0.05, so as to obtain a minimum frequency threshold for mining paths
and graphs.
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Table 3 Comparison of c-armr and FpQm on UMLS. Legend as in Table 2

c-armr FpQm

Predicate
∣∣E+

∣∣ |E1,1| |E0,1| J |Q| T(s) |E1,1| |E0,1| J |Q| T(s)

adjacent to 7 5 4 0.45 11 38 3 1 0.38 1 2
affects 1022 437 0 0.43 7 129 635 124 0.55 5 65
analyzes 52 50 15 0.75 7 38 52 14 0.79 2 1
ass. eff. of 65 50 2 0.75 29 55 65 15 0.81 1 9
associated with 239 110 46 0.39 5 102 187 122 0.52 11 107
carries out 38 36 36 0.49 5 46 36 0 0.95 1 2
causes 360 280 116 0.59 5 72 354 82 0.80 5 164
complicates 263 189 95 0.53 5 71 263 29 0.90 4 171
concep. part of 18 0 0 0.00 0 283 3 1 0.16 1 2
connected to 4 4 8 0.33 82 45 0 0 0.00 0 2
consists of 9 9 8 0.53 18 38 8 0 0.89 1 6
contains 11 6 2 0.46 5 50 5 0 0.45 1 1
co-occurs with 67 42 24 0.46 16 66 61 34 0.60 5 190
degree of 34 30 6 0.75 43 52 30 0 0.88 1 90
dev. form of 4 4 2 0.67 15 58 3 0 0.75 1 5
diagnoses 48 20 4 0.38 9 66 48 0 1.00 4 61
disrupts 154 112 68 0.50 5 74 125 77 0.54 4 24
evaluation of 63 28 8 0.39 7 52 46 6 0.67 2 33
exhibits 45 18 0 0.40 6 34 45 24 0.65 1 1
indicates 27 18 4 0.58 5 189 18 0 0.67 1 10
ingredient of 28 0 0 0.00 0 203 0 0 0.00 0 2
interacts with 451 155 137 0.26 5 73 451 451 0.50 6 9
isa 500 7 1 0.01 10 188 0 0 0.00 0 22
issue in 268 68 0 0.25 6 94 256 0 0.96 4 3
location of 319 159 117 0.36 5 94 269 97 0.65 9 21
manages 6 0 0 0.00 0 152 4 0 0.67 1 3
manif. of 194 138 82 0.50 5 69 193 92 0.67 9 154
measurement of 64 31 1 0.48 5 80 62 9 0.85 5 95
measures 180 65 0 0.36 18 56 164 86 0.62 3 203
method of 25 18 16 0.44 7 39 22 15 0.55 2 0
occurs in 90 60 18 0.56 5 79 87 8 0.89 4 36
part of 200 176 122 0.55 5 63 102 0 0.51 3 4
performs 90 18 0 0.20 7 47 90 0 1.00 5 83
precedes 73 72 13 0.84 62 60 72 0 0.99 3 268
prevents 32 30 0 0.94 13 59 30 0 0.94 1 9
process of 437 437 165 0.73 5 64 0 0 0.00 0 97
produces 276 140 65 0.41 5 86 254 47 0.79 6 61
property of 44 34 0 0.77 1 156 34 0 0.77 1 18
result of 586 306 63 0.47 5 95 361 137 0.50 10 63
surrounds 8 8 9 0.47 84 51 4 0 0.50 1 0
treats 56 50 0 0.89 21 68 50 10 0.76 3 25
uses 65 48 0 0.74 6 81 50 6 0.70 2 2

Table 4 Comparison of c-armr and FpQm on UWCSE. Legend as in Table 2

c-armr FpQm

Predicate
∣∣E+

∣∣ |E1,1| |E0,1| J |Q| T(s) |E1,1| |E0,1| J |Q| T(s)

advised by 113 11 14 0.09 8 646 9 4 0.08 1 0
ta 195 0 0 0 0 257 0 0 0 0 0
taught by 286 21 30 0.07 8 446 0 0 0 0 4
tempAdvised by 37 0 0 0 0 392 0 0 0 0 0

Tables 2–4 present quantitative results and running times for the three datasets
respectively. For c-armr, which only scores individual patterns, we use the dis-
junction of top-5 patterns with positive scores. As c-armr returns all equally
scoring patterns in case of ties, these disjunctions can have more than five ele-
ments. For each case, we report the total number of positive examples

∣∣E+
∣∣, as

well as the number of queries returned |Q|, the number of true and false positives
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|E1,1| and |E0,1|, the aggregated accuracy J (i.e. the Jaccard coefficient between
the set of example pairs and the union of the supports of output queries) and the
running times T for both c-armr and FpQm.

On Kinship, cf. Table 2, we restrict the number of body literals in c-armr’s
queries to at most five, as running times become prohibitive for longer queries due
to large numbers of unlinked or non-discriminative queries. Under this restriction,
we observe comparable or better accuracies for patterns found by FpQm, which
moreover is at least one order of magnitude faster. On average, FpQm returns
fewer queries than c-armr because it includes a selection procedure to remove
redundant queries, which is not the case with c-armr.

Furthermore, as a direct consequence of this restriction, no pattern with posi-
tive score was found for six of the kinship terms, whereas FpQm is able to identify
more complex patterns for these cases. For four predicates, c-armr found queries
where FpQm did not return any. In three of these cases, the positive support of
individual queries is lower than 3 or their accuracy lower than 0.05. These val-
ues are below the thresholds used in FpQm hence they did not qualify as good
quality queries. For the remaining predicate, kin17, FpQm was overwhelmed by
the quantity of frequent queries, an issue easily solved by raising the accuracy
threshold.

On inspection, the obtained queries correspond to definitions provided in the
glossary. Some deviations are observed, such as an intermediate genealogical level
or a difference in gender of some individual.

On UMLS, the difference in running time gets even more pronounced. Here,
c-armr could not identify the top-5 patterns up to four body literals within two
hours for any term, and failed to do so for up to three literals for twelve predicates,
taking between 9 and 95 minutes for the remaining ones. Table 3 therefore reports
results with up to two body literals. FpQm, on the other hand, takes seconds or
at most up to a few minutes per predicate, and often finds more accurate queries,
as it does not suffer from the restricted expressiveness of short queries.

On UWCSE, no queries could be found for most predicates. Contrarily to c-
armr, FpQm did not return any query for taught by due to individual queries
having insufficient accuracy. We observe that in the absence of good connecting
queries, c-armr still takes several minutes to complete the search, while FpQm
returns within a few seconds.

These experiments thus indicate that the FpQm algorithm can find more com-
plex queries much faster, compared to a standard query mining approach.

6.3 Finding Relational Redescriptions

We now turn to the full relational redescription mining algorithm, Arrm. First,
we study its behaviour, particularly the impact of queries selection. Next, we com-
pare it to three alternative approaches, namely using c-armr instead of FpQm
within the alternating scheme, using propositionalization followed by a proposi-
tional redescription miner, and restricting Arrm to path queries rather than graph
queries. Finally, we provide concrete illustrative examples of redescriptions found
by Arrm.
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Table 5 Quantitative results and running times (T) for mining redescriptions under different
parameterizations (cf. Section 6.3 for details). |R| and |M| are the number of redescriptions
returned and of queries explored, respectively. Fert. is the average clause fertility.

Dataset |R| |E1,1| J |M| Fert. Tot. T T/clause
Parameters min max avg min max avg max avg

Kinship

Gj τ1 39 4 784 141 0.05 0.18 0.10 31 1.90 32min 4min 62s
Gj τ5 62 5 784 91 0.05 0.50 0.20 228 1.13 3h 14min 10min 51s
Gj τ8 64 5 784 88 0.05 0.53 0.22 263 1.05 3h 58min 10min 54s
Gr τ1 59 4 283 84 0.05 0.11 0.07 31 2.77 33min 4min 64s
Gr τ5 177 4 753 31 0.05 0.61 0.25 744 1.36 8h 14min 10min 39s
Gr τ10 205 4 753 27 0.06 0.66 0.27 1190 1.08 14h 37min 10min 44s
Gr τ12 203 4 753 27 0.06 0.66 0.27 1203 1.08 14h 45min 10min 44s
Gs τ1 37 4 784 153 0.05 0.17 0.08 31 1.77 32min 4min 62s
Gs τ5 57 4 784 110 0.05 0.28 0.11 202 1.46 2h 41min 8min 48s
Gs τ10 65 8 784 101 0.05 0.28 0.12 320 1.32 4h 47min 9min 53s
Gs τ15 69 8 784 98 0.05 0.28 0.13 350 1.29 5h 20min 10min 55s
Pj τ1 34 4 784 155 0.05 0.18 0.10 31 1.55 23min 2min 44s
Pj τ5 57 4 784 102 0.05 0.43 0.15 178 1.17 1h 11min 2min 24s
Pj τ7 56 4 784 102 0.05 0.43 0.15 207 1.06 1h 28min 2min 25s
Pr τ1 43 4 466 108 0.05 0.16 0.08 31 2.06 23min 2min 46s
Pr τ5 117 4 732 43 0.05 0.43 0.16 374 1.36 2h 10min 2min 20s
Pr τ10 139 4 732 36 0.05 0.66 0.19 601 1.13 3h 47min 2min 22s
Ps τ1 34 4 784 163 0.05 0.17 0.09 31 1.52 23min 2min 44s
Ps τ5 49 4 784 123 0.05 0.28 0.12 169 1.33 1h 6min 2min 23s
Ps τ11 57 4 784 111 0.05 0.35 0.13 222 1.23 1h 21min 2min 21s

UMLS

Gj τ1 19 5 404 100 0.35 0.94 0.65 42 0.71 9min 31s 76s 13s
Gj τ3 20 6 552 118 0.35 1.00 0.79 87 0.68 13min 59s 76s 9s
Gr τ1 19 5 374 99 0.35 0.94 0.64 42 0.83 9min 30s 77s 13s
Gr τ4 20 6 374 106 0.35 1.00 0.80 111 0.80 14min 51s 77s 8s
Gs τ1 18 5 437 107 0.33 0.75 0.51 42 0.67 9min 24s 76s 13s
Gs τ4 19 6 552 130 0.35 1.00 0.64 86 0.65 16min 51s 76s 11s
Pj τ1 16 5 404 103 0.36 0.94 0.63 42 0.62 8min 2s 77s 11s
Pj τ4 17 6 552 124 0.38 1.00 0.78 80 0.62 11min 21s 77s 8s
Pr τ1 16 5 404 104 0.36 0.94 0.62 42 0.76 8min 1s 77s 11s
Pr τ4 18 6 404 107 0.38 1.00 0.79 101 0.78 11min 26s 77s 6s
Ps τ1 15 5 437 110 0.33 0.75 0.48 42 0.57 8min 4s 77s 11s
Ps τ4 16 6 552 138 0.35 1.00 0.63 78 0.62 13min 49s 77s 10s

UWCSE

Gj τ1 15 5 278 53 0.02 0.24 0.07 8 2.50 5s 2s <1s
Gj τ3 19 5 278 49 0.02 0.28 0.10 35 0.94 24s 10s <1s
Gr τ1 16 5 278 53 0.02 0.24 0.07 8 3.75 5s 2s <1s
Gr τ4 21 5 278 47 0.02 0.28 0.10 50 1.16 31s 9s <1s
Gs τ1 14 5 278 42 0.02 0.24 0.06 8 2.00 6s 2s <1s
Gs τ3 17 5 278 41 0.02 0.24 0.06 28 0.89 23s 10s <1s
Pj τ1 15 5 278 53 0.02 0.24 0.07 8 2.50 4s 2s <1s
Pj τ3 19 5 278 49 0.02 0.28 0.10 35 0.94 21s 9s <1s
Pr τ1 16 5 278 53 0.02 0.24 0.07 8 3.50 5s 2s <1s
Pr τ4 21 5 278 47 0.02 0.28 0.10 48 1.17 26s 8s <1s
Ps τ1 14 5 278 42 0.02 0.24 0.06 8 2.00 3s 1s <1s
Ps τ3 17 5 278 41 0.02 0.24 0.06 28 0.89 18s 9s <1s

Algorithm behaviour. The criterion for ranking queries is the major lever in the
selection procedure, directly impacting the exploration. We investigate this aspect
by letting Arrm mine redescriptions from all three datasets with varying param-
eters. More specifically, we considered positive support (s), cover ratio (r) and
accuracy (j) as options for descending ranking of the queries. We used various
maximum exploration depths (τx), from a single round up to the number of alter-
nations after which the algorithm stopped with no candidates left, or at most 15.
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In addition, as an alternative to graph queries (G), we limited the algorithm to
paths queries (P ) by shortcutting the combining phase.

Looser selection methods that yield more outputs per candidate query (up-
wards of 5 on average) were also studied. They result in very broad query trees
whose dimensions become unmanageable already after the first round. They showed
no improvements in the quality of redescriptions after uncomplete runs lasting over
a day and hence were abandoned.

The remaining criteria in Γ control the complexity of the queries, avoiding the
generation of patterns that are unduly specific or contain overly many constraints.
Such patterns have a very limited explanatory power and are considered worthless.
These criteria were fixed as follows for each dataset in all runs. We required any
node to be instantiated by at least 3 distinct data nodes. For Kinship, we limited
the number of nodes and of edges in a query to n = 7 and e = 10, respectively.
The minimum contribution of a clause was set to d = 0.66 of its support and the
minimum accuracy for the first turn was set to j = 0.05. For subsequent turns
the jaccard coefficient of the parent query was used as a minimum threshold. For
UMLS, we set these thresholds to n = 5, e = 10, d = 0.25 and j = 0.33. For UWCSE,
we set j = 0.33 and the absolute mininum contribution to 3 but did not limit the
number of nodes and edges.

Table 5 presents statistics of the results obtained for each run as well as run-
ning times. We observe important variations in the support and accuracy across
datasets, reflecting the variety of the redescriptions found. First, alternating for
a few turns does allow one to find more accurate patterns than simply match-
ing isolated predicates (τ1). Note that contrarily to Tables 2–4, accuracies here
are not aggregated over multiple patterns but obtained from individual redescrip-
tions. Running times per query vary from less than a second up to several minutes.
Of course, the total running time needed for the full exploration depends heavily
on the number of queries explored, |M|. As mentioned previously, an important
factor impacting the running times is the presence of symmetries which results in
duplicate variables, leading to numerous instances and hence more costly mapping.

The effects of different parameterizations are limited with UMLS and UWCSE,
where the algorithm consistently mined a small number of relatively simple queries.
Parameterization is more critical with Kinship, where more complex queries are
needed to capture the various meanings of kinship terms. In particular, with the
former two datasets, the algorithm stops after a few alternations upon finding only
redundant queries. Therefore, further raising τ does not affect the outcome. In all
datasets, ranking queries by cover ratio allowed to find the best redescriptions
while ranking by support appears suboptimal.

Alternative query miner. As the alternating scheme is independent of the query
mining algorithm used (line 7 in Figure 6), we created a modified version of Arrm,
where we replace FpQm by c-armr. We use the same parameterizations of c-armr
as in the experiments above, with the exception of the number of body literals for
Kinship, which we had to restrict to at most three (rather than five) here to keep
running times feasible. This is due to the much larger search space over kinship
terms compared to that over genealogical terms. We rank queries by cover ratio,
as this was the best setting in the previous experiment.

Table 6 presents quantitative results and running times for mining redescrip-
tions from the three datasets under this replacement. In all three cases, the al-
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Table 6 Quantitative results and running times (T) for mining redescriptions with c-armr
as the query miner (cf. Section 6.3 for details). Legend as in Table 5.

Dataset |R| |E1,1| J |M| Fert. Tot. T T/clause
Parameters min max avg min max avg max avg

Kinship τ3 8 4 75 34 0.07 0.15 0.11 53 2.04 19h 59min 2h 22min
UMLS τ8 49 4 437 76 0.08 1.00 0.72 178 1.35 3h 3min 61s
UWCSE τ2 3 40 61 52 0.07 0.15 0.10 32 2.67 4min 16s 51s 8s

Table 7 Quantitative results and running times for mining redescriptions by applying the
ReReMi algorithm on the propositionalized dataset (cf. Section 6.3 for details). |D|, |F |, T
prop. and T mining are the number of rows and columns in the propositionalized dataset and
the running time for propositionalization and for mining, respectively.

Dataset |R| |E1,1| J |D| |F | T prop. T mining
Parameters min max avg min max avg

Kinship 66 3 1489 178 0.00 0.17 0.07 49074 13169 3 min 42s 34 min 19s
UMLS 100 6 182 36 0.04 1.00 0.74 18088 4998 23s 13 min 13s
UWCSE 58 3 41 19 0.01 0.24 0.09 55882 2048 15s 1min 45s

gorithm stopped after a few alternations (3 for Kinship, 8 for UMLS and 2 for
UWCSE) without candidates for further expansion. In the case of UMLS and UWCSE

the obtained redescriptions are almost on par with those found using FpQm, albeit
somewhat less accurate, while the redescriptions found for Kinship have clearly
lower accuracy. This can be explained as an effect of the length restriction required
to keep c-armr running times feasible. As UMLS and UWCSE contain simple rede-
scriptions, the length limit of two only moderately affects the quality of the out-
come. With Kinship, however, restricting query length to at most three prevents
the algorithm from finding the more complex redescriptions of higher accuracy
the original Arrm identifies. Together with the significantly higher running times
of the c-armr-based variant, these results show that we can find more accurate
redescriptions more quickly by using our new FpQm method rather than c-armr
within the alternating scheme.

A propositional approach. We next compare to an existing propositional rede-
scription mining algorithm, following ideas from propositionalization (Kuzelka and
Zelezný, 2009; Dinh et al, 2012) to suitably transform the data. Specifically, we
extracted features from the dataset by enumerating paths up to a given length join-
ing each pair of objects and ran the ReReMi propositional redescription mining
algorithm (Galbrun and Miettinen, 2012) on the resulting propositional dataset.
We considered paths of length one and two for all datasets. In addition we also
extracted paths over genealogical attributes of length up to five for the Kinship

dataset.
As can be seen from Table 7, this method is able to find comparable redescrip-

tions in competitive running times when applied to UMLS and UWCSE, where paths of
length at most two suffice to capture the relations in the network. However, it fails
with Kinship, where longer paths and more complex combinations are needed.

Especially in the latter case, our relational approach to redescription mining
has clear advantages over the propositional approach. First, it can easily explore
longer paths, whose inclusion results in feature matrices too large to handle with
the propositional miner. Second, it bases the selection of paths considered on the
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Fig. 7 Example redescription found from Kinship. Node predicates are male (m), female (f),
living (l) and relevant (r). Negated Boolean attributes are denoted with ¬.
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Fig. 8 Example redescriptions found from UMLS

current set of positive examples, rather than on all possible pairs as necessary when
performing propositionalization once before mining. Third, it explicitly combines
paths into more expressive graph queries.

The second point could be addressed by repeated propositionalization during
mining, which would require to modify the propositional approach. To simulate
this setting, we performed experiments where we restricted our algorithm to path
queries. Results are reported in Table 5. Once more, we observe that results are
often comparable for the simpler cases of UMLS and UWCSE, but our fully relational
method finds substantially more accurate redescriptions on Kinship, with an av-
erage accuracy of 0.27 when using graphs (Gr) compared to 0.19 when using paths
only (Pr).

Examples of Redescriptions. We now provide a few example redescriptions found
by Arrm on the three datasets. Figure 7 shows an example of redescription found
from the Kinship dataset. Graph (1b) represents the genealogical link between a
female individual and the daughter of her paternal aunt, which is one of the mean-
ings of kin14 found in the glossary. Kinship terms often have several meanings and
may also be used in broader senses. In such cases, a configuration of several terms,
as in graph (1a), better captures one of the senses than a term taken in isolation.
For instance, this redescription has an accuracy of 0.59, a significant improvement
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Fig. 9 Example redescriptions found from UWCSE. Node predicates are professor, student
and faculty

over the best match found for edge predicate kin14 alone, of accuracy 0.06 or the
best pair of path queries similarly involving this predicate, of accuracy 0.17.

Figure 8 shows two examples of redescriptions found for UMLS: a perfect rede-
scription, i.e. with accuracy 1, and a pair of symmetrical queries.

Finally, three redescriptions from UWCSE are displayed in Figure 9. Graphs (4a)
and (6a) both represent the advisee–advisor relationship, with different matching
queries. One states that they share a common publication (4b), the other that the
advisee is a teaching assistant for the course taught by his supervisor (6b), forming
two redescriptions of accuracy 0.24 and 0.10, respectively. The other redescription
involves a coauthorship relation again, this time between faculty members (5a)
and the matching query indicates that the persons of interest have taught different
sessions of a same course (5b).

To summarize, we observe that our alternating scheme is able to find redescrip-
tions that capture the relations existing in a network. It can exploit the added
expressivity compared to individual queries to better elucidate the different uses
of the same predicate and find more accurate patterns.

7 Conclusions

We have introduced the problem of relational redescription mining. As a solution,
we proposed an alternating scheme with a novel efficient relational query miner
based on frequent paths as its core.

We demonstrated that our query miner can find more complex queries than
a baseline ILP approach, much faster. The proposed alternating scheme is able
to capture the relations existing in a network with expressive redescriptions, as
shown in experiments with three relational datasets.

The power of relational redescription mining should be investigated further on
other datasets and application domains. On the algorithmic side, extending the
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approach to probabilistic networks and considering queries of higher arity provide
essential directions for future work.
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Galárraga L, Teflioudi C, Hose K, Suchanek FM (2013) AMIE: Association rule
mining under imcomplete evidence in ontological knowledge bases. In: Proceed-
ings of the 22th International Conference on World Wide Web, WWW 2013, to
appear

Galbrun E, Kimmig A (2012) Towards finding relational redescriptions. In:
Ganascia JG, Lenca P, Petit JM (eds) Discovery Science, Springer, Lecture
Notes in Computer Science, vol 7569, pp 52–66

Galbrun E, Miettinen P (2012) From Black and White to Full Colour: Extending
Redescription Mining Outside the Boolean World. Statistical Analysis and Data
Mining 5(4):284–303

Gallo A, Miettinen P, Mannila H (2008) Finding subgroups having several de-
scriptions: Algorithms for redescription mining. In: Proceedings of the SIAM
International Conference on Data Mining, SDM 2008, pp 334–345

Goethals B, Van den Bussche J (2002) Relational association rules: Getting
WARMeR. In: Hand DJ, Adams NM, Bolton RJ (eds) Pattern Detection and
Discovery, Springer, LNCS, vol 2447, pp 125–139

Goethals B, Hoekx E, Van den Bussche J (2005) Mining tree queries in a graph.
In: 11th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, ACM, pp 61–69

Guns T, Nijssen S, De Raedt L (2011) Itemset mining: A constraint programming
perspective. Artif Intell 175(12-13):1951–1983
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