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Institut Supérieur de l’Aéronautique et de l’Espace

10 av. Edouard Belin, BP 54032, 31055 Toulouse, France
pierre.siron@isae.fr

Martin Adelantado
Office National d’Etudes et de Recherches Aérospatiales
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ABSTRACT: In the context of the Research Platform for Embedded Systems Engineering (PRISE) Project, we are developing
and maintaining a complete aircraft flight simulation using the High Level Architecture (HLA), an IEEE standard for distributed
simulation. This complex distributed simulation is composed of different distributed HLA simulators (e.g., Flight Dynamics,
Sensors), whose dynamic behaviors are implemented as Ordinary Differential Equations (ODEs). The resolution of these
equations is done, locally for each simulator, by numerical integration with methods like Euler or Adams-Bashforth. The
global behavior of this distributed simulation, where each component runs its own local resolution, is a key challenge. The
main problem is to ensure the global simulation consistency and, in particular, the specific data flows between components
with the correct temporal real-time behavior. This paper specifically addresses the problem of solving ODEs over an HLA
distributed architecture and offers a complete study (specifications, implementation and validation) where several theoretical
concepts and methods are discussed.

1. Introduction

The main goal of the Research Platform for Embedded Systems Engineering (PRISE) project is to provide students and
researchers with a platform for the study, evaluation and validation of new embedded system concepts, architectures and
techniques through a dedicated hardware and software environment. Modern embedded systems become more and more
complex with an increasing number of both components and interactions between them and the use of simulation is essential
for relevant studies. In this context, we implemented from scratch and we are currently maintaining an aircraft component-based
simulation composed of several distributed simulators [1], [2]. Each simulator represents a specific part of the aircraft (e.g.,
engines, actuators, control devices, flight control laws), its dynamic in the environment (flight dynamics) or the environment
itself. An overview of this distributed simulation is depicted in Figure 1.

This flight simulation, called SDSE (French acronym for Distributed Simulation of Embedded Systems) has been implemented
by using the HLA IEEE standard [3], [4], [5] which provides a well-known simulation framework for composability, mainte-
nance and reusability for this complex simulation. Moreover, HLA provides time management mechanisms [6], guaranteeing a
consistent global logical time throughout the whole simulation, which is one of the main benefits of this simulation standard.
Previous works showed that these time management mechanisms could be used to ensure the good behavior during run time,



Figure 1. Overview of the SDSE aircraft simulation

especially in real-time simulations [7], [8], which is typically an aspect of the SDSE simulation. From the software point
of view, we are using the open source CERTI [9] Run Time Infrastructure (HLA middleware implementation) because we
have a complete control on its implementation. We have shown that it is suitable for interconnection of simulators (i.e., HLA
federates) with short computation and communication cycles [10], [11]. Additionally, we have also investigated the usage of
CERTI time management techniques and implementations for real-time simulations [12] and especially for SDSE.

Scheduling a real-time federation (i.e., an HLA simulation) consists of two complementary facets that must be distinguished,
namely, the temporal scheduling and the functional scheduling.

1) The temporal scheduling belongs to scheduling theory. Here, the objective is to formally verify that the distributed
simulation will run while ensuring compliance with the real-time constraints according to its specifications. This aspect
has been addressed in [2] and is not the purpose of the present study.

2) The functional scheduling ensures that the sequence of the communications and computations between each simulator
will provide global simulation results that will always be fair and relevant according to simulation model semantics.
HLA time management mechanisms are providing a good baseline for this purpose. In the SDSE simulation, each
federate implements a dedicated specific algorithm and some of these models are using Ordinary Differential Equations
(ODEs) [13]. Therefore, the distributed resolution of these ODEs is quite complex and needs to be clearly analyzed; this
is the purpose of the paper.

Also, the notion of “time” within a real-time simulation is an important notion which needs to be clearly stated for consistent
temporal and functional scheduling study. Three different concepts can be associated to the notion of time, each one describing
a specific aspect [14]:

1) The physical time, denoted by tPHY , is the reference time of the physical system under study (the source system that
we want to model and to simulate).

2) The simulated time, denoted by tSIM , is a representation of the physical time within the simulation. It is a set of ordered
values representing different time instants for the modeled physical system.

3) The absolute time or wall-clock time, denoted by tWCT , is the time elapsed while executing the simulation. It can be
measured by a hardware clock, like the CPU clock.

In our real-time simulations, with the usage of conservative time management methods, these times might be equal (with
respect to a certain unit and a certain precision). Therefore, during the run of a simulation, we have:

tPHY = tSIM = tWCT (1)

For example, if the millisecond is considered as the reference unit, 1 millisecond of the real physical system is equal to 1 unit
of logical HLA simulation time, which is also equal to 1 millisecond of execution time.



To resume, this paper focuses on the study of functional scheduling for HLA simulations (i.e., federations) using HLA time
management semantics where some simulators (i.e., federates) are modeled by ODEs. Based on our experience with the SDSE
aircraft simulation development, we present here a detailed analysis from initial ODEs characterization to distributed resolution
description. The paper is organized as follows:

• Section 2 describes ODEs characterization for our real-time simulation;
• Section 3 outlines the resolution of ODEs for federation with a communication sequence;
• Section 4 presents the resolution of ODEs for federation with a communication loop;
• Section 5 summarizes these concepts and shows an illustration for the SDSE aircraft simulation.

2. ODEs Characterization

2.1 State-Space Description

The dynamic behavior of a system can usually be modeled by a set of Ordinary Differential Equations (ODEs) and/or Partial
Derivative Equations (PDEs) derived from different laws of physics. Under the action of external excitation (inputs) and/or
initial conditions, the system evolves accordingly, and one can then monitor signals of interest (outputs), representative of the
system behavior. In this paper, we suppose that the federates simulate systems governed by ODEs and described by state-space
models of the form:

ẋ(t) = f(x(t),u(t), t) (2)
y(t) = g(x(t),u(t), t) (3)
x(0) = x0 (4)

where x = [x1, . . . , xn]
> ∈ Rn denotes the state vector composed of n state variables xi, u = [u1, . . . , um]

> ∈ Rm the
input vector, y = [y1, . . . , yp]

> ∈ Rp the output vector and ẋ(t) := dx(t)/dt. The state equation (2) is a set of n coupled
first-order ODEs, in which each time derivative ẋi is expressed in terms of the state variables x1, . . . , xn and the system inputs
u1, . . . , um. The state equation represents the dynamic behavior of the system under the action of the inputs and the initial
conditions defined by equation (4). The output equation (3) yields any signal of interest depending on state variables and/or
input variables. In the general case, f(.) et g(.) are non-linear vector functions.

From an HLA point of view, a federate subscribes to object attributes that will constitute the input vector that drives the state
equation, and publishes object attributes yielded by the output equation.

2.2 Numerical methods for ODEs

Numerical solutions of ODEs can be performed by a large variety of methods depending on the nature of the problem and
the desired accuracy [13]. Starting from an initial point, a numerical method takes a short step forward in time to find the
next point, and so on. Among all the available numerical methods, one can find single-step methods (e.g., Euler method),
Runge-Kutta methods, and multistep methods (e.g., Adams-Bashforth and Adams-Moulton methods). These methods imply
the choice of an adequate time step ∆t, which can have a significant impact on the accuracy of the solution; they all lead
to recurrence equations. For instance, the forward Euler method applied to original state equation (2) leads to the recurrence
equation (5):

xk+1 = xk + ∆t f(xn,un, tn) (5)

where n denotes here the iteration, tn = n∆t the corresponding time, and xn = x(tn), un = u(tn) the values of x and u at
tn. The Euler method is an explicit method in the sense that it calculates the next state value xn+1 from previous values xn

and un. By extension, explicit Adams-Bashforth methods, can be written using s previous values as in equation (6):

xn+1 = xn + ∆t

s∑
k=0

bkf(xn−k,un−k, tn−k) (6)

where the bk are chosen such that the method has order s. As an example, the second-order and third-order Adams-Bashforth
methods are respectively given by equations (7)-(8):



(AB2) xn+1 = xn + ∆t

(
3

2
f(xn,un, tn)− 1

2
f(xn−1,un−1, tn−1)

)
(7)

(AB3) xn+1 = xn + ∆t

(
23

12
f(xn,un, tn)− 4

3
f(xn−1,un−1, tn−1) +

5

12
f(xn−2,un−2, tn−2)

)
(8)

On the opposite, there are implicit methods such as the backward Euler method described here in equation (9):

xn+1 = xn + ∆t f(xn+1,un+1, tn+1) (9)

where one needs to solve a non-linear algebraic equation at every time step in order to produce the next value xn+1; this is
usually achieved by using fixed point iteration or Newton-Raphson method. The computational cost is obviously higher, but
implicit methods are usually more stable than their explicit counterparts. Nevertheless, the implicit methods are rejected in this
HLA simulation context as they necessitate the value of the input un+1 at the next step n + 1, i.e., in the future.

2.3 Direct feedthrough

The output equation (3) is an algebraic equation that produces the output vector y(t) containing the signals of interest. Generally,
the output vector y(t) may depend on both the state vector x(t) and the input vector u(t), and eventually, explicitly on the
time t, as in equation (3). Contrary to the state equation (2) which requires numeric solvers as shown above, the discretization
of the output equation, described in (10), is straightforward:

∀t,y(t) = g (x(t),u(t), t)⇒ yn = g (xn,un, tn) (10)

Nevertheless, special attention must be paid to the presence, or not, of the input vector u(t) (or un) in the output equation.
When the system output y(t) depends on the input vector u(t) (or on some of the inputs ui), it is called direct feedthrough.
As it will be presented in Sections 3 and 4, this can reveal particularly intricate when simulating a distributed system. In the
case where there is no direct feedthrough, the output equation (11) is:

∀t,y(t) = g (x(t), t)⇒ yn = g (xn, tn) (11)

2.4 Typical execution within a federate

The choice of the numerical method and the time step ∆t depends on the characteristics of the system but is not discussed
here. The discretization of a state-space model with an explicit linear multi step method leads to the following discreet system
(12):  ẋ(t) = f(x(t),u(t), t)

y(t) = g(x(t),u(t), t)
x(0) = x0

⇒

 xn+1 = xn + ∆t
∑s

k=0 bkf(xn−k,un−k, tn−k)
yn = g(xn,un, tn)

x(0) = x0

(12)

At iteration n, knowing xn and un, the output equation is first executed to provide yn, then the state equation yields the state
vector update xn+1 for the next iteration. Note that depending on the numerical methods, previous values xn−k and un−k
must be stored for the recurrence equation.
For the sake of simplicity but without loss of generality, we will consider in the following linear time-invariant (LTI) systems,
i.e, systems described by linear differential and algebraic equations with constant coefficients. The original equations (2)-(3)
can be rewritten as linear equations (13)-(14):

ẋ(t) = Ax(t) + Bu(t) (13)
y(t) = Cx(t) + Du(t) (14)

where A,B,C and D are respectively n× n, n×m, p× n and p×m constant matrices. For example, the application of the
forward Euler method yields equations (15)-(16):

xn+1 = xn + ∆t (Axn + Bun) (15)
yn = Cxn + Dun (16)



In the following, the influence of direct feedthrough on simulation, is illustrated on a first example with a federation involving
federates with a communication sequence. Thereafter, we pursue the study on a federation that presents communication loop
between federates. These studies will lead to the establishment of simple rules for the automatic implementation of consistent
functional scheduling for these types of federation.

3. Federation with a Communication Sequence
Let an HLA federation composed of 4 federates which are communicating in series as illustrated in Figure 2. We study the
impact of direct feedthrough in some of the federates.

Federate 0 Federate 1 Federate 2 Federate 3
u1,n y1,n → u2,n y2,n → u3,n y3,n

Figure 2. Federation with federates communicating in series

3.1 Standard case

Federate 0 is a federate which provides a signal u1,n (every cycle n). For the sake of simplicity but without loss of generality,
it is assumed that the numerical solution of the state-space models representing the dynamic behavior of the next 3 federates
is described in equations (17)-(18):

xi,n+1 = Aixi,n + Biui,n (17)
yi,n = Cixi,n (18)

where i ∈ 1, 2, 3 denotes the federate index. The federates are linked in series such that the output of Federate i is entirely
the input of Federate i + 1, i.e., ∀i ∈ 2, 3, ui,n = yi−1,n. We can see that these federates do not exhibit direct feedthrough
in their respective output equation, and therefore no special care is needed for the execution of the federates. This gives the
following global system with equations (19)-(20):

x1,n+1

x2,n+1

x3,n+1

 =

 A1 0 0
B2C1 A2 0
0 B3C2 A3

x1,n

x2,n

x3,n

+

B1

0
0

u1,n (19)

y1,n

y2,n

y3,n

 =

C1 0 0
0 C2 0
0 0 C3

x1,n

x2,n

x3,n

 (20)

From the initial conditions [x1,0 x2,0 x3,0]
>, we can calculate the state and output for every iteration step [y1,n y2,n y3,n]

>.
We assume that, from initial moment t = 0, all states from Federates 1, 2 and 3 are xi,0, ∆t is the time step between cycle
and lk ≤ ∆t is the lookahead. Federate 0 can be implemented according the pseudo-code described in Table 1 and the other
Federates as in Table 2.

In the remainder of the paper, for clarity sake, acronyms will be used to denote well-known HLA services and callbacks:
• UAV stands for updateAttributesValues(...);
• RAV for reflectAttributesValues(...);
• TAR for timeAdvanceRequest(...);
• NER for nextEventRequest(...);
• and TAG for timeAdvanceGrant(...).

Also, we consider the case where each federate is regulator and constrained for HLA time management mechanisms and we
do not consider the zero-lookahead case (i.e., lk = 0).
Figure 3 illustrates the temporal behavior of this federation with ∆t = 10 and lk = 1. Letters O and S describe respectively
output equation calculation and state equation calculation in every federate of interest.



1) Initialization phase
a) n← 0

2) Simulation phase (while loop)
a) Update attributes: UAV(n∆t + lk) for u1,n

b) Ask for HLA time advance to cycle n + 1 for local time (n + 1)∆t: TAR((n + 1)∆t)
c) HLA time advance is granted to cycle n + 1 for local time (n + 1)∆t: TAG((n + 1)∆t)
d) n← n + 1

Table 1. Federate 0 pseudo-code

1) Initialization phase
a) n← 0
b) Initial choice for xi,0 value

2) Simulation phase (while loop)
a) Output calculation yi,n from state value xi,n

b) Publish attributes: UAV (n∆t + lk) for yi,n

c) Request for HLA time advance to cycle n + 1 for local time (n + 1)∆t: TAR((n + 1)∆t)
d) Receive attributes ui,n: RAV(n∆t + lk)
e) HLA time advance is granted to cycle n + 1 for local time (n + 1)∆t: TAG((n + 1)∆t)
f) Local state calculation xi,n+1 from xi,n and ui,n

g) n← n + 1

Table 2. Federate 1-2-3 pseudo-code
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Figure 3. Execution sequence for standard case

3.2 Direct feedthrough case

We still consider the test case described above but we are assuming now that Federates 2 and 3 contain direct feedthrough
relation. The equation system for Federates 1, 2 and 3 is depicted in (21)-(22)-(23)-(24):

x1,n+1 = A1x1,n + B1u1,n x2,n+1 = A2x2,n + B2u2,n x3,n+1 = A3x3,n + B3u3,n (21)
y1,n = C1x1,n y2,n = C2x2,n + D2u2,n y3,n = C3x3,n + D3u3,n (22)



x1,n+1

x2,n+1

x3,n+1

 =

 A1 0 0
B2C1 A2 0

B3D2C1 B3C2 A3

x1,n

x2,n

x3,n

+

B1

0
0

u1,n (23)

y1,n

y2,n

y3,n

 =

 C1 0 0
D2C1 C2 0

D3D2C1 D3C3 C3

x1,n

x2,n

x3,n

 (24)

Reminding that ∀i ∈ 1, 2, 3,ui,n = yi−1,n we intuitively feel that direct feedthrough will cause problems. Let’s consider
Federate 2 implemented as described in Table 2. At phase 2.(a), the federate should calculate its output value y2,n from x2,n

and u2,n = y1,n. However for n > 0, according to this pseudo-code implementation, Federate 1 doesn’t know about y1,n but
only about y1,n−1. This means that it knows values from the previous step but not the one from the same step which has just
been calculated per federate 1. Therefore for the same cycle, Federate 2 needs to know its input at instant n to calculate y2,n.
As Federates are communicating in sequence, this problem is even worth for Federate 3 which must wait for the update of the
output from Federate 2, which is itself depending on Federate 1. So there is a functional schedule principle to build in order
to ensure consistency between publications and acquisitions.
We solve this problem by combining the usage of NER with the usage of TAR and we also define a dedicated and correct
value for the lookahead. NER service allows to request an advance in the HLA logical time but unlike the TAR service, this
time advance will be granted either for the required time or for the time of the first available RAV if it is smaller than the
requested time. Here the choice of a correct lookahead is a key issue to ensure a correct number of UAV/RAV for the same
simulation cycle. Implementation strategies For federate 0 and Federate 1 don’t change but, as described in Tables 3 and 4,
Federates 2 and 3 contain NER usage in their implementation strategies. Figure 4 illustrates the temporal behavior of this new
strategy with ∆t = 10 et lk = 1.

1) Initialization phase
a) n← 0
b) Initial choice for xi,0 value

2) Simulation phase (while loop)
a) Request for HLA time advance to cycle n + 1 de temps local (n + 1)∆t: NER((n + 1)∆t)
b) Receive attributes y1,n = u2,n: RAV(n∆t + lk)
c) HLA time advance is granted to HLA simulation time n∆t + lk: TAG(n∆t + lk)
d) Output calculation y2,n partir de x2,n et u2,n

e) Publish attributes: UAV(n∆t + 2lk) de y2,n

f) Request for HLA time advance to cycle n + 1 for local time (n + 1)∆t: TAR((n + 1)∆t)
g) HLA time advance is granted to cycle n + 1 for local time (n + 1)∆t: TAG((n + 1)∆t)
h) Local state calculation x2,n+1 from x2,n and u2,n

i) n← n + 1

Table 3. Federate 2 pseudo-code

4. Federation with a Communication Loop
We consider now a federation containing a communication loop between Federates as depicted in Figure 5 where u2,n = y1,n

and u′1,n = y2,n.

4.1 Standard case

As before, Federate 0 delivers signal u1,n at every cycle n. We assume that the numerical solutions of state-space models
representing the dynamic behaviors of Federate 1 and Federate 2 are given by equations (25)-(26)-(27)-(28):

x1,n+1 = A1x1,n + B1u1,n + B′1u
′
1,n (25)

y1,n = C1x1,n (26)
x2,n+1 = A2x2,n + B2u2,n (27)

y2,n = C2x2,n (28)



1) Initialization phase
a) n← 0
b) Initial choice for xi,0 value

2) Simulation phase (while loop)
a) Receive attributes y3,n = u2,n: RAV(n∆t + 2lk)
b) HLA time advance is granted to HLA simulation time n∆t + lk: TAG(n∆t + 2lk)
c) Output calculation y3,n partir de x3,n et u3,n

d) Publish attributes: UAV(n∆t + 2lk) de y3,n

e) Request for HLA time advance to cycle n + 1 for local time (n + 1)∆t: TAR((n + 1)∆t)
f) HLA time advance is granted to cycle n + 1 for local time (n + 1)∆t: TAG((n + 1)∆t)
g) Local state calculation x3,n+1 from x3,n and u3,n

h) n← n + 1

Table 4. Federate 3 pseudo-code
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Figure 4. Execution sequence direct feedthrough case

Federate 0 Federate 1 Federate 2
u1,n

y1,n → u2,n

u′
1,n ← y2,n

Figure 5. Illustration of a federation with a communication loop

This brings the global state equations (29)-(30) system:



[
x1,n+1

x2,n+1

]
=

[
A1 B′1C2

B2C1 A2

] [
x1,n

x2,n

]
+

[
B1

0

]
u1,n (29)[

y1,n

y2,n

]
=

[
C1 0
0 C2

] [
x1,n

x2,n

]
(30)

Without direct feedthrough and despite the presence of a loop, the resolution takes place as it is done in the context of a
federation with communication sequence. Thus, we can apply the implementation strategies described in Tables 1 and 2.

4.2 Direct feedthrough case

Now, let’s consider a direct feedthrough relation for federate 1 depending on its second input u′1,n, then the model of federate
1 can be described as in equations (31)-(32):

x1,n+1 = A1x1,n + B1u1,n + B′1u
′
1,n (31)

y1,n = C1x1,n + D′1u
′
1,n (32)

This brings the global state equations (33)-(34) system to:

[
x1,n+1

x2,n+1

]
=

[
A1 B′1C2

B2C1 A2 + B2D
′
1C2

] [
x1,n

x2,n

]
+

[
B1

0

]
u1,n (33)[

y1,n

y2,n

]
=

[
C1 D′1C2

0 C2

] [
x1,n

x2,n

]
(34)

As for the federation with communication sequence, the presence of the direct feedthrough requires therefore that Federate 1
receives the output from Federate 2 for the same cycle. Therefore Federate 1 has to behave according to the implementation
strategy described above in Table 3.

4.3 Algebraic loop case

MATLAB/SIMULINK users are usually familiar with the concept of algebraic loops, which occur when a signal loop exists with
only direct feedthrough blocks within the loop. More details on algebraic loops and how they are handled in the SIMULINK
tool can be found in the corresponding user’s guide [15]. To illustrate this concept, from the direct feedthrough case, let’s
consider a second direct feedthrough relation for Federate 2 depending on its second input u2,n. The model of federate 2
should now be described with equations (35)-(36):

x2,n+1 = A2x2,n + B2u2,n (35)
y2,n = C2x2,n + D2u2,n (36)

Obtaining the global system equation is much more complicated. Indeed, by replacing u′1,n et u2,n per their respective values
y2,n et y1,n, we obtain the following output equations (37)-(38):

y1,n = C1x1,n + D′1y2,n (37)
y2,n = C2x2,n + D2y1,n (38)

In this specific case, to calculate the output for step n, every federate needs the output from the other federates at the same
instant n; this is the so-called algebraic loop concept mentionned above. This loop shows an implicit equation requiring the
resolution of a system at each step of integration and the solution, if existing, can be described per equations (39)-(40):

y1,n = (I−D′1D2)
−1

C1x1,n + (I−D′1D2)
−1

D′1C2x2,n (39)

y2,n = (I−D2D1)
−1

D2C1x1,n + (I−D2D
′
1)
−1

C2x2,n (40)

where I denotes the identity matrix with the correct dimension. Therefore, in the context of a linear description, if matrices
I−D′1D2 and I−D2D

′
1 are non singular, a solution exists and the model for the global state is given per (41)-(42):



[
x1,n+1

x2,n+1

]
=

[
A1 + B′1 (I−D2D1)

−1
D2C1 B′1 (I−D2D

′
1)
−1

C2

B2 (I−D′1D2)
−1

C1 A2 + B2 (I−D′1D2)
−1

D′1C2

] [
x1,n

x2,n

]
+

[
B1

0

]
u1,n (41)[

y1,n

y2,n

]
=

[
(I−D′1D2)

−1
C1 (I−D′1D2)

−1
D′1C2

(I−D2D1)
−1

D2C1 (I−D2D
′
1)
−1

C2

] [
x1,n

x2,n

]
(42)

However, from the HLA point of view, this problem has simply no solution since it would imply an endless exchange of
messages during the same iteration n. The distributed nature of the federation prevents solving the global equations (41)-(42).
An approximate solution would be that, at iteration n, one of the federates involved in the algebraic loop takes the previous
value of the input, e.g., u1,n−1. This would actually break the loop by introducing an artificial delay. This is also one of the
solutions used by SIMULINK when a global solving is not possible.

5. Formalization and Application

5.1 Discussion

Through this non exhaustive list of simple examples, we raised the issue of direct feedthrough within HLA federations. If this
problem is not taken into account, it usually introduces delays between federate models (state and output equation calculations).
Obviously, this put into question the validity of the global simulation semantics and, depending on the size of the simulation
step, this can have a significant impact on the overall system response. For example, suppose 50 federates involved in a
communication sequence (as depicted in Figure 2) where each one is related with the previous by a direct feedthrough relation.
If we do not care of direct feedthrough, the 50th federate will receive its input value with a delay of 49 time units, whereas it
should have received it during its first cycle. For sure, this example is a little exaggerated but it illustrates quite well the issue
introduced by the presence of direct feedthrough, and why, one should apply the proper functional scheduling strategy.
To resume, there are three main cases to consider:

1) Federation does not have direct feedthrough constraint ⇒ each federate can be executed following the classical schedule
(see Figure 3).

2) Federation has direct feedthrough constraint without any algebraic loop ⇒ a scheduling can be found according to the
strategy described in Subsection 5.2 below.

3) Federation has direct feedthrough constraint with algebraic loops ⇒ no exact solution can be found. If possible, federate
implementations must be modified in order to break these algebraic loop; then you might be in the case 1) or 2). Or,
one of the federates involved in the loop should take the previous input value, as it would break the loop.

5.2 Strategy for direct feedthrough

A generic strategy is presented to schedule executions in case 2). We first define a sequence of direct feedthrough, as a sequence
of output equations, beginning with an output equation without direct feedthrough and followed exclusively by output equations
with direct feedthrough, Furthermore, the output value of an output equation is completely or partly the input value of the next
equation.
A correct strategy to properly ensure the functional scheduling of a HLA federation implying distributed ODEs could be:

1) Identify offline all sequences of direct feedthrough;
2) Set the lookahead lk of each federate depending on the size of the sequences of direct feedthrough;
3) Decide the adequate strategy for NER and TAR usage.

5.3 SDSE example

Taking the example of the SDSE federation, the offline analysis of the ODEs describing each federate shows some direct
feedthrough (bold arrows) and a possible algebraic loop. This is illustrated in figure 6 where direct feedthrough relations are
illustrated using bold arrows.
• Communications between Pilots Inputs and Flight Controller federates: the output equation for Flight Controller directly

depends on the pilot commands.
• Communications between Sensors and Flight Controller federates: the output equation for Flight Controller directly

depends on the measured values from sensors.
• Communications between Actuators (i.e. control surfaces) and Flight Dynamics federates: the output equation for Flight

Dynamics directly depends on the control surfaces deflections.
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Figure 6. Illustration of direct feedthrough within SDSE communications

• Communications between Engines (i.e. control surfaces) and Flight Dynamics federates: the output equation for Flight
Dynamics directly depends on the thrust from each engine.

• Communications between Flight Dynamics and Environment federates: Environment federate needs the aircraft position
on Earth (latitude, longitude and altitude) to compute the corresponding atmosphere relevant parameters (temperature,
pressure, air density, speed of sound) for the current time step. In addition, Flight Dynamics needs these quantities for the
same time step to calculate some other outputs (but not the latitude, longitude and altitude). Strictly speaking, it is not an
algebraic loop. The situation is solved by executing the output equation of Federate 5 in two steps: first, the sub vector
of y that yields the aircraft position is calculated, so it can be sent to Federate 9 to obtain the atmosphere characteristics;
secondly the rest of the output equation of Federate 5 is executed once the atmosphere characteristics are acquired.

6. Conclusion

We have presented, in this paper, a complete analysis for distributed resolution of ODEs in real-time HLA simulations. Based
on our experience with the SDSE simulation test case, we offered a theoretical study on functional scheduling and deduced a
set of rules in order to ensure consistent simulations. Also, we applied these rules ourselves to ensure the functional scheduling
of our SDSE simulator and we compared the results of this simulation with the similar Simulink implementation to verify the
correct semantic behavior. In addition, some performance metrics and tests (e.g., worst case execution time, worst case transit
time, time management algorithm performances) have been conducted to guarantee the correct execution of these simulations
with respect to specified real-time constraints. Interested readers may find more details and descriptions about the SDSE aircraft
simulation in references [1], [2].
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