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ABSTRACT
Scheduling frames with offsets has been shown in the litera-
ture to be very beneficial for reducing response times in real-
time networks because it allows the workload to be better
spread over time and thus to reduce peaks of load. Maintain-
ing a global synchronization amongst the stations induces
substantial overhead and complexity in networks not pro-
viding a global time service such as CAN. Indeed, on CAN,
no global clock is implemented in practice and each station
possesses its own local clock. Without a global clock, the
de-synchronization between the streams of frames created
by offsets remains local to each station. The first contri-
bution of this work is to show that important gains with
respect to the communication latencies, around 40% in our
experiments, can be achieved if we implement bounded clock
desynchronization, also refered to as bounded phases, be-
tween the stations. The second contribution of this work is
to provide a set of network-calculus based timing analyses
to handle systems with bounded phases and compare their
performances.

CCS Concepts
•General and reference→Performance; •Mathematics
of computing → Numerical analysis; •Computer sys-
tems organization → Real-time systems;
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1. INTRODUCTION
Controller Area Network (CAN), a serial communication

bus network, was initially developed for automotive appli-
cations. Due to the many advantages of CAN, including
its high reliability and cost effectiveness, it has found appli-
cation in other industries. In particular the standard AR-
INC 825, was developed to standardize the use of CAN in
aerospace domain [2].
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Figure 1: Example of CAN topology

It is well known that the use of offsets reduces response
time [17] and increases the bus usage [5, 19], because offsets
allow the workload to be spread over time and thus to re-
duce peak load and avoid contention and so to reduce the
worst-case response times (WCRT) and to permit a better
bandwidth utilization [5]. However using offsets requires a
clock. In distributed systems there are two main solutions:
each node having a local clock or all nodes sharing a global
clock. In both, each message is sent at an offset with regard
to a clock. In case of global clock each node has (up to some
precision) the same clock value, and no contention occurs,
neither between flows from the same node, nor from different
nodes, for instance in TTCAN [11] or TTP [8]. However syn-
chronized local clocks require synchronization mechanisms,
and the clock precision must be smaller than the sending
time of one frame. In case of local clocks, the scheduling re-
mains local, synchronization mechanisms between stations
are no longer a concern. Using local clocks avoids the con-
tentions between flows from the same network, and reduces
the contentions between flows from different nodes, as will
be illustrated in Section 3.

Inspired by the “bandwidth management” recommenda-
tion of [2], we wondered what could be the gain of some
intermediate solution: a system with a global clock but a
weak precision, that can also be seen as a system with local
clocks, where the phases between the clocks are bounded
(see Figure 1).

Nevertheless, there was no method, up to our knowledge,
to compute response time of such a system. Then, we have
adapted network calculus to model an exact synchronization
between flows from the same node, and bounded synchro-
nization between flows from different nodes.

Section 2 will present an overview of the related work, in
the area of offsets, synchronized networks and the associ-
ated analyze methods. Section 3 will give more details on
the approach: the hypotheses, the expected benefits and the
kind of systems it can model. Section 4 will recall some net-
work calculus background and present some new properties,
required in this context. Finally, numerical results on an
example will be given in Section 5.



2. RELATED WORK
The timing analysis of CAN has been the object for vari-

ous studies in the past. The worst case response times were
first provided in [18] and then revisited in [3] but without
considering offsets. They gave the exact response time for
sporadic messages. In [7, 14] it has been shown that applica-
tion of Network Calculus can bound the worst case response
times, this bound is the exact response time on a large set of
tests but there is no guaranty, these results can be applied
to non-periodic flows.

Response times on CAN with offsets and local clocks have
also been studied first with approximate but lower-complexity
forms of analyse in [17] and then an effective worst-case re-
sponse time analysis in the non-preemptive case with offsets
has been given in [19]. Multi-hop systems with local clocks
and offsets have also been studied using network calculus in
the case of AFDX [12].

In case of global clock, each node has the same clock value,
and no contention occurs, for instance: TTCAN [11], TTP
[8] or TTEthernet [15]. These systems require the ability to
build a global communication schedule and to synchronize
local clocks.

Generating a communication schedule is NP-complete and
involves non-trivial optimization algorithms, see for instance
[16], but this schedule gives the response time of frames by
avoiding contentions.

There are several solutions to synchronize clocks through-
out a computer network. Some standard protocols exists for
example the Precision Time Protocol (PTP), defined in [10].
Achieving clock synchronization can also be done with ded-
icated protocols, implemented in software (TTCAN level-
1 [11, 6]) or requiring specific hardware support (TTEther-
net [15], TTP [8], TTCAN level-2 [11, 6]...).

3. BOUNDED PHASES BETWEEN STATIONS

3.1 Model assumptions
In this paper we propose to study a network with local

clocks coarsely synchronized.
We assume a CAN bus, with a set of nodes N and a set

of periodic flow F . Each node n ∈ N has a local clock: if
t is the absolute time, cn(t) is the node clock value at this
instant. For each flow f ∈ F is characterized by a sender and
a tuple (Of ,Tf ,lmaxf ) where Of is its offset, Tf its period
and lmaxf its maximal frame size. The k-th instance of a
flow f is generated each time the local clock cn(t) is equal
to kTf +Of .

Moreover, some bound is known on the difference between
local clocks from different nodes, cn(t)−cn′(t), called phase.

If all the phases are null, then we are in the case of global
clock, if they are completely unknown, then we are in the
case of local clocks.

For sake of simplicity, we assumed that there is no jitter
at frame sending, and we considered only periodic flow, no
sporadic. These are not limitations of the analysis method,
as will be explained in the conclusion.

3.2 Expected benefits
Bounded phases are a trade-off between global clock and

local clock. In this section, a small example (two nodes and
three flows) is presented, illustrating the benefits of the three
approaches. We consider a system of two nodes. The flows

A,1 B,1 A,2

C,3C,1 C,2

A,1 B,1 A,2C,1 C,2 C,3BUS

N1

N2

BUS

N1

N2

BUSBUS

A,1 B,1 A,2

C,3C,1 C,2

A,1 B,1 A,2C,1 C,2 C,3

Figure 2: Impact of phasing between two nodes.

A and B are sent by the node N1 and the flow C by the
node N2. The periods are such that only two occurrences
of message A, only one of B and three of C are in the time
window of Figure 2.

Using a global clock allows to avoid contentions and then
provides small network delays. It requires building a global
frame schedule such that there is no contention: such a
schedule is given in Figure 2 at the top. A time slot is ded-
icated to each message, and no contention occurs between
the flows X,Y, Z.

In case of local clocks there is no control on phases between
the stations. Nevertheless offsets with respect to a local
clock create some shaping and reduces contentions. These
effects can be illustrated in Figure 2 at the bottom. Con-
tentions between flows A and B from node 1 cannot happen.
However contentions between flows from different node can
happen: both A and B can be delayed by C. Nevertheless,
local clocks create some shaping and reduces contentions be-
tween nodes: C can be delayed by at most A or B but never
both of them.

Considering a network with local clocks coarsely synchro-
nized, i.e. where the phases between nodes is not perfectly
known but bounded, some contentions can be avoided. Like
in the case of local clocks, no contention will occur between
the flows A and B. But if the phase between N1 and N2
is small enough, no contention can occur between flow B
and C. This shows it is possible to benefit from some of the
advantages of a global clock with fewer constraints on the
synchronization between nodes.

3.3 Targeted systems
Several synchronization protocols have been defined, but

their implementation on a COTS can be costly, and the use
of dedicated hardware is not always possible.

But even having a global reference clock can be insufficient
to synchronize the bus usage: the payload of the frames is
produced by some tasks, and sending a frame wrt to a clock
requires that the data is produced before the frame sending
time, and then gives some constraints on the task scheduling
itself.

The bandwidth management requirement on ARINC 825
[2] is illustrated by the use of a cyclic scheduling where a
major frame (MAF) is divided as a sequence of minor frames
(MIF) and possibly some idle time at end of the MAF.

Due to hardware and software latency, it may be hard
to start all MAF at exactly the same time, but it could be
possible to have a bounded phase between them. In the
standard examples, the MAF is 50ms long, and a MIF is
10ms long.



4. COMPUTING AN UPPER BOUND ON NET-
WORK DELAYS

The network calculus theory will be used to compute up-
per bound on the CAN bus with bounded phases. We as-
sume that the system respects the nominal CAN behavior,
and behaves as a non-preemptive static priority scheduler,
where each node is always inserting its frames according
to their priorities. Then, from network calculus point of
view, the response time of such a system can be computed
adapting existing results on non-preemptive static priority
scheduler.

This section presents how it has been adapted to han-
dle a system with offsets and bounded phases. Section 4.1
presents some reminds on network calculus. Section 4.2 gives
a new expression to upper bound delays: as it will be shown
in the experiments, this bound gives good results as long
as the phases are small. The core of the contribution is the
computation of arrival curves for aggregate flows, taking into
account the offsets in a node, and the phases between nodes:
this is presented in Section 4.3.

4.1 Network Calculus reminds

4.1.1 Mathematical background: (min;+) dioid
Network calculus is a theory to get deterministic upper

bounds in networks. Network calculus mainly handles non
decreasing functions, null before 0 : F . It is mathematically
based on the (min,+) dioid and beyond classical operations
like addition or minimum, network calculus relies on two
basics operators the convolution and the deconvolution.

Notation 1. The ceiling function is denoted d·e, and we
also introduce [x]+ = max(x, 0).

Definition 1. (Min-plus convolution and deconvolution)
The min-plus convolution ∗ and deconvolution � of two
functions f and g are defined by

(f ∗ g)(t) = inf
0≤s≤t

{f(t− s) + g(s)}

(f � g)(t) = sup
0≤u
{f(t+ u)− g(u)}

Property 1. ([9, Th. 3.1.12]) For any f, f ′, g, g′ ∈ F :

g ≥ g′ ⇒ f � g ≤ f � g′ (1)

f ≥ f ′ ⇒ f � g ≥ f ′ � g (2)

(f � g)� g′ = f � (g ∗ g′) (3)

Property 2. Let f, g, h ∈ F three non decreasing func-
tions, then (f + g) ∗ h ≤ (f ∗ h) + g.

Proof.

((f + g) ∗ h)(t) = inf
0≤s≤t

{f(s) + g(s) + h(t− s)}
≤ inf

0≤s≤t
{f(s) + g(t) + h(t− s)}

≤ (f ∗ h)(t) + g(t)

Definition 2. Let d, P, h ∈ R be some parameters. Then
the functions latency δd and stair νP,h are defined by:

δd(t) =

{
0 if t ≤ d
∞ otherwise.

νP,h(t) =

[
h

⌈
t

P

⌉]+

Note that (f ∗ δd)(t) = f([t− d]+), (f � δd)(t) = f(t+ d).

d

h

P 2P

2h

Figure 3: Latency and stair functions
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Figure 4: Server with arrival and departure flows

4.1.2 Network calculus: reality modeling
In network calculus, input and output flows of data are

modeled by cumulative functions A ∈ F : A(t) represents
the amount of data produced by the flow to time t.

The servers are just relations between some input and
output flows (S ∈ F × F). Then (A,D) ∈ S, means that
a server S receives an arrival/input flow, A(t), and delivers
the data after some delay, it is the departure/output flow,
D(t). We have relation D ≤ A, meaning that data goes
out after being entered. Figure 5 shows input and output
functions for a single server queue.

The main network calculus performance measures are back-
log and delay (see Figure 5).

Definition 3. (Backlog period) An interval I is a back-
logged period iff the backlog (number of bits that are inside
the system) is not null in this interval, i.e.

∀t ∈ I,D(t)−A(t) < 0

Definition 4. Delay at a time t is the delay that a bit
entered at time t will wait until going out. It is the horizontal
deviation (hDev) (see Figure 5).

hDev(A,D, t) = inf{d ∈ R+|A(t) ≤ D(t+ d)}
hDev(A,D) = sup

t∈R+

{hDev(A,D, t)}

However the exact input/output data flows are in general
unknown at design time, or too complex, and the calculus
of these bounds cannot be obtained.

4.1.3 Network calculus: contract modeling
The evolution of input/output data flows can be deter-

mined considering traffic contract on the traffics and the
services in the network. For this purpose, network calculus
provides the concepts of arrival curve and service curve.

A

D

t

hDev(A,D, t)

hDev(A,D)

Figure 5: Backlog and delay
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Figure 6: Arrival curve

Definition 5. (Arrival curve) Let A ∈ F be a flow, and
α ∈ F be a function. Then, α is said to be an arrival curve
for flow A, iff

∀(t, d) ∈ R2
+, A(t+ d)−A(t) ≤ α(d) (4)

The eq. (4) is equivalent to A ≤ A ∗ α [9, Lem. 1.2.3].
The contract on flow can be seen either from an engi-

neering point of view (bound on any interval, see Figures 6)
or from a mathematician point of view (convolution-based
relation).

Property 3. Let A be a flow and α an arrival curve of A.

• If α′ ≥ α then α′ is an arrival curve of A.

• A � A is the “best” arrival curve for A, i.e. A � A is
an arrival curve and A�A ≤ α

It is important to notice that for a flow A, an infinite num-
ber of arrival curves exists and depending on the one which
will be used to compute bounds on worst case traversal time
the result may suffer a lack of accuracy. And so it is essential
to have, if possible, the “best” arrival curve possible.

Property 4. Let A be a flow and α an arrival curve of A.
If

∀d ∈ R+, ∃ t ∈ R+ such as α(d) = A(t+ d)−A(t)

then α is the best arrival curve for A.

Proof. Suppose d ∈ R+ such a α(d) > A � A(d) then
there is t ∈ R∗ such as α(d) = A(t + d) − A(t) > A � A(d)
which is contradictory. So α = A�A.

For the service definition, the two points of view exist,
but lead to slightly different definitions: the strict minimal
service curve and the min-plus minimal service curve.

Definition 6. (Strict minimal service) A server S offers
a strict service β iff for all input/output A,D and for all
backlogged period (s,t]

D(t)−D(s) ≥ β(t− s)

Definition 7. (Min-plus minimal service curve) A server
S offers a min-plus minimal service curve β iff for all in-
put/output A,D

D ≥ A ∗ β

These two notions of service curve are not equivalent but
are both of interest and are related: a server offering a min-
imal strict service β also offers the minimal min-plus service
β.

Let us now present the main network calculus results which
allows, considering contracts, to compute bounds on delay.

Theorem 1. (Delay bound) Let S be a server offering a
min-plus minimal service curve β. If the input flow A has
an arrival curve α, then, the delay can be bounded by

hDev(A,D) ≤ hDev(α, β) hDev(A,D) ≤ (β − α)−1(0+)

where f−1 is the pseudo-inverse of the function f .

The bound hDev(α, β) is the most commonly used bound,
and (β − α)−1(0+) an upper bound on the busy period, in
general greater than the other bound: cf. [9] at Section 1.6.2,
3.1 and 6.

Theorem 2. (Non-preemptive static priority, [1]) Let S
be a server offering a strict minimal service β, shared by
three flows, A,AH , AL, AH having a higher priority than A,
and AL a lower. Then, if αH is an arrival curve for AH and
Lmax
L is an upper bound on the frame size of AL, the flow A

receives a residual min-plus service of curve [β − αH − Lmax
L ]+.

Corollary 1. Let S be a server offering an aggregate
minimal strict service of curve β to a set of flows A1, . . . , An,
with a non preemptive static priority scheduling policy (tak-
ing the natural order as priority order, A1 having the highest
priority, An the lowest). For any Ai, if α1..i−1 (resp. α1..i)

is an arrival curve for the aggregate flow
∑i−1
k=1 Ak (resp.∑i

k=1 Ak), then two upper bounds on the delay of the flow i
are:

hDev(αi, β − α1..i−1 − lmax
NP ) (5a)

(β − α1..i − lmax
NP )−1(0+) (5b)

where lmax
NP represents the maximal size of a frame of low

priority.

The corollary is just an application of Theorem 1 and 2.
One contribution of this article is the computation of an
accurate α1..i function for systems with phases.

4.2 A new bound on delay
The common bounds used in network calculus involve the

arrival curves of the flows. But when the data flows are well
known, when the system is deterministic, or quite determin-
istic, considering the real flow can lead to better results.

The Theorem 3 gives a new expression of the delay, based
on the real arrival curves, Ai. In the model considered, the
exact behaviour is unknown, but it is possible to bound the
difference between the ideal systems and the real system.
Then, the corollary 2 generalises it by considering bounds
on phases, and Property 5 generalises it to variable frame
sizes.

Theorem 3. Let S be a non-preemptive SP n-server tak-
ing the natural order as priority order, offering an aggregate
minimal strict service of curve β. Then an upper bound on
the delay of the flow i is:

hDev

Ai, (∑
j≤i

Aj) ∗ [β − lmax
NP ]+ −

∑
j<i

Aj

 (6)

Proof.

Di(t) =
∑
j≤i

Dj −
∑
j<i

Dj

≥
∑
j≤i

Dj −
∑
j<i

Aj

≥ (
∑
j≤i

Aj) ∗ [β − lmax
NP ]+ −

∑
j<i

Aj

(7)



Moreover, given f, g, g′, three flows. If g ≥ g′ then

hDev(f, g) ≤ hDev(f, g′)

And so we can bound hDev(Ai, Di).

Theorem 3, contrary to property 1, bounds the traversal
time without using arrival curve and therefore avoids an
approximation but it requires to know the exact behavior of
the flows.

If phases are unknown but can be bounded, it can be
adapted to:

Corollary 2.

hDev

Ai, (∑
j≤i

Aj � δφ(i,j)) ∗ [β − lmax
NP ]+ −

∑
j<i

Aj ∗ δφ(i,j)


(8)

Where φ(i, j) is the phases between node which sends Ai
and node which sends Aj.

Proof. We will use the clock of the node which sends
Ai as reference. Considering a flow Aj we can bound it by:
Aj � δφ(i,j) ≤ Aj ≤ Aj ∗ δφ(i,j) So we can deduce:

Di ≥ (
∑
j≤i

Aj) ∗ [β − lmax
NP ]+ −

∑
j<i

Aj

≥ (
∑
j≤i

Aj � δφ(i,j)) ∗ [β − lmax
NP ]+ −

∑
j<i

Aj ∗ δφ(i,j)

And then bound hDev(Ai, Di) in the case of phases.

Each periodic flow is also characterized by its maximal
size of frame, but the real size can vary. These variations
can be due to different payload or to bit stuffing (bit stuffing
is the insertion of non information bits into data and it can
increase by 25% at most the packet length).

Property 5. Let A ≥ A, Theorem 3 can be extended to:

hDev(Ai, Di) ≤ hDev(Ai, (
∑
j≤i

Aj) ∗ [β − lmax
NP ]+ −

∑
j<i

Aj)

(9)

Proof. First we will only consider that Ai is known but
that Aj can only be bounded if j < i.

(Ai +
∑
j<i

Aj) ∗ [β − lmax
NP ]+ −

∑
j<i

Aj (10)

= (Ai +
∑
j<i

(Aj −Aj +Aj)) ∗ [β − lmax
NP ]+ −

∑
j<i

Aj (11)

and using property 2,

≤ (
∑
j≤i

Aj) ∗ [β − lmax
NP ]+ +

∑
j<i

(Aj −Aj)−
∑
j<i

Aj (12)

≤ (
∑
j≤i

Aj) ∗ [β − lmax
NP ]+ −

∑
j<i

Aj (13)

≤ Di

Then, Di is smaller than the expression of eq. (10), leading
to

hDev(Ai, Di) ≤ hDev(Ai, (Ai +
∑
j<i

Aj) ∗ [β − lmax
NP ]+ −

∑
j<i

Aj)

Let us now decompose the i-th flow: Ai = Ai + Ãi and Di =

Di + D̃i, Ai and Ãi have the same priority. For flows of same
priority the server apply a FIFO policy. Using the result of [9]:

hDev(Ai, Di) ≤ hDev(Ai, Di)

We can deduce:

hDev(Ai, Di) ≤ hDev(Ai, (
∑
j≤i

Aj) ∗ [β − lmax
NP ]+ −

∑
j<i

Aj)

4.3 Accurate arrival curve for flows with phases

Notation 2. Let A1, .., An be a set of flows. In the follow-
ing, α1..i will denote an arrival curve for the aggregate flow∑i
j=1 Aj .

Notice that
∑i
j=1 αj is one particular arrival curve of the

aggregate flow, but the core of this paper will be to find
better arrival curve, modelling offsets and phases between
flows.

To do so, we first simplify the problem by considering a
common global hyper-period, i.e. decomposing each flow as
a sum of sub-flow with the same hyper-period and specific
offsets.

Lemma 1. (Common period) Let A and B two periodic
flows, such as A = νTA,hA ∗ δOA and B = νTB ,hB ∗ δOB with
TA, TB ∈ N. Then we can define TAB and (nA, nB) ∈ N
such as TAB = nATA = nBTB. Now A (resp. B) can be
express as: A =

∑nA
i=1 νT,hA ∗ δOA+(i−1)TA

=
∑nA
i=1 Ai. And

so we can define our functions as the sum of TAB-periodic
functions.

Obviously Lemma 1 can be extend to more than two flows.

4.3.1 Flow with known offset difference

Om

hm

2hm

Tm

Figure 7: Example of flow M.

We have seen with Lemma 1 that we can consider an
unique common period for different flows so we will consider
that all the messages are sent periodically every T seconds.
First let us suppose that the synchronization is perfect, for
each message m its offset Om is known (we can consider
that Om < T ), meaning that the message m will be sent
on predefined instants: the first time at time Om and then
every T . We will also consider that at this point we are
working on the maximal frame size. So the message m can
be associated with the flow M (see Figure 7):

M = νT,hm ∗ δOm

Definition 8. Let O1, . . . , On ∈ [0, T [ such as 0 ≤ O1 ≤
. . . ≤ On < T and On+1 = O1 + T then we define for all
t ∈ [0, T [: next(t) = min

1≤i≤n+1
{i Oi ≥ t}. next(t) is the next

flow that will send a message after time t.



Property 6. Let A1, . . . , An a set of periodic flows, such
as Ai = νT,hi ∗ δOi with ∀(i, j) ∈ {1, n}, i ≤ j ⇒ 0 ≤ Oi ≤
Oj < T . We define On+1 such as On+1 = O1 + T .

∀j ≤ n,∀t ∈ [0, T [, Aj(t) = Aj(Onext(t)) (14)

Proof. Let t ∈ [0, T [,{
j < next(t)⇒ Oj + T ≥ Onext ≥ t > Oj

j ≥ next(t)⇒ t ≤ Onext(t) ≤ Oj

⇒

{
Aj(t) = Aj(Oj + T ) = A(Onext(t))

Aj(t) = Aj(Oj) = A(Onext(t))

Theorem 4. (Periodic flow with offset) Let A1, . . . , An a

set of periodic flows, A =
n∑
i=1

Ai the aggregate flow, such as

Ai = νT,hi ∗ δOi with ∀(i, j) ∈ {1, n}, i ≤ j ⇒ 0 ≤ Oi ≤
Oj < T . We define On+1 such as On+1 = O1 + T . Then α
is an arrival curve of A with:

α(d) = max
1≤i≤n

(A(Oi + d)−A(Oi)) (15)

And α is the best arrival curve of A.

Proof. Let t ∈ R∗ such as t = kT + t0 with 0 ≤ t0 < T
and k ∈ N and d ∈ R∗, then

A(t+ d)−A(t) = A(t0 + d)−A(t0)
= A(t0 + d)−A(Onext(t0))
≤ A(Onext(t0) + d)−A(Onext(t0))
≤ max

1≤i≤n
(A(Oi + d)−A(Oi))

So max
i

(A(Oi + d) − A(Oi)) is an arrival curve of flow A.

Using property 4 we can deduce that it is the best arrival
curve.

Property 7. Let A1, . . . , An a set of periodic flows, such
as Ai = νT,hi ∗ δOi with ∀(i, j) ∈ {1, n}, i ≤ j ⇒ 0 ≤ Oi ≤
Oj < T .

max
i

(A(Oi + d)−A(Oi))

= max
i

(
n∑
j=1

νT,hj ∗ δ
Oj−Oi+

⌈
Oi−Oj

T

⌉
T

(d)

)
(16)

Proof. Let i ≤ n, A(Oi +d)−A(Oi) =
n∑
j=1

Aj(Oi +d)−

Aj(Oi)

• j < i : Aj(Oi + d)−Aj(Oi) = hj
⌈
d+(Oi−Oj)

T

⌉
− hj

= νT,hj ∗δOj−Oi(d)−hj = νT,hj ∗δ
Oj−Oi+

⌈
Oi−Oj

T

⌉
T

(d)

Because 0 ≤ Oj ≤ Oi < T ⇒
⌈
Oi−Oj

T

⌉
T = T

• j ≥ i : Aj(Oi + d)−Aj(Oi) = hj
⌈
d+(Oi−Oj)

T

⌉
= νT,hj ∗ δOj−Oi(d) = νT,hj ∗ δ

Oj−Oi+

⌈
Oi−Oj

T

⌉
T

(d)

Because 0 ≤ Oi ≤ Oj < T ⇒
⌈
Oi−Oj

T

⌉
T = 0

We can deduce that:
n∑
j=1

Aj(Oi+d)−Aj(Oi) =
n∑
j=1

νT,hj∗δ
Oj−Oi+

⌈
Oi−Oj

T

⌉
T

(d)

This last property gives us the arrival curve for a set a
flows considering that the synchronization is perfect.

4.3.2 Flows with bounded offset difference
We will now consider that the synchronization is not per-

fect, there is a phase between each calculator’s clock and
the global time. However this phase can be bounded, we
can consider the offset difference between all the messages.

Theorem 5. (Periodic flow with bounded offset differ-

ence) Let A1, . . . , An a set of periodic flows, A =
n∑
i=1

Ai the

aggregate flow, such as Ai = νT,hi ∗δOi with ∀(i, j) ∈ {1, n},

−T < Φij ≤ Oi −Oj ≤ Φij < T (17)

Then α is an arrival curve of A with:

α = max
i

(
n∑
j=1

νT,hi ∗ δ
max(0,−Φij+

⌈
Φij

T

⌉
T )

)
(18)

Proof. Theorem 4, have to be adapted since Oi and Oj

are unknown. By definition of Φij ,Φij , Oj−Oi+
⌈
Oi−Oj

T

⌉
T ≥

−Φij +
⌈

Φij

T

⌉
T . Moreover, the ceiling function ensures⌈

x
T

⌉
≥ x

T
, to −x+

⌈
x
T

⌉
T ≥ 0, leading to

Oj −Oi +

⌈
Oi −Oj

T

⌉
T ≥ max(0,−Φij +

⌈
Φij

T

⌉
T )

Then we deduce that:

δ
Oj−Oi+

⌈
Oi−Oj

T

⌉
T
≤ δ

max(0,−Φij+

⌈
Φij

T

⌉
T )

And so to conclude:

α(d) = max
i

(
n∑
j=1

νT,hj ∗ δ
Oj−Oi+

⌈
Oi−Oj

T

⌉
T

(d)

)

≤ max
i

(
n∑
j=1

νT,hi ∗ δ
max(0,−Φij+

⌈
Φij

T

⌉
T )

(d)

)
We have found a function bigger than an arrival curve so it
is also an arrival curve.
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Figure 8: Distribution of the size of the data pay-
loads and periods for the tested configuration.

5. EXPERIMENTAL RESULTS
We evaluate in this section the actual gain that can be

expected using frame offsets in a network where local clocks



have bounded phases. We consider a CAN network where
the phases between nodes successively amounts to 0ms, 1ms,
5ms and finally 10ms, and compare the bounds on the frame
communication latencies obtained with different timing anal-
yses.

5.1 Configuration under study
The CAN network under study runs at 250kbit/s and is

made of 10 nodes. The periods of the frames are uniformly
chosen from the set {20, 50, 100, 200, 500, 1000}ms and the
data payloads sizes are drawn at random according to a
uniform distribution between 1 and 8 bytes. Figure 8 shows
for the set of frames the number of flows per period and
payload, as indicated by the size of circle and the number
inside. The total load on the network is 35%, and there is
no difference between stations, each of them generating sim-
ilar loads. The frame offset assignment that is used in this
study is the SOPA algorithm available in the RTaW-Pegase
software from the company RTaW, whose results have been
used as a benchmark to validate the analysis developed in
this paper and the gain obtained with bounded phases. The
SOPA algorithm has been chosen because our experience
is that it consistently outperforms the few other offset algo-
rithms available [5, 4], and thus provides us with an estimate
of the best possible gains that can be achieved in practice
with offsets.

5.2 Methodology and timing analyses
Hereafter we evaluate the impact of the phases between

the nodes by comparing bounded phases, ideal global clock,
and no time synchronization at all between nodes, like usu-
ally on CAN. This will be performed by gradually increasing
the upper bound of the phases between the nodes. To gain
a better understanding, we consider that the bound on the
phases is identical for all nodes and symmetrical. For exam-
ple, a phase of 1ms means that the clock of a station can be
in advance, or late, by at most 1ms compared to any other
station in the network. In other words from the point of
view of a given node, the other nodes can send their frames
over a 2ms window that is centered on the expected date.

There are several ways to bound the communication la-
tencies in systems with bounded phases, all of which making
use of results that have been introduced before:

• Method 1 (M.1): Use of residual service (5a), and
calculations of arrival curves with phases (Theorem 5).

• Method 2 (M.2): Bound by size of busy window (5b),
and again calculations of arrival curves with phases
(Theorem 5).

• Method 3 (M.3): New method to bound delay without
using arrival curves, relying on Property 5.

We then include on the comparison results obtained with
local and global clocks. For local clocks:

• Method 4 (M.4): Use of the algorithm published in [19]
that is available in RTaW-Pegase. This algorithm is
exact (except for an overestimation of the blocking
factor of CAN frame) and takes into account frame
offsets but consider that the phases between nodes are
unknown.

For global clocks:

• Method 5 (M.5): From the network point of view,
a single node or several with perfectly synchronized
clocks leads to the exact same workload submitted to
the network. The same algorithm as in method 4 is
thus used, but this time with a single node on the bus.

And in order to be able to evaluate the gain brought by
offsets:

• Method 6 (M.6): We compute the exact response
time, presented in [3], that does not consider offsets.

• Method 7 (M.7): Network calculus without offsets

(α1..i−1 =
i−1∑
k=1

αk) with (5a) is used.

5.3 Experimental results
For each experiment, the results obtained with the differ-

ent methods that are compared are reported in a figure and
a table. The table contains the average and maximal delay
bounds obtained with the different methods with the flows
grouped by priority ranges.

Global clock (null phases).
Let us start by the global clock configuration, i.e. null

phases between stations, method 5 in Figure 9. This con-
figuration allows to evaluate the extent to which bounded
phases degrade the performances in terms of communication
latencies. Table 1 summarizes the results with the different
methods.

When phases are null, (M.3) is as good as (M.5).
The results with (M.1)(M.2) are slightly greater than

with (M.5) but still close: the difference between the aver-
age delay bound with (M.2) and (M.5) is less than 0.5ms
(cf. Table 1), which is the transmission time of a frame with
a payload of 8 bytes on a 250kbit/s bus.

This experiment also shows the gain with global clock
(methods M.1,2,3,5) with regard to local clocks (M.4). As
expected from other results in the literature [5], the latter
is also much better than without any synchronization at all,
i.e. methods (M.6) and (M.7). Without offsets, the latency
increases almost linearly. The discontinuity at 20ms can be
simply explain: it is the shortest transmission period, and
from this point on frames can be delayed by more than one
frame instance by higher priority flow.

Lastly, we note that network calculus without offset (M.7)
leads to the exact same response times as with the analysis
in [3] (M.6). In the following we will refer to these methods
as (M.6,7).

Bounded phases of maximum 1ms.
In the next experiment the system configuration stays the

same, the only difference is that we suppose that now our
phases are unknown but bounded by 1ms. The results for
this configuration are shown in Figure 10. This choice of
phases bound has been done because TTCAN level-1 have a
precision in the order of 1 ms [13]. In these setup, the anal-
ysis for global clock (M.5) cannot be used anymore. First
consider (M.3): for high priority messages (0-35), it is still
the method which provides the minimal bounds, however for
flows of lower priorities it returns a bound of variable accu-
racy. Sometimes this is the best we have, but sometimes
it is even worst than when offsets are not used (M.6,7).
In the tables, in order to avoid extreme values which have
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Figure 9: Delay bounds with null phases.

no interest, we consider the minimum between (M.3) and
(M.6,7).

Then let us consider (M.1) and (M.2): this phase of 1ms
increases the delay bound by an average of 0.5ms compared
to a global clock. It should be noted that these bounds are
still well below those of (M.4), which is the exact offset
analysis without accounting for inter-node synchronization.

Bounded phases of maximum 5ms.
In the next experiment we increase significantly our bound

on phases to 5ms (see Figure 11 for the results obtained with
this configuration). First let us consider (M.3): the previ-
ous observation is confirmed, for very high priority frames
(0-12), this is still the method which provides the most ac-
curate bound, however for lower priority frames, the bounds
returned are unusable.

Then consider (M.1) and (M.2): compared to the bounds
given by (M.4), accouting for bounded phases permits to
reduce the bound by almost 40%, which is very significant
for many real-time distributed applications.

Bounded phases of maximum 10ms.
In the last experiment presented in this paper the schedul-

ing still remains the same, but now phases are bounded by
10ms (see Figure 12 for the results obtained with this config-
uration). We remind that phases bounded by more or less
10ms implies a transmission window of length 20ms. The
smallest period of emission of our network is 20ms, mean-
ing that offsets have no more influence on flows with the
smallest period.

It is confirmed that (M.3) should not be used for too
large phases, even if it still gives the best result for 8 highest
priority messages.

This experiment shows that even if (M.2) very often re-
turn better results than (M.1), it is not always the case.
Moreover, if these methods most of the time give better
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Figure 10: Delay with phases bounded by 1ms.

results than considering fully unsynchronized nodes. How-
ever, especially for the lower priority flows, sometimes the
bounds calculated using these functions is larger than the
one of (M.4).

6. CONCLUSIONS AND DISCUSSION
It has been largely evidenced in the litterature that off-

sets, by reducing contentions, are an efficient way to improve
the response times of tasks and messages in periodic real-
time systems. In distributed systems one distinguish two
main approaches: either the global clock paradigm, leading
to a globally time-triggered system, and requiring synchro-
nization mechanisms with a precision much smaller than the
frame sending time, or resorting to local clocks only and thus
without the requirement of inter-node synchronization.

In this paper, we investigate a trade-off: local clocks with
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Figure 11: Delay bounds with phases ≤ 5ms.
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Figure 12: Delay bounds with phases ≤ 10ms.

Table 1: Delay bounds when phases are null.
Priorities 2-16 17-31 32-46 47-61 2-61

Average delay bounds (in ms)

Phases: M.1 1.47 1.49 1.82 1.94 1.68
Phases: M.2 1.04 1.05 1.40 1.54 1.25
Phases: M.3 0.97 0.98 0.94 0.91 0.95
Local clocks: M.4 3.00 5.84 8.04 10.88 6.94
Global clock: M.5 0.97 0.98 0.94 0.91 0.95
No offsets: M.6,7 4.80 11.23 17.96 27.11 15.27

Maximum delay bounds (in ms)

Phases: M.1 1.54 1.62 2.50 2.46 2.50
Phases: M.2 1.04 1.08 1.54 1.54 1.54
Phases: M.3 1.04 1.08 1.08 1.04 1.08
Local clocks: M.4 4.26 6.64 10.04 12.28 12.28
Global clock: M.5 1.04 1.08 1.08 1.04 1.08
No offsets: M.6,7 7.84 14.46 23.66 30.30 30.30

Table 2: Delay bounds with phases ≤ 1ms.
Priorities 2-16 17-31 32-46 47-61 2-61

Average delay bounds (in ms)

Phases: M.1 1.47 1.85 2.38 3.09 2.20
Phases: M.2 1.04 1.45 1.76 2.46 1.68
Phases: min(M.3,M.7) 0.97 0.98 3.86 13.88 4.93
Local clocks: M.4 3.00 5.84 8.04 10.88 6.94
No offsets: M.6,7 4.80 11.23 17.96 27.11 15.28

Maximum delay bounds (in ms)

Phases: M.1 1.54 2.12 2.88 3.72 3.72
Phases: M.2 1.04 1.58 1.96 2.88 2.88
Phases: min(M.3,M.7) 1.04 1.08 17.3 30.3 30.3
Local clocks: M.4 4.26 6.64 10.04 12.28 12.28
No offsets: M.6,7 7.84 14.46 23.66 30.30 30.30

Table 3: Delay bounds with phases ≤ 5ms.
Priorities 2-16 17-31 32-46 47-61 2-61

Average delay bounds (in ms)

Phases: M.1 1,77 3,17 4,91 7,02 4,22
Phases: M.2 1,39 2,82 4,57 6,48 3,82
Phases: min(M.3,M.7) 2,70 10,58 17,96 27,12 14,59
Local clocks: M.4 3,01 5,85 8,04 10,88 6,94
No offsets: M.6,7 4,80 11,23 17,96 27,12 15,28

Maximum delay bounds (in ms)

Phases: M.1 2.38 3.80 6.40 8.00 8.00
Phases: M.2 1.88 3.26 5.68 7.66 7.66
Phases: min(M.3,M.7) 7.84 14.46 23.66 30.30 30.30
Local clocks: M.4 4.26 6.64 10.04 12.28 12.28
No offsets: M.6,7 7.84 14.46 23.66 30.30 30.30

bounded phases between nodes and apply it to CAN net-
works. Since, to the best of our knowledge, no results were
readily available in the litterature for estimating the worst-
case traversal times in such systems, the first contribution
of this work is an extension of an existing network calculus
analysis to handle such systems.

Three methods to compute such bound have actually been
proposed. On the case study, it appears that they are incom-
parable, i.e. there is no method that always outperforms the
others, even if it appears that method (M.3) returns more
accurate results when the phases are small (1ms in our ex-
ample), and that method (M.2) give the best results, in
average.

For the sake of understandability, some simplifications
have been done: the traffic associated to the synchroniza-
tion mechanism has not been considered, no event-triggered
traffic is considered, and frame transmissions do not suf-
fer jitters. These are not limitations of the method, but
methodological choices. Adding other kind of data flow can
be done by using the Theorem 2 on non-preemptive static
priority. Considering a data flow of priority i, if it exists
some sporadic flow of higher priority frames with arrival
curve αs, we have to replace β by β − αs in the equations
used to compute the delay on the flows with phases. And
the same can be done for the flow dedicated to clock syn-
chronization. Adding a jitter d to an arrival curve α is just
a deconvolution by δd. Then, modeling such a jitter in each
node can be done by simply adding a �δd in eq. (18).

The experiments also have produced some insights in the
beneficial impact of bounded phases. Comparing bounded
phases to the global clock solution, it appears that a phase of
1ms leads to limited additional latencies, smaller than 3ms
for the 250kbit/s network used in the experiments. And
comparing phases to the local clock, a phase of 5ms already



provides an average gain of around 40%. These are very
promising results.

In the future, we would like first to enhance the analysis
method itself: currently, some information is lost when a
flow is decomposed as a sum of sub-flows, in order to have
a common period of all sub-flows. We would like also to
compare the analytic results to simulation results. But the
main work is about further evaluating the benefits of using
bounded phases: how does the gain change with respect
to the bus load or with respect to the period distribution?
Could offset assignment algorithm tailored to systems with
phases lead to substantial improvements?
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