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SPATIAL EXPECTILE PREDICTIONS FOR ELLIPTICAL RANDOM
FIELDS

V. MAUME-DESCHAMPS, D. RULLIERE, AND A. USSEGLIO-CARLEVE

ABSTRACT. In this work, we consider an elliptical random field. We propose some spatial
expectile predictions at one site given observations of the field at some other locations.
To this aim, we first give exact expressions for conditional expectiles, and discuss prob-
lems that occur for computing these values. A first affine expectile regression predictor is
detailed, an explicit iterative algorithm is obtained, and its distribution is given. Direct
simple expressions are derived for some particular elliptical random fields. The perfor-
mance of this expectile regression is shown to be very poor for extremal expectile levels,
so that a second predictor is proposed. We prove that this new extremal prediction is
asymptotically equivalent to the true conditional expectile. We also provide some nu-
merical illustrations, and conclude that Expectile Regression may perform poorly when
one leaves the Gaussian random field setting.

Keywords: Elliptical distribution; Ezxpectile regression; Extremal expectile; Spatial prediction, Krig-
mg.

1. INTRODUCTION

Kriging, introduced by Krige (1951)), and formalized by |Matheron| (1963)), aims at predicting the
conditional mean of a random field (Z;);cr given the values Z;, , ..., Z;, of the field at some points
t1,....,ty € T, where typically T C R? When using Kriging techniques, for any 2 € T, the condi-
tional mean of Z, given Z, , ..., Z;, is approximated by a linear combination of Z;, ..., Z;, where
the weight vector is the solution of a least square minimization problem (see Ligas and Kulczyckil
2010, for example). It seems natural to predict, in the same spirit as Kriging, other functionals
by linear combinations. In a previous work (see [Maume-Deschamps et al.| 2016)), we focused on
quantiles. In this paper, we apply the same methodology to conditional expectiles in order to get
spatial expectile predictions. However, as we will see, more technical details are involved, and some
numerical algorithms will be required.

In 1978, Koenker and Bassett proposed a conditional quantile estimation as an affine combi-
nation of Z,, ..., Z;,, called Quantile Regression (cf. [Koenker and Bassett), [1978]). More recently,
some papers propose an Expectile Regression, using the same approach (see [Yang et al.| (2015)
or [Sobotka and Kneib| (2012)), for example). The weight vector is the solution of a minimization
problem, with an asymmetric loss function. In the case where o = %, it corresponds exactly to the
conditional mean regression, or Kriging. Otherwise, it is more difficult to get explicit formulas.
The Expectile Regression approach usually requires time consuming simulations to compute expec-
tations. Moreover, in a non-gaussian setting, the conditional expectile may not be expressed as a
linear combination of the covariates, thus the consistency of the estimation by expectile regression
is not guaranteed.

In this paper, we focus on elliptical random fields. Elliptical distributions, formalized by |Cam-
banis et al.| (1981), have the advantage of being stable under affine transformations. Therefore,
explicit iterative algorithms for the expectile regression may be obtained for consistent elliptical
distributions (cf. |[Kano (1994)). Nevertheless, the expectile regression is generally not equal to
the conditional expectile and the difference may be large, especially for extreme levels of expec-
tile. This is why we propose a new dedicated expectile prediction that is adapted to extremal levels.

The paper is organized as follows. In Section [2] we give some definitions, properties and ex-

amples of elliptical distributions satisfying the consistency property. For these models, we give

formulas for conditional expectiles in Section Section [ is devoted to expectile regression for
1



2 V. MAUME-DESCHAMPS, D. RULLIERE, AND A. USSEGLIO-CARLEVE

consistent elliptical random fields: iterative algorithms are obtained. In Section [5| we propose
some extremal predictions and prove asymptotic equivalences when the expectile level is close to
0 or 1. Section [f] provides a numerical study. In particular, we emphasize the fact that expectile
regression is generally not appropriate, especially for high level expectiles. We illustrate this point
on several examples.

2. ELLIPTICAL DISTRIBUTIONS

In this section, we recall some useful properties and classical examples of elliptical distributions.
Most results may be found, for instance, in [Frahm| (2004). As these results are classical, we use
here almost the same formulation as in our previous article Maume-Deschamps et al.| (2016).

Definition 2.1. Let X be a d—dimensional random vector. X is elliptical if and only if there
exists a unique ;1 € R, a semi-positive definite matriz ¥ € R, and a function ® : Rt — R such
that the characteristic function of (X — p) is

E [exp(it(X — p))] = ®(t'St).
For such an elliptical random vector, we write X ~ Ey(u, 2, @)

It seems important to note that 3 is not necessarily the covariance matrix of X. More precisely,
3} is proportional to the covariance matrix K of the random vector X, when it is defined, i.e there
exists a positive coefficient 7 such that:

(2.1) Y =7K

For example, for Gaussian distributions, 7 = 1, i.e ¥ = K. But this is not always the case for
all elliptical distributions: for Student distributions with v > 2 degrees of freedom, 7 = ”772
Furthermore, K may not exist (e.g. for Cauchy distributions). In the present paper, we do only
consider the case of non-degenerated distributions, i.e. we assume that the matrix ¥ is invertible.

The following representation theorem is central in the theory of elliptical distributions. This

result may be found in |(Cambanis et al.| (1981)).

Theorem 2.1 (Cambanis et al| (1981)). The random vector X is elliptical, X ~ Eq(p, 2, @), if
and only if

(2.2) X = p+ RAUW,

where AAT = %, U is q d—dimensional random vector uniformly distributed on S (the unit
sphere of dimension d), and R is a non-negative random variable independent of U@,

The representation of Theorem is not unique (see|Cambanis et al.|(1981) for details). Given
w and X, the elliptic random vector X is characterized by the non-negative random variable R,
called the radius of X. We now recall the consistency property of an elliptical distribution. The
related definitions and properties may be found in [Kano| (1994)).

Definition 2.2. Let X ~ E;(p, 2, ®). X is said to be consistent if ® is dimension-free, i.e. if ®
does not depend on d.

Kano| (1994)) established the following relation between Definition and the radius R.

Proposition 2.2. Let X ~ E4(u, X, D), and let R denote its radius. X is consistent if and only
if:

(2.3) R,

where xq is the square oot of a X2 distributed random variable with d degrees of freedom, € is a
non-negative random variable whose law does not depend on d, and xq, € and UYD are mutually
independent.

Theorem 2.3 (Elliptical density). Let X € R? be an elliptical random vector, X ~ Eq(u, S, @),
and let R be the corresponding radius of X.

(2.4) fx(x) = Wg (& — W= (@ — )
r(4)

2m

vl

\/if(dil)fR(\/i), and fr(t) is the p.d.f of R.

where cqgq(t) =

IRy
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The coefficient ¢ is called the normalization constant and the function gy is called the generator of
X. Tablell| provides some examples of elliptical distributions, associated with their coefficients and
generators. Most of them may easily be found in the literature: Kotz distribution is introduced
in |[Nadarajah| (2003), Student in |Nadarajah and Kotz (2004)), and Laplace in [Eltoft et al.[ (2006)
and |[Kozubowski et al.|(2013). We added two other distributions, obtained with Kano’s represen-
tation: Unimodal Gaussian Mixture (Unimodal GM), and another one which will be called Beta
Gaussian Mixture (Beta GM).

Distribution Coefficient cq4 Generator g4(t)
Gaussian (2;) 7 exp(—%)
DN A
Student, v > 0 5 om)? (1 + y)
=T
+oo
- r(d) 4] @ __exp(=3t)
Logistic oot | ] o wepde (1+exp(=31))°
r(e 2¢+d—2 _
Kotz, ¢,7,5 >0 W2;(2qil_2)7~ e 77 exp(—rt*)
2s
n 2
Unimodal GM L > Tk exp (_%kt)
(2m)2 k=1
K 2¢
Laplace, A > 0 )\% M
2m)2 2¢) 2
lil( ) _ ( ft)
Beta GM W xd;iit)
T2 t 2

TABLE 1. Some classical d—dimensional elliptical distributions with cor-
responding normalisation constants and generators

In Table [1} K,,(z) denotes the modified Bessel function of the second kind with order m, i.e

‘ I_m(x) ’ Im(x) B 400 1 \ 2k+m
7 , where I, (z) = ];) m (5)

2 sin(mm)
(1966)), and x2,(x) denotes the c.d.f of the x? distribution with m degrees of freedom, evaluated at
2. Remark that the Cauchy distribution corresponds to a Student distribution with v = 1 degree
of freedom.
In this paper, we focus on consistent elliptical distributions. Unfortunately, Logistic and Kotz
distributions do not have this property (except the Kotz distribution with s = ¢ = 1, and r = %,
i.e the Gaussian distribution). For consistent models, the non negative random variable € is given
in Table 2

K, (z) = (see |Abramowitz et al.

Distribution €
Gaussian 1
Xy
Student, v > 0 ] NG
Unimodal Gaussian Mixture | > 70,
k=1
Laplace, A >0 !
P NGEY
Beta Gaussian Mixture Beta (a, 1)

TABLE 2. Some classical consistent d—dimensional elliptical distributions
with corresponding random variable e

We have seen that an elliptical distribution is characterized by parameters p, 3, and by either
the characteristic function ®, the radius R or the generator g;. For this reason, we define the
distribution of an elliptical random vector by any of these three possible characterizations, using
indifferently the notations X ~ Ez(u, X, ®), X ~ Ei(p, X, R) or X ~ Eq(u, X, gq). At last, in
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order to emphasis the role played by the radius and the dimension, we also use the denomination
(R, d)—elliptical, as defined hereafter.

Definition 2.3. An elliptical random vector of R® with radius R is called (R, d)—elliptical.
The following proposition, from Hult and Lindskog] (2002)), is the basis of our study.

Proposition 2.4 (Affine transformation). Let X a consistent (R, d)— elliptical random vector with
parameters 1 and X. Then for any ¢ € R?, ¢T X is (R, 1)—elliptical with parameters 'y and ¢ Ye.

Proposition implies that an affine transformation of a (R, d)—elliptical random vector is a
(R, 1)-elliptical random variable. The proposition below is a direct consequence of this result (see
Hult and Lindskog| (2002) for a proof).

Proposition 2.5 (Subvectors distributions). Let X = (X1, X5)T be a consistent (R, d)—elliptical
random vector with X1 € R*, Xo € R%, dy + dy = d and parameters w and . Let us write:

Y11 X2 M1>
Y= = .
<221 222) s <N2
Then X1 and Xo are respectively (R,d;)— and (R, ds)—elliptical with parameters uy, Y11 and pa,

Yoo, respectively.

Remark that a p—dimensional subvector of a (R, d)-elliptical random vector with the consistency
property is (R, p)—elliptical. As a consequence, all marginals are (R, 1)—elliptical. The following
proposition gives some indications concerning the conditional distributions of elliptical vectors.
The proof is already given in Maume-Deschamps et al.| (2016).

Proposition 2.6 (Conditional distribution). Let X = (X1, X2)T be a consistent (R, d)—elliptical
random vector with with X, € R*, Xy € R%, dy + dy = d and parameters i and 3. Let us write:

Yo Y2 251
2.5 = = .
(25) (221 Ezz) a (Mz
The conditional distribution Xo|(X1 = x1) has parameters:

(2.6) { Popn = P2+ E2121711@11 — 1)
Yo = Yoo — X137 X1z

Furthermore, X5|(X1 = x1) is elliptical, with radius R* given by:

(2.7) R* L RVI-B ’ (R\/EU(d) = O} (21 — m))
where Cyy is the Cholesky root of ¥11, and B ~ Beta(dQ—l, %)
At last, the conditional density of Xa|(X1 = x1) is given by:

Ca|1 _
(2.8) sz\Xl (wa|wy) = \E | |é gd ((h + (22 — #2\1)T22|1(172 - M2|1))
2[1

with cg1 = L and ¢ = (1 — ul)TZl_ll(xl — p1).

Cd
Cdqy 9dq (lh

We have introduced the main definitions and properties of elliptical distributions. With these
tools, we can define the notion of elliptical random fields. Indeed, a random field (X(t)),c, is
R—elliptical if ¥n € N, Vtq,...,t, € T, the vector (X (¢1),..., X(t,)) is (R,n)—elliptical. Obviously,
it implies that all the k—dimensional subvectors of (X (t1),..., X(¢5)) are (R, k)—elliptical. This
assumption corresponds to consistent elliptical distributions properties given in Propositions [2.4
and in [Kanol| (1994). We thus focus our study on elliptical distributions with the consistency
property.
In the following section, we focus on conditional expectiles of elliptical distributions, applied to our
problem of spatial prediction. We consider the following context: (X(t)),c, is an R—elliptical ran-
dom field defined on some metric space T'. We consider N observations at locations t1,...,tx € T,
called (X(t1),...,X(tn)). Given X(¢1),...,X(tn), our aim is to predict, at a site ¢ € T, a
functional of the distribution of X (¢): the further defined expectile. Notice that the vector
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(X(),X(t1),...,X(tn)) is (R, N + 1)—elliptical. Thus, we can denote Xy = X(t) € R and
X1 = (X(t1),...,X(tn)) € RN and restrict ourselves to the study of the conditional distribution
of the random variable X5 given the random vector X;.

3. THEORETICAL EXPECTILES

3.1. General expression. Expectiles, introduced by [Newey and Powell (1987), may be seen as
a generalization of quantiles. In this part, we introduced these quantities with the notion of
elicitability (see e.g. |Ziegel (2014)). Indeed, let X be a random variable. The a—quantile g, of X
is given by the minimization problem:
(3.1) qa(X) = argr}gin E [(o = 1)(X — ) Lix—geor + (X — @)L {x_g>0}]

qe
Equation ([3.1) easily leads to the relationship P (X < g4(X)) = « for continuous distributions.
The a—expectile e, (X) is defined as the solution of a similar minimization problem:
(3.2) eq(X) = arg r}gin E[(1-a)(X —e)’Iix_ccop + (X — €)*L{x_c>0}]

ec
The former definition assumes the existence of the first two moments of X, but other definitions
can be proposed, involving only the first moment (see e.g. [Bellini et al.| (2014)). In this part, we

give a general expression of conditional expectiles in our elliptical context. Consider the respective
cumulative distribution functions ®r and ®7%,

{ bp(z) = P(RUW <),

where UM is 1 or —1 with probability % ®r and Pr« are respective cumulative distribution
functions of the reduced centered (R, 1)—elliptical random variable and (R*, 1)—elliptical random
variable. With this notation, we can introduce the following definition.

Definition 3.1. Let Ug : R* —] — 00, 0[U]1, +00[ be such that:
+oo

(3.4) Up(r) = Pr(r)+ % / yergr (y°)dy .

x

This function is introduced mainly to simplify future equations and relationships. From Equa-
tion (3.4)), we can deduce several properties.

Lemma 3.1. Yy satisfies the following properties:
e Up(—xz)=1—Ug(x),Vr € R*.
o Up:R* =] —00,0[U]L,+00[ is bijective and decreasing.
e UM (1—a)= -V, (a),Va € R*.

The proof requires very classical and simple calculations, then we do not develop it in details.
We will see that the general expression of expectile is related to the function Wi. We introduce a
last lemma before giving this expression.

Lemma 3.2. Let X ~ & (u,0%,g1) be an elliptical random variable. We have the following
relationship:

+oo
(3.5) E[X1 (x>0 = u®r (g) +o / yer91(y*)dy

=

Proof. We recall that density of X is given by:
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Then:
+o00 +oo +oo
c x — u)?
E[XT x>0} = / :17;191 <w> dr = p / c191 (yQ) dy+ o / Yc1g1 (yQ) dy
0 ay Y

o o

Since ®p(x) = / 101 (yz) dy and 1 — ®p(x) = ®r(—=z) (by the symmetry properties of elliptical

— 00

distributions), we get Equation (3.5)). O

We are now able to give a general expression for the a—expectile of a univariate elliptical
distribution.

Proposition 3.3. Let X a (R, 1)—elliptical random variable, with parameters p and o*. The
a—expectile e, of X is given by:

(3.6) ea(X) = { ptolp! (2;:1) o F

I o=

N N~

Proof. We have to solve the minimization problem:

eq(X) = argmin E[S, (X — )]
z€R

By deriving the loss function, we get:
(1 - a)E[X —ea] + (20 = DE [(X — €a)l{x_c >0 =0

Using Lemma [3.2] we have the equality:
“+oo

BIX ~ o)l ool = (u - ) (M5 ) o [ yeantP)ay

L—eq
o

We add this term in the previous equation:

(1= a)(u o) + 2o~ 1) |- el (P25 ) o [ vean(say] =0

A level of a = % leads to the obvious solution e, = . Then, we consider now o # % (then
€q # 1), the equation may be written as follows:
+oo
€a — [ o 9 !
® + dy =
R< . ) p— / yegu(y )y = 5—

Ca— K

Hence ¥p (%) = 50, and ey = 1 + U\I/;Ll (25‘_1) O

Let us focus now on the conditional expectiles of an elliptical vector. Be X € RN*! a con-
sistent (R, N + 1)—elliptical vector, X; € R" and X, € R subvectors of X. Since X5|X; is
(R*,1)—elliptical, where R* is given in Proposition it is not difficult to get a general expres-
sion for e, (X3|X71).

Proposition 3.4. Let X = (X1, X5) be a (R, N + 1)—elliptical random vector, with parameters u
and X. The a—expectile e, of Xo|(X1 = x1) is given by:

/~L2|1+02|1‘I’§1 (ﬁ) o F#
H21 OO =

where pa and 091 = /a1 are given in Equation (2.6), and R* in Equation (2.7)).

Proof. Obvious with Proposition 3.3 and Proposition [2.6 ]

(37) ea(X2|X1 = ml) = {

M= N[
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«
2a—1
+oo +oo

1 -
and Pp«(x) + 7 / Yc191 (yQ)dy

Our formulas involve the terms W' ( ) and Wp! (2(%1), which are respectively the so-

o [0
T 2a—1

1
lutions of ® = ) dy = . Th
utions o R(a:)—l—x /yC1g1(y )dy oo — 1 en,

x xr
in the next subsection, we propose some algorithms to compute these terms.

3.2. Algorithms. We propose some algorithms to compute the standardized conditional expectile
vyt (%), and thus the conditional expectile e, (X2| X1 = x1) of Equation (3.7). Obviously, the

a—1
same algorithms will apply for \I/EE (ﬁ), using R* instead of R.
We consider two kinds of algorithms: a MM algorithm (see [Hunter and Lange] (2004)) and a
fixed-point algorithm. We also study the speed of convergence for these two algorithms.
Let us introduce the following definitions and properties that may be found in [Frontini and
Sormani| (2003)).

Consider a sequence (e(’“)) and a target value e* € R. The sequence (e(k)) is said to

kEN keN
converge to e* € R with order p € [1, 00) if for all &, e(F) — e*| < ¢}, where ¢, is a positive sequence
satisfying

(3.8) Je>0: lim €k;1 =c
k—4o00 Gk

The coefficient c is called the asymptotic factor. In particular, one says that the convergence is
linear if p =1 and ¢ < 1, or quadratic if p = 2.

Now, consider a fixed-point algorithm e*+1) = f (e(k)), where e*t1D) () ¢ R and f: R - R
is a continuous and differentiable function, k& € N. The convergence of the algorithm is insured
by |f'(e)] < 1,Ve € R. If furthermore f is p-times differentiable with ¥m < p, f(™(e*) = 0

f(P)(e*)

and f(P)(e*) # 0, then the convergence is of order p with an asymptotic factor ¢ = o

(see
Frontini and Sormani, 2003]).
3.2.1. MM algorithm. We now present an approach based on a MM algorithm, in order to compute

‘1/1_%1 (ﬁ) and the associated expectile of Equation (3.7)). A similar approach has been proposed

in |Yang et al.| (2015)), and some results thus explicitly refer to this paper.
In the following, we denote by S, the function S,(z) = (1 — a)x21{m<0} + ozxzﬂ{mzo}.

Lemma 3.5 (Yang et al.| (2015)). The function S, is Lipschitz:
(3.9) IS (a) — 8., (b)| < 2max{1 — a,a}|a — b|,Va,b e R
Hence the following quadratic upper bound:

(3.10) Sala) < Sa(b) + 8. (b)(a—b) + max{l — a,a}(a — b)? Va,b € R

Using this result from [Yang et al.| (2015)), we propose a new MM algorithm, detailed hereafter.

Proposition 3.6 (MM algorithm). The following sequence (e(k)) converges to \Ilgl ( & )

keN 2a—1
e(0) = 0
€(k+1) = e(k) — % I:Ot — (20( — l)q)R (C(k))] +
(3.11) +oo
200 — 1 9
m yergr (y7)dy
e(k)

Furthermore, the convergence is linear with an asymptotic factor

o ety [ e e (97 (555




8 V. MAUME-DESCHAMPS, D. RULLIERE, AND A. USSEGLIO-CARLEVE
Proof. Let X be the (R, 1)—elliptical random variable with parameters 0 and 1. At the k'" itera-
tion, we call R%) = X — e(®)_ Tt follows for any e € R:
X —e=RM — (e— )
Thanks to Lemma, we have the following upper bound:
E [Sa (R®) — (e — )] < E [Sa(RM)] — (e — e®)E [SL(RM)] + max{l — o, a} (e — e(k))2

Let us denote Q (e, e(k)) =K [Sa(R(k))} —(e—eE [S&(R(k))} +max{l—a,a} (e — e(k))2. When
trying to minimize E [Sa (R(k) —(e— e(k)))], the principle of MM Algorithm is to minimize its

upper bound, and to choose e**1) = argmin Q (e, e(k)). We easily get:
ecR

e = e + o B [Sh (X — )]
It remains to calculate E [S; (X - e(k))].
E {S{l (X - e(k)ﬂ =2(1—a)E {X - e(k)} +2(20— 1)E [(X - e(k)) n{X,emZO}}

Lemma leads to Equation (3.11). Now, let us prove the convergence of the algorithm. It is
sufficient to have |¢'(x)| < 1,Vz.
a— (2a—1)Pp(x)
max{l —a,a}

¢'(x) =1

Clearly, since 0 < ®r(z) < 1,Vz € R, 0 < ¢'(z) < 1. Hence the convergence. Furthermore, since
¢’ (x) # 0,Vx € R, the convergence is linear in the sense of Equation (3.8)), with asymptotic factor

@ (\I/;cl (ﬁ)) hence Equation (3.12]). O

As expected, lim1 ¢ = 1. Indeed, when « is close to 1, e, (X) is huge, and its calculation requires
a—

more iterations. On the other hand, a level of o = % gives ¢ = 0, since the sequence in the algorithm

is constant, e(®) = 0 for all k.

3.2.2. Fized-point algorithm. It can be shown that e, (X) satisfies a fixed-point relationship. In
this paragraph, we detail this relationship and the corresponding fixed-point algorithm.

[e3

Proposition 3.7 (Fixed-point algorithm). The following sequence (e(’“)) converges to \111}1 (

keN 2a—1
e0) = 0
“+oo
(3.13) (1=20) [ yergi(y®)dy
e(k+1) — e(®)

(20— 1)®g () —
Furthermore, the convergence is quadratic (in the sense of Equation (3.8)) with p = 2), with an

asymptotic factor
2
(20— 1)ern (\I/;zl (ﬁ) )

2 [(2a ~ 1oy (\p; (2;*—_1» - a}

(3.14) c=

Proof. Let X the (R,1)—elliptical random variable with parameters 0 and 1. Since p = 0 and
o=1,0," ( ‘il> = e4(X) and thus:

20

_ (67 .
\I/R1 (QQ — 1) = ar;ger]gln E[Sa(X —e)]

2a0—1

2(1—a)E KX — ! <2a01 1))] +2(20—1)E KX — ! (%.40[—1» L wy ()20 =0

Then, Wy' (52 ) is such that E [8, (X - 95" (525))] =0, ie:
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With the previous equation, and the formula of Lemma we get the following fixed-point

relation
+oo

(1-2a) [ yag(y?)dy

= a B Vit (za1)
¥a <2a—1) (20— 1)y (v7' (z25)) — o

20—1

As in the MM algorithm given above, we have a recursive algorithm e*+1) = ((e(*)). Then,

o' (\Il;tl (2;‘71))‘ < 1. The quadratic convergence is insured if

o' (\IJEI (2;‘71)) =0 and ¢" (\I';tl (2;‘71)) # 0. We have

the convergence is insured by

220~ DOp(e) — az+ (2a—1) | yergr(y>)dy

¢ () = (2a — 1)er1g1(22) (20 — )®R(z) — o]

Using Equation (3.1]), we deduce ¢ (\Ilgl ( - )) = 0. With this relationship, we not only show

200—1
that the algorithm converges, but this convergence is at least quadratic. We straightforward
calculations, and get:

0 5 e

Yy a—1 20 — 1)®r (‘I’El(mafl)) _a].

If a # %, " <\I/]}1 (ﬁ)) # 0 and the convergence is quadratic. Furthermore, the asymptotic
1" —1 o
factor c is easily deduced, with the relationship ¢ = M, hence Equation (3.14)). |

Considering the convergence rate, this fixed-point algorithm is more efficient than the MM
algorithm. In the following, unless specified, we thus only consider this fixed-point algorithm.

3.3. Examples. In this subsection, we give some examples of theoretical conditional expectiles
calculated by our algorithms for Gaussian, Student and Gaussian Mixture distributions. The dif-

“+ o0
ficulty is to calculate the terms ® g, (e(k)) and [ ycigi(y*)dy. In the general case, we have no
0]
guarantee of obtaining closed-form formulas forethese quantities. Nevertheless, the calculation is
possible in the three examples mentioned above. As the fixed-point algorithm is asymptot-
ically faster than the MM algorithm , we just give results for the fixed-point algorithm, but
the MM algorithm works as well.
Recall that in all cases, we have the relationship

(07

ea(X2|X1 = 21) = popy + 0o Ut (2al) '

Then, for all the examples, we give an algorithm to calculate \111}1 <2a"‘_1> .

<R,

calculations are very simple, and lead to the following sequence which converges to \Ilgl (ﬁ)

3.3.1. Gaussian erxample. The gaussian case, as usual, is the most simple case. Since R*

e0) = 0

(3.15) (k1) (1—20)p(e®)
- (2a71)<1>(e(k>)7a
3.3.2. Student example. In the Student case, the conditional radius R* is not equal to R, but
calculations are still possible. Indeed, using Equations (2.8)), Algorithm (3.13) becomes

+o0

(1—=2a) [ yeapgnsr (@ + (w2 — pop) TS (@2 — pop1)) dy
e(kJrl) — e

(20— 1)@, (e®) — a ’
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where ¢y and g, are given in Proposition and Table|l{. Hence \111}1 (2aa_1> is obtained by:

e(o) — O
1-v—N
v+ N+1 (k))2 5
3.16 20—1 r(HEE) ora <1+L (<) )
( ) e(k+1) _ ( (e )F(,,EN)\/;I—I/—N v (1+,%f11)

(2a—1)®, 4N (e(k) \/;ié\i )—a

3.3.3. Gaussian Mizture example. We do the same kind of calculations as in the Gaussian and
Student cases, and get the following algorithm.

o(0) — 0
(317) (k+1) (1-20) ‘il 7"119?,71 exI)(—g(Il)tp(Gie(k))
e = =

n p n 2
(2a—1) > TriﬁlN exp(—%m)tb(&e(k))—a > ‘n',iGIN exp<—97iq1>
i=1

=1

Some numerical applications and illustrations are given in Section [6]

+oo
In some other cases, it is difficult to express ® . (e(k)) or [ yei g1 (y*)dy. Obviously, one can
ek
approximate numerically these values, but this approximation may lead to a poor prediction of the
expectile, especially for extreme levels of a. This is why we propose two prediction methods. The

first one, introduced in the next section, is called expectile regression.

4. EXPECTILE REGRESSION

Expectile Regression, introduced by Newey and Powell| (1987)), by analogy to Quantile Regression
(see [Koenker and Bassett| (1978))), is an usual way to estimate conditional expectiles. If X; € RY
and Xo € R, the a—expectile of X5|(X; = x1) is approximated by

(41) éo,(X2|X1 = Il) = ﬂ*Tl’l + ﬂg,

where 8* and 3 are solutions of the following minimization problem

(4.2) (8*,5;) = argmin E [SQ(XQ - pTX, — 50)} .
BERN BoeR

and where the scoring function S, (see |Ziegel (2014))) is
(4.3) So(z) = (1 — a)z* Loy + a2 Lz503-
Obviously, if a = %, the scoring function S% (z) is the least square loss function, and the mini-

mizationgives the kriging vector 8* = (E[XleT} — E[Xl]]E[Xl]T)_l (E[X1X5] — E[X;]E[X3)),
and 85 = E[Xo] — B*TE[X;]. If a # 1, the problem is more difficult to solve, and we usually need
simulations and stochastic algorithms. Fortunately, in our elliptical context, we do not need it to
express £ and ;. The following lemma will be useful to calculate 5*.

Lemma 4.1. Let (X1,X3) a consistent (R,2)—elliptical random vector, with parameters p =

2
(p1, p2) and ¥ = 1 palQOQ . We have the following relationship:
pPo102 g5

(4.4)
+0oo +oo
. 01 o M2 2 2 2
E[X1Xolix,>0y] = | pape P M3 PR o +(oatpoipe) [ yergi(y”)dy+poror |y ergi(y”)dy
2 2 A A
oo o2
Proof. We write:
i T (o)
E[X, X,1 - XX 012 gy | d
(X1 Xo1(x,>01] O/@sz(xz) . Iy | de
—+o0
We have xlwdm = E[X1]|X2]. Using Equation (2.6)), we get:

sz (.1‘2)

—0o0
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+oo
E[Xi Xol(x,>0y] = [ @2fx,(x2) (Ml +pZt(xo — M2)) dzo
0

We recall that density of Xy is fx,(72) = Zg1 (M) Equation (4.4) is obtained by using
2 0'2
Lemma 3.2 0

We are now able to give the expression of 5*, and the result is exactly the same we have
calculated in |[Maume-Deschamps et al.| (2016)), i.e * corresponds to the vector of simple Kriging
weights. For the sake of simplicity, let p; be the correlation coefficient between X;; and the
random variable X; — 8*TX; — B¢, Indeed, Xi; is (R,1)—elliptical with parameters p;; and
o%j. Furthermore, Xo — *T X, — B is (R, 1)—elliptical too, with parameters ps — 3*7py — B3
and (—3*,1)7S(—p*T,1). Hence the (R,2)—elliptical vector (X1;, Xo — 8*7 X1 — 3}) admits as
second parameter the matrix:

( ot pjoy/ (=57, (=BT, 1))
pio1jy/ (6%, 1)TS(=5T,1) (=B*,1 ) ( 5*T, 1)
Proposition 4.2 (Explicit form of 5*). Va € [0, 1], the optimal 5* is given by:
(4.5) B* =3 S1o

Proof. We recall the minimization problem which verifies (5%, 55):
argmin (1 —a)E [(Xz — 87 X1 — B0)?] — (1 = 20)E [(X2 — BT X1 — Bo)* L {x,— 57 x, - o >0}
BERN BoER
A quick gradient approach gives the following equation system
{ (1-a)E [X1(Xo — T X1 — 55)] + (1 = 20)E [X1(Xo — 8T Xy — B5)Ux,—perx,—pzz0y] = O
(1 - Oé)E [XQ - 6*TX1 - ﬁg] + (1 - 20()1[*: [(XQ - B*TXl - ﬁé)]l{XQ—ﬂ*Txl—ﬂSZO}] = 0
We know that Xo — 3*TX; — B3 is (R, 1)—elliptical with parameters i = ps — 8% u; — Bo and

Y = Yoy — 267819 + 878118, If we denote T = \/E7 and use Lemmas and we get the
following system, Vj € {1,..., N}

(1= a)ii+ (1 = 20)a0r (£) + (1 - 20)7 f yerg1 (y2)dy -0
J1j5 -2 I ? +eo 2
(1 - 20a) (pj7i — p; 2 0°) Or (%) + (1= 20) (11,0 — pjo1;0) [ yergi(y?)dy
E
014 +OO ’
+(1=2a)p; % [ a3 fx,(w2)drs =0
0

Adding the first equation and the second one, it remains

400 +oo
o _
*(1*204)Pj$ﬁ2‘1’}2 (Z)(lh)pﬂw/yclgl( ?)dy+(1—2a)p; 01] /Ingz(IQ)dIQWL(l*OZ)PjUUE:0
£ 0

Obviously, p; = 0. We have seen in |Maume-Deschamps et al| (2016)(Proposition 4.2), that
p; = 0,Yj was equivalent to f* = 21_11212. O

In the following remark, we emphasis the role played by the affine constant 8§ in the affine
model of Equation (4.1). Indeed, considering a linear model without this constant would lead to
highly undesirable properties.

Remark 1 (Linear models pitfalls). Consider a linear expectile regression given by:
égnear(XﬂXl _ xl) — ﬁ*T.%‘l ,

where B* is the solution of the following minimization problem f* = argmin E [Sa(Xg — ,BTXl)],
BERN

and where the scoring function S, is defined as previously by Equation (4.3). This corresponds to

the case where 55 = 0. Then
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(i) élinear(X,| X, = 1) does not depend on a: the linear expectile regression is obviously not
suited for other levels than a = 1/2.

(ii) If Y12 = Ogn, which means that X2 and X, are not correlated, then e (Xo| X, = z1) =
0, while in the uncorrelated case, we would expect to predict the conditional expectile by
the unconditional one e, (X2).

(iii) Consider an elliptical random field (X (t))ier and let X1 = (X(t1),...,X(t,)) € RY,
Xo = X(t) € R, so that Y15 depends on t. Assume that there exists tg € T such that
tllrg]||212|\ =0, for a given norm ||.||, then tllrg)égnear(X2|X1 =1x1) = 0, while, as before,

: slinear
we would expect tli)r?oea (X(t)).
The result of Remark [1| means that a linear model é,(X2|X; = x1) = $*T 2z will always return

the same value, Voo € [0,1]. Tt is a reason why we need the term fj, if we hope approximate
ea(X2| X1 = x1). To calculate it, we give the following lemma.

Lemma 4.3. X, — 3*7 X, is (R, 1)—elliptical with parameters py — 22121_11H1 and Yoy = o2 —
DD IED NPE

Proof. Xy — *T Xy, as affine transformation of a consistent (R,d)—elliptical random vector, is
obviously (R, 1)—elliptical. Furthermore, with the expression of 8* given in Proposition E[Xs—
BT X1] = pg — L1277 1. The second parameter equals (—3*, 1)TS(—3*, 1), thus:

n n n
(=B, 1)T'S(-p*1) =03 — QZﬁfpixUli@ + Zﬁ; ZﬁfﬂileiUlj,
i=1 j=1  i=1
or, in matrix form:
(=B, D)'S(=p"1) =05 — 287515 + BT 511 8
Thanks to Equation , we have 5* = 21_11212. Then the following equation holds:
(=B*, 1)TE(=B*,1) = 05 — 2501577 B12 + o1 7 S X' S1e = 03 — T X' Too
a

With the help of Lemmal[4.3] we can give the Expectile Regression Predictor, and its distribution
in the following theorem.

Theorem 4.4 (Expectile Regression Predictor).
pr = S S
Bs = p2— SN + U2|1‘I’1_31 (2;‘7_1>

The Ezpectile Regression Predictor with level a € [0, 1] is given by:

(4.6)

. _ a
(@7 éal(XalXs = 00) = i + on ¥ (52 )
Furthermore,
(4.8) ba(Xa|X1) ~ & <M2 + oo Uy (%éa_1> ,2212111212»91>

Proof. p* is given in Equation (4.5)). 5 satisfies:

B85 = argmin E [Sa(Xg - Tx, — ,6’0)}
Bo€R
Thus, 33 is the a—expectile of the random variable Xo — 8*7X;. We have seen in Lemma
that Xy — 8*T X, is (R, 1)—elliptical with parameters jy — EglEl_ll,ul and oy);. Then, using the
expectile formula of Equation (3.6)), we get:

* _ _ 8]
B =p2 — S X + 02\1‘1’31 < >

200 —1

We can now express our Expectile Regression Predictor of X5 given X; = xy:

5 * * — _ «
GQ(X2|X1 = xl) = ﬁ T + ﬁo = #2 —+ 2212111(.@1 — ,LLl) + Ugll\I’Rl (2&—1)
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We recognize, on the left, the expression of jip; given in Equation (2.6).

Since é,(X2|X1) = p2 —I—Engﬁl(Xl — 1) +02|1\Il§1 (2a 1) with X7 ~ En (11, X11,9n8). We get,
using Proposition [2:4]

éa(Xo|X1) ~ & (#2 + 02\1‘111_{1 <2a 1) (En X HEn (20 21), 91)
Hence the result. O

We have given in Theorem [£.4] our first expectile predictor. As an illustration, we propose to
calculate this predictor in several cases.

4.1. Examples. In this subsection, we apply the Expectile Regression Predictor é,(X2|X1) given
in Theorem [4.4] on several examples, in order to compare it with the theoretical conditional expec-
tiles eq (X2|X1). We recall the formulas:

ea(X2|X1 = 371) = M2 + 02I1\IJ§1 2aa71
Ca(Xo| X1 =21) = pop + 02|1‘I’1_a:1 Za1

Obviously, if R # R*, we do not have the same algorithms to compute e, (X2|X1) and é,(X2|X7).
We have seen in Section [3[ that we were able to compute e, (X2|X;) in the Gaussian, Student and
Gaussian Mixture cases. In the Laplace and Beta Gaussian Mixture cases, we cannot compute
ea(X2]X1), but we are able to compute é,(X2|X7). In the following, we thus apply the Expectile
Regression Predictor for these last two cases.

4.1.1. Laplace example. The Laplace case is interesting, because we have no explicit algorithm to

o

calculate \I!El m), since ®p+ is unknown in this case. However, it is possible to calculate

\Ilgl (20771). Indeed, the following algorithm converges to this value.

((0) —

41 _ (1- 2a)exp< \/7@(k)> ([+e(k))
(49) B (2a—2)—(1—2a) Xp( \/>e(k))
gy U (y3) )(V3-) if ) < 0

¢ N (20— l)exp(\/? UV)) —2a !

4.1.2. BGM example. Consider the Beta Gaussian Mixture as in Table 2] As in the Laplace case,
we have no explicit algorithm for \IIE} (ﬁ), but we can approximate ‘Ifgl (2(1011):

(4.10)

,ife® >0

0 — 0
a_ r lta X2 a (e(k))z l1—a e(k> 2
D = %1 (14a) 42 (( (k))2) , if e #0
2 @) XT1ql (e
(20(—1) [@(e(k))—sgn(e(k>)2 \l;gT) 1+ |e(k) ’a :| —a
L elktl) = (2a — l)ﬁ\/;, if e®) =0

Numerical applications of this example are proposed in Section [0}

We have seen that, in general, our Expectile Regression Predictor is not equal to the theoreti-
cal conditional expectiles. The difference between these quantities is an error term, which may
be huge, especially for high levels of « (see Section @ This is why, in the following section, we
propose another predictor for extreme levels of expectiles.
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5. EXTREMAL EXPECTILES

In the previous part, we have proposed some algorithms to calculate the Expectile Regression
Predictor. Let us recall:

ea(X2|X1 = xl) = M21 + 0—2|1\:[j;21 2aa—1

ea(Xo| X1 =21) = pop + 02|1‘I’§1 gy

Notice that the difference lies in the use of the radius R* or R. Whereas the distribution of
R* is in general hard to obtain, the one of R may be known or estimated. Our aim is thus to

etablish a relation between \Ill_%l (2;‘_1) and \III_;,/1 (2aa_1> for extremal values of «, i.e for « — 0

or @ — 1. We have done a similar study in [Maume-Deschamps et al.| (2016)), with the same kind
of assumption(but for ¥g):

Assumption 1. Their exist 0 < £ < 400 and v € R such that:

(5.1) xETmm =/,
where ¥ =1 — 0.
+0oo +oo
We recall Ug(z) = Pr(x) + % / ye191(y?)dy, and U g (x) = ®r-(z) + % / ycign 1 (g + %) dy,

with ¢f = #*(;1) (see Equation. Then, the coefficients v and /¢ satisfy:x

+o0

a’ / yeign+1(a + y?)dy

2 i -

v / yei191(y?)dy

et

Proposition 5.1. Gaussian, Student, Unimodal Gaussian Mixture and Beta Gaussian Mizture
satisfy Assumptions [ and [ with coefficients v and £ given in Table[3

The proof is detailed in Appendix section

Distribution vy ¢
Gaussian 1 1
(N (2 Ntv N4 _
Student, v > 0 Nty Fgé F)( u(ﬁg (144) 2 FTan VJIr/Nlél

. 2
min(gl,m,@")zvexp<,wa)

n 2
kglwk%v exp(—%th)

2“%@4)1“(%)(1?;&
a( @+ (W+a=DD(F32 D55 )Ry, (1)
TABLE 3. Coefficients v and ¢ for classical consistent elliptical distribu-
tions, where ¢; = (1 — ,ul)TEl_ll(acl — ).

Unimodal Gaussian Mixture 1

Beta Gaussian Mixture % +1

Thanks to Equation we have, under Assumption [I} the following equivalence:

(5.3) Tpe(z) ~ (")

Our aim is now to get an equivalence relationship between functions \111_31 and \Il;z} For that
purpose, we refer to the paper of [Djurci¢ and Torgasev| (2001)), which gives some conditions to
obtain the equivalence of inverse functions if these functions are equivalent.
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Definition 5.1. A function f is a p—function if f : [0, +oo[— [0, 400, f(0) =0, f is continuous,
non decreasing on [0,4o00[, and f — 400 when x — 4o00.

Clearly, our two equivalent functions Wg-(z) and Ug(zY) are not ¢—functions for several
reasons: limUps(x) = llmlPRr(x) = —oo, lim Up«(z) = lim [Pr(z?) = 0~. We have to
x—0 x—0 xr——+00 xr——+00
transform these functions in order to find an equivalence. Let us define first some more definitions
and properties. The following is the definition of a general class of functions K., which contains in
particular Regularly Varying functions. The results will thus be more general than those derived
from Karamata’s theorem.

Definition 5.2. K, is the set of all p—functions f with the property:
f(Ax)

-1
etoo f(z)

(5.4)

In order to inverse the equivalence [5.3] we do the following assumption.
Assumption 2. Let Q and ., be

(@) =-am

Then Q= or Q7! belongs to the class K..

Using Definitions [5.1] 5.4} and Assumptions [T} 2} we are able to inverse equivalence [5.3] hence
the following proposition.

Proposition 5.2. Under Assumptions[1] and[3, we have

6 i () o [ (- )]

Remark that \I/;il (1 — ﬁ) corresponds to an expectile of level %.
if £ =1, this level is a.

We now define two predictors éaT and é, 1- Using our several analytical results, we will prove later
that they are equivalent to the theoretical expectile for extreme values of a.

Obviously,

Definition 5.3 (Extremal Expectiles Predictors). Define

2=

57 Cat(Xo|X1 = 21) = pap + 03 {‘1’151 (1 - (237:1)@)} )

Car(Xa|X1 = 21) = pgpn — o2 {‘I’;zl (1 - (2ail)l):|

Using Equation (5.6]), we are able to prove the asymptotic equivalences between our predictors
€at, €q) and the theoretical expectiles, respectively for a —+ 1 and oo — 0.

2

Theorem 5.3 (Equivalence with theoretical expectiles). Under Assumptions [1] and[3,
ot (X2| X1 = 21) Kad ea(X2| X1 = 21)
al(Xo| Xy = x1) o ea(Xa| X1 = 21)

D> D>

(5.8)

Proof. We recall the relationship e, (X2|X1 = 1) = pgjy + 02‘1\111_%1 (2(%1) With Equation (5.6)),
the first equivalence is immediate. Concerning the second one, i.e when a — 0, we use the symmetry

properties of elliptical distributions: we know that e, (Xo| X1 = 1) = pgpy — 02|1\Ifl_%1 (11:—20;) Or

if o/ =1 — a, we have eq(Xo| X1 = 21) = pg;1 — 02‘1\111_%1 (%), with o/ — 1. Using Equation

(5.6), we get

. o —1 7
calXolXa =)~ pap = oen (VeI (1 Gy )|

Replace o’ by 1 — « to the second equivalence. O



16 V. MAUME-DESCHAMPS, D. RULLIERE, AND A. USSEGLIO-CARLEVE

From Theorem we can deduce that éaT, b | are approximations of e, respectively when
« is close to 1 or 0. We propose, in Appendix section [8] to check if Assumptions [l and [2] are
fulfilled, and the calculation of ¢ and v for each example. In Section [6 we propose some numerical
applications and graphical illustrations.
Let us now consider some numerical illustrations on the examples we have given, in order to compare
our extremal predictors with the Expectile Regression Predictor and the theoretical expectiles.

6. NUMERICAL STUDY

In order to give a visual overview of the predictors, we have plotted in Figure [l the conditional
expectiles of an elliptical process observed at N = 5 points. We call X; € R® the covariates vector.
For z € R, X5 denotes the process at = and the aim is to predict the expectile of X5|X; = 2. For
simplicity, we assume that the process is centered, and stationary (matrices ¥ and X1, are obtained
through an exponential kernel). But our results would be applicable without these assumptions.
Parameters for the Gaussian Mixture example are §; = 1, 6 =2 and p = 0.9.

Gaussian process Student process
0
=] -
wo_| o —
o
S — =
_ o -
— Expectile Regression H Theoreti trema
0 T
- T T T T T T T T T T T T
0.0 0.2 04 x 06 0.8 1.0 0.0 0.2 04 y 08 0.8 10
Gaussian Mixture process Beta Mixture process
(=T 1]
= g 1 =
- _
— 0

T T T T T T
0.0 0.2 04 06 0.8 1.0

FiGurE 1. Expectile Regression Predictor in red, theoretical expectiles in
blue, and Extremal Expectile Predictors in black, for a level a = 0.9995

Of course, for the Gaussian process, the curves coincide. For the other examples, Expectile
Regression Predictors seem very far from the theoretical curves, especially in the Beta Mixture
case. On the other hand, Extremal predictors perform significantly better; they look closer to the
target conditional expectiles here. We propose to use the following RMSFE in order to quantify
the difference between expectile regression and theoretical expectile.

. 1< i . i 2
(6.1) RMSE() = | ~ Z; (ea(xg Xy = 21) — ea(X] X = xl)) .

\

We also consider the RM SE for the Extremal Predictor:

2 1« i 2 i 2
(6.2) RMSE() = | = (ea(xg Xy = 1) — a (X)X, = xl))

i=1

The RMSE measures the average error in the prediction of the conditional expectiles. Table [] is
a summary of the RMSE for all treated examples, and different levels of «. Obviously, we only
consider the cases o > % because elliptical distributions are symmetric.
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« Gaussian Student Unimodal GM Beta GM
r(éa) | m(éa) | r(éa) | r(éa) | r(éa) r(éa) r(éa) | r(éa)

0.5 0 0 0 0 0 0 0 0
0.6 0 0 0.031 0.275 | 0.002 0.021 0.042 0.294
0.7 0 0 0.066 | 0.293 | 0.005 0.041 0.091 | 0.284
0.8 0 0 0.112 | 0.290 | 0.008 0.062 0.160 | 0.255
0.9 0 0 0.197 | 0.272 | 0.014 0.083 0.302 | 0.205
0.95 0 0 0.300 | 0.252 | 0.021 0.091 0.513 | 0.162
0.995 0 0 0.913 0.190 | 0.069 0.078 2.368 0.066
0.9995 0 0 2.384 | 0.142 | 0.153 0.032 8.840 | 0.031
0.999995 0 0 13.432 | 0.079 | 0.152 | 8.089-10-98 | 97.567 | 0.015

TABLE 4. 7(éq) = RMSE(é,) and 1(é,) = RMSE(é,,), for different levels
of a, and different consistent elliptical distributions.

As expected, the error of é, is increasing with «, and may be huge, like in the BGM case. On
the other hand, the error of é, tends to 0 when « tends to 1. This trend is highlighted by the
ee—plots (theoretical expectile vs expectile prediction plots) in Figure

Expectile Regression

Expectile Regression

Gaussian Expectile Regression Gaussian Extremal Predictor Student Expectile Regression Student Extremal Predictor

~ s 5

% o |

0
L
Expectile Regression
0
I
Extremal Predictor

Extremal Predictor

2 A 0 1 2 2 0 1 2 42 0 2 4 4 2 0 2 4

Theorefical Expectiles Theoretical Expectiles ‘Theoretical Expectiles Theorefical Expectiles

UGM Expectile Regression UGM Extremal Predictor BGM Expectile Regression BGM Extremal Predictor

Extremal Predictor
Expectile Regression
Extremal Predictor

2 El 4 1 2 2 El 0 1 2 3 2 4 0 1 2 3 3 2 4 0 1 2 3

Theoretical Expectiles Theoretical Expectiles Theoreical Expectiles Theoretical Expectiles

FIGURE 2. Theoretical expectiles vs expectile predictions for Gaussian,
Student, UGM and BGM examples. Expectile regression appears on the
left of each pair of panels, extremal predictor on the right.

7. CONCLUSION

In this paper, we focused on conditional expectiles prediction, for elliptical random fields with
the consistency property. We have shown that theoretical expectiles were relying on a radius R*
whose distribution was, in the general case, difficult to obtain. We thus have proposed two different
methods to predict conditional expectiles.

The first one is to use expectile regression, i.e to express the conditional expectile as an affine
transformation of the observed values. This approach is widely used in the literature but it often
requires a large number of simulations, especially for extreme levels of expectile (when o — 0 or

a —1).

We have seen, in a first time, that we can obtain some iterative algorithms in our case

of consistent elliptical random fields. Furthermore, we have given the distribution of the expectile
regression (Theorem [4.4)). We have seen that expectile regression is not suited to non Gaussian
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distributions.

A second predictor is given in order to cope with expectile regression problems for extremal expec-
tile levels. We have shown that the proposed extremal expectile predictor is equivalent to the true
conditional expectile for extreme expectile levels. We have also illustrated on several numerical
examples the better performance of this predictor for extreme levels.

As a perspective, these prediction methods require the knowledge of the distribution of the co-
variates vector X;. We have not explored the prediction procedure when the X;’s distribution is
estimated (parametrically e.g.).

Finally, we would like to emphasize that we have given examples in dimension d = 1, but all the
results may be used in higher dimensions.

8. APPENDIX
Proof of Proposition

Gaussian example. Firstly, we have to calculate the limit in Equation (5.2)), with g, (¢) = exp (—%) ,Vn €

N, ¢; = \/%7 and ¢] = } exp ( ) Then, we consider

+oo y2
x”il/ Y exXp (2> dy
li z .
Jm
Y yexp (=75 | dy

If we take v = 1, we directly get the limit ¢ equal to 1.
Now, we have to prove that Q~! belongs to the class K,. For that purpose, we consider the limit

Jim M

1
We have previously seen that Q~1(z) = [\Ifgl (1+ £)]”. Then we have to consider the limit of

“1pq. o1
w. With 6 = A — 1 and y = 1, this limit becomes
Ty (1+4) z

-1
R (1 )
lim — i
)00 W' (14+Y)

In order to calculate this kind of limit, we move to polar coordinates, i.e we take § = rcos(f),
y = rsin(f), and verify whether the limit when r — 0 exists and is not related to 6. Hence

-1 rsin(0)
f(e) — lim \IJR (1 + Z(rcos(0)+1))
r—0 \1171 (1 + rsin(@))
R l

The two terms both tend to 0, then we can use the I’Hopital’s rule, and

sin(8) (r cos(8)+1)—r sin(9) cos() / ( —1( rsin(0)>)
£(6) = g ——— T Telfn U

r 1 — ~sin (6
-0 Sll’l(@) \Ijs’% (‘Ile (1 + Z(rTcos((O))Jrl)))

The ratio on the left clearly tends to 1. Furthermore, we have seen in the proof of Lemma[3.1] that

+oo

1 1
Ur(r) = —— / yc191(y?)dy. In the Gaussian case, this value is equal to ——¢(z), and £ = 1.

T x
Then, we get

i (1 k)] o (v (s ran@))
. rcos(e +1 rsin
f(0) = lim 5

r0 W (14 rsin(9)]” o (‘I’El (1 + %))
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The ratio on the left is clearly equal to f(#)2. Concerning the term on the right, we apply once
again the I'Hépital’s rule. Since ¢'(z) = —zp(x), it leds to

U2 (1 4 rsin( ’
£0) = $0)? timg - " - ;&3” =
v (1 i)

_ntv
Student example. At a first stage, we calculate the limit in Equation (5.2) with g,(t) = (1+ %) * ,Vne

N. ¢ = r(%%) 1 and C*_w (1_|_‘U) = . It remains
N P 1_F(¥)r
oo oy - Nty
o P (1 32)
lim z =/
T—+00 +oo - .

vfycl(l+%> *dy
xY

The two functions under the integrals are polynomials, then easy to integrate, hence

1-N—v

2
Y 1Clu+N : (1+ fI1+:c )

1o
yag (1+20) 7

lim =/.
r—+o0

Then, if we take v =

1 by their values, we get
F(H—N'H)F(*) N+l 1
I (8T () <1+ ) 1/+N1/+N—1_£'

Now, we have to check if Assumption [2| I is fulfilled, i.e if the function Q! belongs to the class K,
Let us calculate the limit

Jim M

Using the same changes of variables as in the Gaussian case, we consider

v, (\If;; (1 + #))
FO) =1 -
Pw (v (14 )

14+v 1—v
In the Student case, Ug(z) = TG ) N T (1 + 73—2) * . Then, it only remains

. 2 ) ) 1-v
-1 in(0) -1 rsin(0) =
£0) = 1 L ) I A i G o b
N Tl_r}%) -1 r sin(0) 2 v (1+%)2
\I/R (1 —+ T) 14 R Z(r cos(0)+1)

14

On the left, the ratio tends to f(#)2. Concerning the term on the right the limit is equal to
1—v

50 sin(0)

) v (1+7‘§1n(9)) 3 o ) ) )
lim 3 = f(6)*~!. Finally, we get the relationship
Vi (1+f(7- cos(9)+1))

£(0)=f(0)" v >0
Hence f(0) = f(@)% =1.
Unimodal Gaussian Mixture example. Let us calculate the limit in Equation (5.2). In the Uni-

modal GM case, gq(t) = Z m0F exp( 't), c1 = = and ¢} = 1 . The
k Var e Z s exp(7;q1>

calculation of limit gives
n 2 2
7Y G,QV_IC’{ exp (—%’“ql) exp (—%’“ﬂ)
k=1

n 2
1 0% .2
’ykE 17rk@cl exp (—736 g

lim
r—r+o0
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2
From now, let us consider that v = 1. Asymptotically, we only consider the terms exp (—%ﬁ)

with the highest coefficient ——’3, i.e the smallest 0. Let k* such that 6 = min{6y,...,0,}. We
have

c’{ﬁk*eé\ifl exp (—6%*(]1) exp (—GL:E )
{= lim .

T—+00 C1 T 9;*1 exp ( Opx 5172)

After simplifications, and replacing ¢; and ¢} by their values, we get
9N exp( G ql)
02\’
> w0 exp (~%ar)
k=1

We have just seen that Assumption[I]is satisfied. We have to check now if Assumption [2]is fulfilled.
As usual, we consider the limit

\I’/R (\I/ (1+ r51n(6)>)
f(0) = lim : @
T—> — T 81n
(v (14 i)

n
In the UGM case, we have the relationship ¥/ (z) = —% > 75¢ (0k). Rewriting Wip(z) in the
=1

previous limit, we get

: 2 o s -1 r sin(0)
1 rsin(0) . (9 v (1 7))
f(@) I \DR (1 + o(r ccS>S(9)+1)) 1;231 Ok AN + ¢
= ]1m .
r—0 1 r sin(0) 2 o x -1 7 sin(6)
Vi (1 + 7 ) kX_:I 4 (ek‘I'R (1 + 005(9)+1)>>

The term on the left is equal to f(#)2. In order to calculate the limit of the second ratio, we
consider only the leading terms in the numerator and denominator, i.e the terms with the biggest
2

—=k or the smallest 6. Let k* be such that 0« = min{6y, ...,0,}. It remains

o (0 (14 252))
f(0) = f(6)1i |
0, (07! (14 o))

We have calculated, in the Gaussian case, this kind of limit, and proved that it was equal to 1.

2
Beta Gaussian Mizture example. We consider the limit in Equation (5.2)), with g, (¢) = X"I;’,Et) ,Vn €

t 2
N+a a
_ _ o1 () g 22 tar(132) . .
N* ¢] = VE T(5E) ) and ¢; = —r Using integrations by parts, we get
1< 2\t 2 2 25 Cxp(_#>
- 2
7 Nt (C]1 + ) XN+1+a (ql +z ) + T(ZELEe)
{= lim

r—r+00

Asymptotically, it only remains

(@ — 1)z Lefpl—N—o

= )
56—1141-100701 (N +a—1)z(1-a)

Using v = % + 1, and replacing ¢} and c; by their values, we directly obtain the value of ¢ given
in Table[3] Concerning Assumption [2| we consider

\IJ/R (\111}1 <1 + rsil;(Q)))
£(6) = lim 1 SOREEYE
r— — T sin

(Vg (14 )
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1ta 2
In the BGM case, U/ (z) = — 525714 F(\/'% ) (Xlgl‘;(xl ) 4 2(1ia) V2mp(z )) Hence the limit

rsin(0) )2 xhia (Vi (22T )\/ﬁp( <1+Tsm(9)))

-1
PO () M T + it

r—0 -1 rsin(9)>2 X%+a( (1+%)2) ) rsin(0)
\I/R (1+ 7 |\1;;£1( T oin(0) )‘a—l (1+a)v27T<p< (1+W)>

I+ 2reost) 1D

The ratio on the left is obvously equal to f(6)?. Concerning the term on the right, the ratios

2
X”T“(Z) clearly tends to 0 when x — oo. Then, the limit may be written more easily

) o (\I/ (1 + rs1n(9)))
f(0) = f(0)” lim
r—0 rsin(6
- ¥ (\II <]‘ + Z(rcos(é)il)))
We have already calculated this limit in the Gaussian case, and seen the relationship f(6) = HOR
1, hence Assumption

Proof of Proposition We firstly introduce two lemmas.

Lemma 8.1 (Djurci¢ and Torgasev| (2001)). Suppose that f and g are two strictly increasing
o—functions, and that at least one of the functions f=1, g=1 belongs to the class K., and f(z) ~

xr—r0o0
g(z). Then f~'(z) ~ g~ '(z)
Tr—r0o0
Lemma 8.2. If v > 0, then Q and .. are o—functions. Furthermore, under Assumption [1, we
have

(8.1) Q) ~ Q)

The proof of Lemma [8:2] is straightforward, using properties given in Lemma Using these
two lemmas, we can now give the proof of Proposition [5.2}

1
Proof. By quick calculations, we get Q7 1(z) = [\Ilgl (1+ % " and Q7(z) = \1,1—%1 (1+ %)
Thanks to Assumption we have Q(z) ~ Q.(z) (Lemma , with Q and Q. p—functions.
Tr—r 00

With Assumption 2, Q~! or Q7! belongs to the class K. Then, we can apply Lemma Hence
the equivalence Q2 1(z) ~ Q;(z). In other words,
xr—r 00

1 1\17
1 1

If we do the change of variable 1 4 % = we get the result . |

20¢ 1
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