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SPATIAL EXPECTILE PREDICTIONS FOR ELLIPTICAL RANDOM

FIELDS

V. MAUME-DESCHAMPS, D. RULLIÈRE, AND A. USSEGLIO-CARLEVE

Abstract. In this work, we consider an elliptical random field. We propose some spatial
expectile predictions at one site given observations of the field at some other locations.
To this aim, we first give exact expressions for conditional expectiles, and discuss prob-
lems that occur for computing these values. A first affine expectile regression predictor is
detailed, an explicit iterative algorithm is obtained, and its distribution is given. Direct
simple expressions are derived for some particular elliptical random fields. The perfor-
mance of this expectile regression is shown to be very poor for extremal expectile levels,
so that a second predictor is proposed. We prove that this new extremal prediction is
asymptotically equivalent to the true conditional expectile. We also provide some nu-
merical illustrations, and conclude that Expectile Regression may perform poorly when
one leaves the Gaussian random field setting.

Keywords: Elliptical distribution; Expectile regression; Extremal expectile; Spatial prediction, Krig-
ing.

1. Introduction

Kriging, introduced by Krige (1951), and formalized by Matheron (1963), aims at predicting the
conditional mean of a random field (Zt)t∈T given the values Zt1 , ..., ZtN of the field at some points
t1, ..., tN ∈ T , where typically T ⊂ Rd. When using Kriging techniques, for any x ∈ T , the condi-
tional mean of Zx given Zt1 , ..., ZtN is approximated by a linear combination of Zt1 , ..., ZtN where
the weight vector is the solution of a least square minimization problem (see Ligas and Kulczycki,
2010, for example). It seems natural to predict, in the same spirit as Kriging, other functionals
by linear combinations. In a previous work (see Maume-Deschamps et al., 2016), we focused on
quantiles. In this paper, we apply the same methodology to conditional expectiles in order to get
spatial expectile predictions. However, as we will see, more technical details are involved, and some
numerical algorithms will be required.

In 1978, Koenker and Bassett proposed a conditional quantile estimation as an affine combi-
nation of Zt1 , ..., ZtN , called Quantile Regression (cf. Koenker and Bassett, 1978). More recently,
some papers propose an Expectile Regression, using the same approach (see Yang et al. (2015)
or Sobotka and Kneib (2012), for example). The weight vector is the solution of a minimization
problem, with an asymmetric loss function. In the case where α = 1

2 , it corresponds exactly to the
conditional mean regression, or Kriging. Otherwise, it is more difficult to get explicit formulas.
The Expectile Regression approach usually requires time consuming simulations to compute expec-
tations. Moreover, in a non-gaussian setting, the conditional expectile may not be expressed as a
linear combination of the covariates, thus the consistency of the estimation by expectile regression
is not guaranteed.
In this paper, we focus on elliptical random fields. Elliptical distributions, formalized by Cam-
banis et al. (1981), have the advantage of being stable under affine transformations. Therefore,
explicit iterative algorithms for the expectile regression may be obtained for consistent elliptical
distributions (cf. Kano (1994)). Nevertheless, the expectile regression is generally not equal to
the conditional expectile and the difference may be large, especially for extreme levels of expec-
tile. This is why we propose a new dedicated expectile prediction that is adapted to extremal levels.

The paper is organized as follows. In Section 2, we give some definitions, properties and ex-
amples of elliptical distributions satisfying the consistency property. For these models, we give
formulas for conditional expectiles in Section 3. Section 4 is devoted to expectile regression for
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consistent elliptical random fields: iterative algorithms are obtained. In Section 5, we propose
some extremal predictions and prove asymptotic equivalences when the expectile level is close to
0 or 1. Section 6 provides a numerical study. In particular, we emphasize the fact that expectile
regression is generally not appropriate, especially for high level expectiles. We illustrate this point
on several examples.

2. Elliptical distributions

In this section, we recall some useful properties and classical examples of elliptical distributions.
Most results may be found, for instance, in Frahm (2004). As these results are classical, we use
here almost the same formulation as in our previous article Maume-Deschamps et al. (2016).

Definition 2.1. Let X be a d−dimensional random vector. X is elliptical if and only if there
exists a unique µ ∈ Rd, a semi-positive definite matrix Σ ∈ Rd×d, and a function Φ : R+ → R such
that the characteristic function of (X − µ) is

E [exp(it(X − µ))] = Φ(t′Σt) .

For such an elliptical random vector, we write X ∼ Ed(µ,Σ,Φ)

It seems important to note that Σ is not necessarily the covariance matrix of X. More precisely,
Σ is proportional to the covariance matrix K of the random vector X, when it is defined, i.e there
exists a positive coefficient τ such that:

(2.1) Σ = τK

For example, for Gaussian distributions, τ = 1, i.e Σ = K. But this is not always the case for
all elliptical distributions: for Student distributions with ν > 2 degrees of freedom, τ = ν−2

ν .
Furthermore, K may not exist (e.g. for Cauchy distributions). In the present paper, we do only
consider the case of non-degenerated distributions, i.e. we assume that the matrix Σ is invertible.

The following representation theorem is central in the theory of elliptical distributions. This
result may be found in Cambanis et al. (1981).

Theorem 2.1 (Cambanis et al. (1981)). The random vector X is elliptical, X ∼ Ed(µ,Σ,Φ), if
and only if

(2.2) X = µ+RΛU (d),

where ΛΛT = Σ, U (d) is a d−dimensional random vector uniformly distributed on Sd−1 (the unit
sphere of dimension d), and R is a non-negative random variable independent of U (d).

The representation of Theorem 2.1 is not unique (see Cambanis et al. (1981) for details). Given
µ and Σ, the elliptic random vector X is characterized by the non-negative random variable R,
called the radius of X. We now recall the consistency property of an elliptical distribution. The
related definitions and properties may be found in Kano (1994).

Definition 2.2. Let X ∼ Ed(µ,Σ,Φ). X is said to be consistent if Φ is dimension-free, i.e. if Φ
does not depend on d.

Kano (1994) established the following relation between Definition 2.2 and the radius R.

Proposition 2.2. Let X ∼ Ed(µ,Σ,Φ), and let R denote its radius. X is consistent if and only
if:

(2.3) R
d
=
χd
ε
,

where χd is the square root of a χ2 distributed random variable with d degrees of freedom, ε is a
non-negative random variable whose law does not depend on d, and χd, ε and U (d) are mutually
independent.

Theorem 2.3 (Elliptical density). Let X ∈ Rd be an elliptical random vector, X ∼ Ed(µ,Σ,Φ),
and let R be the corresponding radius of X.

(2.4) fX(x) =
cd

|det(Λ)|
gd
(
(x− µ)Σ−1(x− µ)

)
where cdgd(t) =

Γ( d2 )

2π
d
2

√
t
−(d−1)

fR(
√
t), and fR(t) is the p.d.f of R.
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The coefficient cd is called the normalization constant and the function gd is called the generator of
X. Table 1 provides some examples of elliptical distributions, associated with their coefficients and
generators. Most of them may easily be found in the literature: Kotz distribution is introduced
in Nadarajah (2003), Student in Nadarajah and Kotz (2004), and Laplace in Eltoft et al. (2006)
and Kozubowski et al. (2013). We added two other distributions, obtained with Kano’s represen-
tation: Unimodal Gaussian Mixture (Unimodal GM), and another one which will be called Beta
Gaussian Mixture (Beta GM).

Distribution Coefficient cd Generator gd(t)
Gaussian 1

(2π)
d
2

exp(− t
2 )

Student, ν > 0
Γ( d+ν

2 )

Γ( ν2 )
1

(νπ)
d
2

(
1 + t

ν

)− d+ν
2

Logistic
Γ( d2 )

(2π)
d
2

[
+∞∫
0

x
d
2−1. e−x

(1+e−x)2 dx

]−1
exp(− 1

2 t)

(1+exp(− 1
2 t))

2

Kotz, q, r, s > 0
sΓ( d2 )

π
d
2 Γ( 2q+d−2

2s )
r

2q+d−2
2s tq−1 exp(−rts)

Unimodal GM 1

(2π)
d
2

n∑
k=1

πkθ
d
k exp

(
− θ

2
k

2 t
)

Laplace, λ > 0 2

λ(2π)
d
2

K d
2
−1

(√
2
λ t
)

(√
λ
2 t
) d

2
−1

Beta GM
2
a
2
−1aΓ( d+a

2 )

π
d
2

χ2
d+a(t)

t
d+a

2

Table 1. Some classical d−dimensional elliptical distributions with cor-
responding normalisation constants and generators

In Table 1, Km(x) denotes the modified Bessel function of the second kind with order m, i.e

Km(x) =
π

2

I−m(x)− Im(x)

sin(mπ)
, where Im(x) =

+∞∑
k=0

1

k!Γ(k +m+ 1)

(x
2

)2k+m

(see Abramowitz et al.

(1966)), and χ2
m(x) denotes the c.d.f of the χ2 distribution with m degrees of freedom, evaluated at

x. Remark that the Cauchy distribution corresponds to a Student distribution with ν = 1 degree
of freedom.
In this paper, we focus on consistent elliptical distributions. Unfortunately, Logistic and Kotz
distributions do not have this property (except the Kotz distribution with s = q = 1, and r = 1

2 ,
i.e the Gaussian distribution). For consistent models, the non negative random variable ε is given
in Table 2.

Distribution ε
Gaussian 1

Student, ν > 0 χν√
ν

Unimodal Gaussian Mixture
n∑
k=1

πkδθk

Laplace, λ > 0 1√
E( 1
λ )

Beta Gaussian Mixture Beta (a, 1)

Table 2. Some classical consistent d−dimensional elliptical distributions
with corresponding random variable ε

We have seen that an elliptical distribution is characterized by parameters µ, Σ, and by either
the characteristic function Φ, the radius R or the generator gd. For this reason, we define the
distribution of an elliptical random vector by any of these three possible characterizations, using
indifferently the notations X ∼ Ed(µ,Σ,Φ), X ∼ Ed(µ,Σ, R) or X ∼ Ed(µ,Σ, gd). At last, in



4 V. MAUME-DESCHAMPS, D. RULLIÈRE, AND A. USSEGLIO-CARLEVE

order to emphasis the role played by the radius and the dimension, we also use the denomination
(R, d)−elliptical, as defined hereafter.

Definition 2.3. An elliptical random vector of Rd with radius R is called (R, d)−elliptical.

The following proposition, from Hult and Lindskog (2002), is the basis of our study.

Proposition 2.4 (Affine transformation). Let X a consistent (R, d)−elliptical random vector with
parameters µ and Σ. Then for any c ∈ Rd, cTX is (R, 1)−elliptical with parameters cTµ and cTΣc.

Proposition 2.4 implies that an affine transformation of a (R, d)−elliptical random vector is a
(R, 1)-elliptical random variable. The proposition below is a direct consequence of this result (see
Hult and Lindskog (2002) for a proof).

Proposition 2.5 (Subvectors distributions). Let X = (X1, X2)T be a consistent (R, d)−elliptical
random vector with X1 ∈ Rd1 , X2 ∈ Rd2 , d1 + d2 = d and parameters µ and Σ. Let us write:

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, µ =

(
µ1

µ2

)
.

Then X1 and X2 are respectively (R, d1)− and (R, d2)−elliptical with parameters µ1, Σ11 and µ2,
Σ22, respectively.

Remark that a p−dimensional subvector of a (R, d)-elliptical random vector with the consistency
property is (R, p)−elliptical. As a consequence, all marginals are (R, 1)−elliptical. The following
proposition gives some indications concerning the conditional distributions of elliptical vectors.
The proof is already given in Maume-Deschamps et al. (2016).

Proposition 2.6 (Conditional distribution). Let X = (X1, X2)T be a consistent (R, d)−elliptical
random vector with with X1 ∈ Rd1 , X2 ∈ Rd2 , d1 + d2 = d and parameters µ and Σ. Let us write:

(2.5) Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, µ =

(
µ1

µ2

)
.

The conditional distribution X2|(X1 = x1) has parameters:

(2.6)

{
µ2|1 = µ2 + Σ21Σ−1

11 (x1 − µ1)
Σ2|1 = Σ22 − Σ21Σ−1

11 Σ12

Furthermore, X2|(X1 = x1) is elliptical, with radius R∗ given by:

(2.7) R∗
d
= R

√
1−B

∣∣∣∣ (R√BU (d) = C−1
11 (x1 − µ1)

)
where C11 is the Cholesky root of Σ11, and B ∼ Beta(d1

2 ,
d2

2 ).

At last, the conditional density of X2|(X1 = x1) is given by:

(2.8) fX2|X1
(x2|x1) =

c2|1

|Σ2|1|
1
2

gd

(
q1 + (x2 − µ2|1)TΣ−1

2|1(x2 − µ2|1)
)

with c2|1 = cd
cd1

gd1
(q1) , and q1 = (x1 − µ1)TΣ−1

11 (x1 − µ1).

We have introduced the main definitions and properties of elliptical distributions. With these
tools, we can define the notion of elliptical random fields. Indeed, a random field (X(t))t∈T is
R−elliptical if ∀n ∈ N, ∀t1, ..., tn ∈ T , the vector (X(t1), ..., X(tn)) is (R,n)−elliptical. Obviously,
it implies that all the k−dimensional subvectors of (X(t1), ..., X(tn)) are (R, k)−elliptical. This
assumption corresponds to consistent elliptical distributions properties given in Propositions 2.4,
2.5 and in Kano (1994). We thus focus our study on elliptical distributions with the consistency
property.
In the following section, we focus on conditional expectiles of elliptical distributions, applied to our
problem of spatial prediction. We consider the following context: (X(t))t∈T is an R−elliptical ran-
dom field defined on some metric space T . We consider N observations at locations t1, ..., tN ∈ T ,
called (X(t1), ..., X(tN )). Given X(t1), ..., X(tN ), our aim is to predict, at a site t ∈ T , a
functional of the distribution of X(t): the further defined expectile. Notice that the vector
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(X(t), X(t1), ..., X(tN )) is (R,N + 1)−elliptical. Thus, we can denote X2 = X(t) ∈ R and
X1 = (X(t1), ..., X(tN )) ∈ RN and restrict ourselves to the study of the conditional distribution
of the random variable X2 given the random vector X1.

3. Theoretical Expectiles

3.1. General expression. Expectiles, introduced by Newey and Powell (1987), may be seen as
a generalization of quantiles. In this part, we introduced these quantities with the notion of
elicitability (see e.g. Ziegel (2014)). Indeed, let X be a random variable. The α−quantile qα of X
is given by the minimization problem:

(3.1) qα(X) = arg min
q∈R

E
[
(α− 1)(X − q)1{X−q<0} + α(X − q)1{X−q>0}

]
Equation (3.1) easily leads to the relationship P (X ≤ qα(X)) = α for continuous distributions.
The α−expectile eα(X) is defined as the solution of a similar minimization problem:

(3.2) eα(X) = arg min
e∈R

E
[
(1− α)(X − e)21{X−e<0} + α(X − e)21{X−e≥0}

]
The former definition assumes the existence of the first two moments of X, but other definitions
can be proposed, involving only the first moment (see e.g. Bellini et al. (2014)). In this part, we
give a general expression of conditional expectiles in our elliptical context. Consider the respective
cumulative distribution functions ΦR and Φ∗R,

(3.3)

{
ΦR(x) = P

(
RU (1) ≤ x

)
,

ΦR∗(x) = P
(
R∗U (1) ≤ x

)
,

where U (1) is 1 or −1 with probability 1
2 . ΦR and ΦR∗ are respective cumulative distribution

functions of the reduced centered (R, 1)−elliptical random variable and (R∗, 1)−elliptical random
variable. With this notation, we can introduce the following definition.

Definition 3.1. Let ΨR : R∗ →]−∞, 0[∪]1,+∞[ be such that:

(3.4) ΨR(x) = ΦR(x) +
1

x

+∞∫
x

yc1g1(y2)dy .

This function is introduced mainly to simplify future equations and relationships. From Equa-
tion (3.4), we can deduce several properties.

Lemma 3.1. ΨR satisfies the following properties:

• ΨR(−x) = 1−ΨR(x),∀x ∈ R∗.
• ΨR : R∗ →]−∞, 0[∪]1,+∞[ is bijective and decreasing.
• Ψ−1

R (1− α) = −Ψ−1
R (α),∀α ∈ R∗.

The proof requires very classical and simple calculations, then we do not develop it in details.
We will see that the general expression of expectile is related to the function ΨR. We introduce a
last lemma before giving this expression.

Lemma 3.2. Let X ∼ E1(µ, σ2, g1) be an elliptical random variable. We have the following
relationship:

(3.5) E[X1{X≥0}] = µΦR

(µ
σ

)
+ σ

+∞∫
−µσ

yc1g1(y2)dy

Proof. We recall that density of X is given by:

fX(x) = c1
σ g1

(
(x−µ)2

σ2

)
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Then:

E[X1{X≥0}] =

+∞∫
0

x
c1
σ
g1

(
(x− µ)2

σ2

)
dx = µ

+∞∫
−µσ

c1g1

(
y2
)
dy + σ

+∞∫
−µσ

yc1g1

(
y2
)
dy

Since ΦR(x) =

x∫
−∞

c1g1

(
y2
)
dy and 1−ΦR(x) = ΦR(−x) (by the symmetry properties of elliptical

distributions), we get Equation (3.5). �

We are now able to give a general expression for the α−expectile of a univariate elliptical
distribution.

Proposition 3.3. Let X a (R, 1)−elliptical random variable, with parameters µ and σ2. The
α−expectile eα of X is given by:

(3.6) eα(X) =

{
µ+ σΨ−1

R

(
α

2α−1

)
, α 6= 1

2

µ , α = 1
2

Proof. We have to solve the minimization problem:

eα(X) = arg min
x∈R

E[Sα(X − x)]

By deriving the loss function, we get:

(1− α)E[X − eα] + (2α− 1)E
[
(X − eα)1{X−eα≥0}

]
= 0

Using Lemma 3.2, we have the equality:

E[(X − eα)1{X−µ≥0}] = (µ− eα)ΦR

(
µ− eα
σ

)
+ σ

+∞∫
−µ−eασ

yc1g1(y2)dy

We add this term in the previous equation:

(1− α)(µ− eα) + (2α− 1)

(µ− eα)ΦR

(
µ− eα
σ

)
+ σ

+∞∫
−µ−eασ

yc1g1(y2)dy

 = 0

A level of α = 1
2 leads to the obvious solution eα = µ. Then, we consider now α 6= 1

2 (then
eα 6= µ), the equation may be written as follows:

ΦR

(
eα − µ
σ

)
+

σ

eα − µ

+∞∫
eα−µ
σ

yc1g1(y2)dy =
α

2α− 1

Hence ΨR

(
eα−µ
σ

)
= α

2α−1 , and eα = µ+ σΨ−1
R

(
α

2α−1

)
�

Let us focus now on the conditional expectiles of an elliptical vector. Be X ∈ RN+1 a con-
sistent (R,N + 1)−elliptical vector, X1 ∈ RN and X2 ∈ R subvectors of X. Since X2|X1 is
(R∗, 1)−elliptical, where R∗ is given in Proposition 2.6, it is not difficult to get a general expres-
sion for eα(X2|X1).

Proposition 3.4. Let X = (X1, X2) be a (R,N + 1)−elliptical random vector, with parameters µ
and Σ. The α−expectile eα of X2|(X1 = x1) is given by:

(3.7) eα(X2|X1 = x1) =

{
µ2|1 + σ2|1Ψ−1

R∗

(
α

2α−1

)
, α 6= 1

2

µ2|1 , α = 1
2

where µ2|1 and σ2|1 =
√

Σ2|1 are given in Equation (2.6), and R∗ in Equation (2.7).

Proof. Obvious with Proposition 3.3 and Proposition 2.6. �
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Our formulas involve the terms Ψ−1
R

(
α

2α−1

)
and Ψ−1

R∗

(
α

2α−1

)
, which are respectively the so-

lutions of ΦR(x) +
1

x

+∞∫
x

yc1g1(y2)dy =
α

2α− 1
and ΦR∗(x) +

1

x

+∞∫
x

yc∗1g
∗
1(y2)dy =

α

2α− 1
. Then,

in the next subsection, we propose some algorithms to compute these terms.

3.2. Algorithms. We propose some algorithms to compute the standardized conditional expectile

Ψ−1
R

(
α

2α−1

)
, and thus the conditional expectile eα(X2|X1 = x1) of Equation (3.7). Obviously, the

same algorithms will apply for Ψ−1
R∗

(
α

2α−1

)
, using R∗ instead of R.

We consider two kinds of algorithms: a MM algorithm (see Hunter and Lange (2004)) and a
fixed-point algorithm. We also study the speed of convergence for these two algorithms.

Let us introduce the following definitions and properties that may be found in Frontini and
Sormani (2003).

Consider a sequence
(
e(k)
)
k∈N and a target value e∗ ∈ R. The sequence

(
e(k)
)
k∈N is said to

converge to e∗ ∈ R with order p ∈ [1,∞) if for all k,
∣∣e(k) − e∗

∣∣ ≤ εk where εk is a positive sequence
satisfying

(3.8) ∃c > 0 : lim
k→+∞

εk+1

εpk
= c .

The coefficient c is called the asymptotic factor. In particular, one says that the convergence is
linear if p = 1 and c < 1, or quadratic if p = 2.

Now, consider a fixed-point algorithm e(k+1) = f
(
e(k)
)
, where e(k+1), e(k) ∈ R, and f : R → R

is a continuous and differentiable function, k ∈ N. The convergence of the algorithm is insured
by |f ′(e)| < 1,∀e ∈ R. If furthermore f is p-times differentiable with ∀m < p, f (m)(e∗) = 0

and f (p)(e∗) 6= 0, then the convergence is of order p with an asymptotic factor c =
f (p)(e∗)

p!
(see

Frontini and Sormani, 2003).

3.2.1. MM algorithm. We now present an approach based on a MM algorithm, in order to compute

Ψ−1
R

(
α

2α−1

)
and the associated expectile of Equation (3.7). A similar approach has been proposed

in Yang et al. (2015), and some results thus explicitly refer to this paper.
In the following, we denote by Sα the function Sα(x) = (1− α)x21{x<0} + αx21{x≥0}.

Lemma 3.5 (Yang et al. (2015)). The function S ′α is Lipschitz:

(3.9) |S ′α(a)− S ′α(b)| ≤ 2 max{1− α, α}|a− b|,∀a, b ∈ R

Hence the following quadratic upper bound:

(3.10) Sα(a) ≤ Sα(b) + S ′α(b)(a− b) + max{1− α, α}(a− b)2,∀a, b ∈ R

Using this result from Yang et al. (2015), we propose a new MM algorithm, detailed hereafter.

Proposition 3.6 (MM algorithm). The following sequence
(
e(k)
)
k∈N converges to Ψ−1

R

(
α

2α−1

)
:

(3.11)



e(0) = 0

e(k+1) = e(k) − e(k)

max{1−α,α}
[
α− (2α− 1)ΦR

(
e(k)
)]

+

+
2α− 1

max{1− α, α}

+∞∫
e(k)

yc1g1(y2)dy

Furthermore, the convergence is linear with an asymptotic factor

(3.12) c = 1− 1

max{1− α, α}

[
α− (2α− 1)ΦR

(
Ψ−1
R

(
α

2α− 1

))]
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Proof. Let X be the (R, 1)−elliptical random variable with parameters 0 and 1. At the kth itera-
tion, we call R(k) = X − e(k). It follows for any e ∈ R:

X − e = R(k) − (e− e(k))

Thanks to Lemma 3.5, we have the following upper bound:

E
[
Sα
(
R(k) − (e− e(k))

)]
≤ E

[
Sα(R(k))

]
− (e− e(k))E

[
S ′α(R(k))

]
+ max{1− α, α}

(
e− e(k)

)2
Let us denote Q

(
e, e(k)

)
= E

[
Sα(R(k))

]
−(e−e(k))E

[
S ′α(R(k))

]
+max{1−α, α}

(
e− e(k)

)2
. When

trying to minimize E
[
Sα
(
R(k) − (e− e(k))

)]
, the principle of MM Algorithm is to minimize its

upper bound, and to choose e(k+1) = arg min
e∈R

Q
(
e, e(k)

)
. We easily get:

e(k+1) = e(k) + 1
2 max{1−α,α}E

[
S ′α
(
X − e(k)

)]
It remains to calculate E

[
S ′α
(
X − e(k)

)]
.

E
[
S ′α
(
X − e(k)

)]
= 2(1− α)E

[
X − e(k)

]
+ 2(2α− 1)E

[(
X − e(k)

)
1{X−e(k)≥0}

]
Lemma 3.2 leads to Equation (3.11). Now, let us prove the convergence of the algorithm. It is
sufficient to have |ϕ′(x)| < 1,∀x.

ϕ′(x) = 1− α− (2α− 1)ΦR(x)

max{1− α, α}
.

Clearly, since 0 < ΦR(x) < 1,∀x ∈ R, 0 < ϕ′(x) < 1. Hence the convergence. Furthermore, since
ϕ′(x) 6= 0,∀x ∈ R, the convergence is linear in the sense of Equation (3.8), with asymptotic factor

ϕ′
(

Ψ−1
R

(
α

2α−1

))
, hence Equation (3.12). �

As expected, lim
α→1

c = 1. Indeed, when α is close to 1, eα(X) is huge, and its calculation requires

more iterations. On the other hand, a level of α = 1
2 gives c = 0, since the sequence in the algorithm

is constant, e(k) = 0 for all k.

3.2.2. Fixed-point algorithm. It can be shown that eα(X) satisfies a fixed-point relationship. In
this paragraph, we detail this relationship and the corresponding fixed-point algorithm.

Proposition 3.7 (Fixed-point algorithm). The following sequence
(
e(k)
)
k∈N converges to Ψ−1

R

(
α

2α−1

)
:

(3.13)


e(0) = 0

e(k+1) =

(1− 2α)
+∞∫
e(k)

yc1g1(y2)dy

(2α− 1)ΦR
(
e(k)
)
− α

Furthermore, the convergence is quadratic (in the sense of Equation (3.8) with p = 2), with an
asymptotic factor

(3.14) c =

(2α− 1)c1g1

(
Ψ−1
R

(
α

2α−1

)2
)

2
[
(2α− 1)ΦR

(
Ψ−1
R

(
α

2α−1

))
− α

]
Proof. Let X the (R, 1)−elliptical random variable with parameters 0 and 1. Since µ = 0 and

σ = 1, Ψ−1
R

(
α

2α−1

)
= eα(X) and thus:

Ψ−1
R

(
α

2α− 1

)
= arg min

e∈R
E [Sα(X − e)]

Then, Ψ−1
R

(
α

2α−1

)
is such that E

[
S ′α
(
X −Ψ−1

R

(
α

2α−1

))]
= 0, i.e:

2(1−α)E
[(
X −Ψ−1

R

(
α

2α− 1

))]
+2(2α−1)E

[(
X −Ψ−1

R

(
α

2α− 1

))
1{X−Ψ−1

R ( α
2α−1 )≥0}

]
= 0
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With the previous equation, and the formula of Lemma 3.2, we get the following fixed-point
relation

Ψ−1
R

(
α

2α− 1

)
=

(1− 2α)
+∞∫

Ψ−1
R ( α

2α−1 )
yc1g1(y2)dy

(2α− 1)ΦR

(
Ψ−1
R

(
α

2α−1

))
− α

.

As in the MM algorithm given above, we have a recursive algorithm e(k+1) = ϕ(e(k)). Then,

the convergence is insured by
∣∣∣ϕ′ (Ψ−1

R

(
α

2α−1

))∣∣∣ < 1. The quadratic convergence is insured if

ϕ′
(

Ψ−1
R

(
α

2α−1

))
= 0 and ϕ′′

(
Ψ−1
R

(
α

2α−1

))
6= 0. We have

ϕ′(x) = (2α− 1)c1g1(x2)

x(2α− 1)ΦR(x)− αx+ (2α− 1)
+∞∫
x

yc1g1(y2)dy

[(2α− 1)ΦR(x)− α]
2 .

Using Equation (3.1), we deduce ϕ
(

Ψ−1
R

(
α

2α−1

))
= 0. With this relationship, we not only show

that the algorithm converges, but this convergence is at least quadratic. We straightforward
calculations, and get:

ϕ′′
(

Ψ−1
R

(
α

2α− 1

))
=

(2α− 1)c1g1

(
Ψ−1
R

(
α

2α−1

)2
)

[
(2α− 1)ΦR

(
Ψ−1
R

(
α

2α−1

))
− α

] .
If α 6= 1

2 , ϕ′′
(

Ψ−1
R

(
α

2α−1

))
6= 0 and the convergence is quadratic. Furthermore, the asymptotic

factor c is easily deduced, with the relationship c =
ϕ′′(Ψ−1

R ( α
2α−1 ))

2 , hence Equation (3.14). �

Considering the convergence rate, this fixed-point algorithm is more efficient than the MM
algorithm. In the following, unless specified, we thus only consider this fixed-point algorithm.

3.3. Examples. In this subsection, we give some examples of theoretical conditional expectiles
calculated by our algorithms for Gaussian, Student and Gaussian Mixture distributions. The dif-

ficulty is to calculate the terms ΦR∗
(
e(k)
)

and
+∞∫
e(k)

yc∗1g
∗
1(y2)dy. In the general case, we have no

guarantee of obtaining closed-form formulas for these quantities. Nevertheless, the calculation is
possible in the three examples mentioned above. As the fixed-point algorithm (3.13) is asymptot-
ically faster than the MM algorithm (3.11), we just give results for the fixed-point algorithm, but
the MM algorithm works as well.
Recall that in all cases, we have the relationship

eα(X2|X1 = x1) = µ2|1 + σ2|1Ψ−1
R∗

(
α

2α− 1

)
.

Then, for all the examples, we give an algorithm to calculate Ψ−1
R∗

(
α

2α−1

)
.

3.3.1. Gaussian example. The gaussian case, as usual, is the most simple case. Since R∗
d
= R,

calculations are very simple, and lead to the following sequence which converges to Ψ−1
R∗

(
α

2α−1

)
:

(3.15)

 e(0) = 0

e(k+1) =
(1−2α)ϕ(e(k))

(2α−1)Φ(e(k))−α

3.3.2. Student example. In the Student case, the conditional radius R∗ is not equal to R, but
calculations are still possible. Indeed, using Equations (2.8), Algorithm (3.13) becomes

e(k+1) =

(1− 2α)
+∞∫
e(k)

yc2|1gN+1

(
q1 + (x2 − µ2|1)TΣ−1(x2 − µ2|1)

)
dy

(2α− 1)Φν
(
e(k)
)
− α

,
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where c2|1 and gn are given in Proposition 2.6 and Table 1 . Hence Ψ−1
R∗

(
α

2α−1

)
is obtained by:

(3.16)


e(0) = 0

e(k+1) =
(2α−1)

Γ( ν+N+1
2 )

Γ( ν+N
2 )√π

√
ν+q1

1−ν−N

(
1+ 1

ν

(e(k))
2

(1+ 1
ν
q1)

) 1−ν−N
2

(2α−1)Φν+N

(
e(k)

√
ν+N
ν+q1

)
−α

3.3.3. Gaussian Mixture example. We do the same kind of calculations as in the Gaussian and
Student cases, and get the following algorithm.

(3.17)


e(0) = 0

e(k+1) =
(1−2α)

n∑
i=1

πiθ
N−1
i exp

(
− θ

2
i
2 q1

)
ϕ(θie(k))

(2α−1)
n∑
i=1

πiθNi exp

(
−
θ2
i
2 q1

)
Φ(θie(k))−α

n∑
i=1

πiθNi exp

(
−
θ2
i
2 q1

)
Some numerical applications and illustrations are given in Section 6.

In some other cases, it is difficult to express ΦR∗
(
e(k)
)

or
+∞∫
e(k)

yc∗1g
∗
1(y2)dy. Obviously, one can

approximate numerically these values, but this approximation may lead to a poor prediction of the
expectile, especially for extreme levels of α. This is why we propose two prediction methods. The
first one, introduced in the next section, is called expectile regression.

4. Expectile Regression

Expectile Regression, introduced by Newey and Powell (1987), by analogy to Quantile Regression
(see Koenker and Bassett (1978)), is an usual way to estimate conditional expectiles. If X1 ∈ RN
and X2 ∈ R, the α−expectile of X2|(X1 = x1) is approximated by

(4.1) êα(X2|X1 = x1) = β∗Tx1 + β∗0 ,

where β∗ and β∗0 are solutions of the following minimization problem

(4.2) (β∗, β∗0) = arg min
β∈RN ,β0∈R

E
[
Sα(X2 − βTX1 − β0)

]
.

and where the scoring function Sα (see Ziegel (2014)) is

(4.3) Sα(x) = (1− α)x21{x<0} + αx21{x>0}.

Obviously, if α = 1
2 , the scoring function S 1

2
(x) is the least square loss function, and the mini-

mization 4.2 gives the kriging vector β∗ =
(
E[X1X

T
1 ]− E[X1]E[X1]T

)−1
(E[X1X2]− E[X1]E[X2]),

and β∗0 = E[X2]− β∗TE[X1]. If α 6= 1
2 , the problem is more difficult to solve, and we usually need

simulations and stochastic algorithms. Fortunately, in our elliptical context, we do not need it to
express β∗ and β∗0 . The following lemma will be useful to calculate β∗.

Lemma 4.1. Let (X1, X2) a consistent (R, 2)−elliptical random vector, with parameters µ =

(µ1, µ2) and Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
. We have the following relationship:

(4.4)

E[X1X21{X2≥0}] =

(
µ1µ2 − ρ

σ1

σ2
µ2

2

)
ΦR

(
µ2

σ2

)
+(µ1σ2+ρσ1µ2)

+∞∫
−µ2
σ2

yc1g1(y2)dy+ρσ1σ2

+∞∫
−µ2
σ2

y2c1g1(y2)dy

Proof. We write:

E[X1X21{X2≥0}] =

+∞∫
0

x2fX2
(x2)

 +∞∫
−∞

x1
fX1,X2

(x1, x2)

fX2
(x2)

dx1

 dx2

We have

+∞∫
−∞

x1
fX1,X2(x1, x2)

fX2
(x2)

dx1 = E[X1|X2]. Using Equation (2.6), we get:
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E[X1X21{X2≥0}] =
+∞∫
0

x2fX2
(x2)

(
µ1 + ρσ1

σ2
(x2 − µ2)

)
dx2

We recall that density of X2 is fX2
(x2) = c1

σ2
g1

(
(x2−µ2)2

σ2
2

)
. Equation (4.4) is obtained by using

Lemma 3.2. �

We are now able to give the expression of β∗, and the result is exactly the same we have
calculated in Maume-Deschamps et al. (2016), i.e β∗ corresponds to the vector of simple Kriging
weights. For the sake of simplicity, let ρj be the correlation coefficient between X1j and the
random variable X2 − β∗TX1 − β∗0 . Indeed, X1j is (R, 1)−elliptical with parameters µ1j and
σ2

1j . Furthermore, X2 − β∗TX1 − β∗0 is (R, 1)−elliptical too, with parameters µ2 − β∗Tµ1 − β∗0
and (−β∗, 1)TΣ(−β∗T , 1). Hence the (R, 2)−elliptical vector

(
X1j , X2 − β∗TX1 − β∗0

)
admits as

second parameter the matrix:(
σ2

1j ρjσ1j

√
(−β∗, 1)TΣ(−β∗T , 1)

ρjσ1j

√
(−β∗, 1)TΣ(−β∗T , 1) (−β∗, 1)TΣ(−β∗T , 1)

)
Proposition 4.2 (Explicit form of β∗). ∀α ∈ [0, 1], the optimal β∗ is given by:

(4.5) β∗ = Σ−1
11 Σ12

Proof. We recall the minimization problem which verifies (β∗, β∗0):

arg min
β∈RN ,β0∈R

(1− α)E
[
(X2 − βTX1 − β0)2

]
− (1− 2α)E

[
(X2 − βTX1 − β0)21{X2−βTX1−β0≥0}

]
A quick gradient approach gives the following equation system{

(1− α)E
[
X1(X2 − β∗TX1 − β∗0)

]
+ (1− 2α)E

[
X1(X2 − β∗TX1 − β∗0)1{X2−β∗TX1−β∗0≥0}

]
= 0

(1− α)E
[
X2 − β∗TX1 − β∗0

]
+ (1− 2α)E

[
(X2 − β∗TX1 − β∗0)1{X2−β∗TX1−β∗0≥0}

]
= 0

We know that X2 − β∗TX1 − β∗0 is (R, 1)−elliptical with parameters µ = µ2 − βTµ1 − β0 and

Σ = Σ22 − 2βTΣ12 + βTΣ11β. If we denote σ =
√

Σ, and use Lemmas 3.2 and 4.1, we get the
following system, ∀j ∈ {1, ..., N}

(1− α)µ+ (1− 2α)µΦR

(
µ
σ

)
+ (1− 2α)σ

+∞∫
µ
σ

yc1g1(y2)dy = 0

(1− 2α)
(
µ1jµ− ρj σ1j

σ µ2
)

ΦR

(
µ
σ

)
+ (1− 2α) (µ1jσ − ρjσ1jσ)

+∞∫
µ
σ

yc1g1(y2)dy

+(1− 2α)ρj
σ1j

σ

+∞∫
0

x2
2fX2(x2)dx2 = 0

Adding the first equation and the second one, it remains

−(1−2α)ρj
σ1j

σ
µ2ΦR

(
µ

σ

)
−(1−2α)ρjσ1jσ

+∞∫
µ
σ

yc1g1(y2)dy+(1−2α)ρj
σ1j

σ

+∞∫
0

x2
2fX2

(x2)dx2+(1−α)ρjσ1jσ = 0

Obviously, ρj = 0. We have seen in Maume-Deschamps et al. (2016)(Proposition 4.2), that

ρj = 0,∀j was equivalent to β∗ = Σ−1
11 Σ12. �

In the following remark, we emphasis the role played by the affine constant β∗0 in the affine
model of Equation (4.1). Indeed, considering a linear model without this constant would lead to
highly undesirable properties.

Remark 1 (Linear models pitfalls). Consider a linear expectile regression given by:

êlinearα (X2|X1 = x1) = β∗Tx1 ,

where β∗ is the solution of the following minimization problem β∗ = arg min
β∈RN

E
[
Sα(X2 − βTX1)

]
,

and where the scoring function Sα is defined as previously by Equation (4.3). This corresponds to
the case where β∗0 = 0. Then
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(i) êlinearα (X2|X1 = x1) does not depend on α: the linear expectile regression is obviously not
suited for other levels than α = 1/2.

(ii) If Σ12 = 0RN , which means that X2 and X1 are not correlated, then êlinearα (X2|X1 = x1) =
0, while in the uncorrelated case, we would expect to predict the conditional expectile by
the unconditional one eα(X2).

(iii) Consider an elliptical random field (X(t))t∈T and let X1 = (X(t1), ..., X(tn)) ∈ RN ,
X2 = X(t) ∈ R, so that Σ12 depends on t. Assume that there exists t0 ∈ T such that
lim
t→t0
||Σ12|| = 0, for a given norm ||.||, then lim

t→t0
êlinearα (X2|X1 = x1) = 0, while, as before,

we would expect lim
t→t0

êlinearα (X(t)).

The result of Remark 1 means that a linear model êα(X2|X1 = x1) = β∗Tx1 will always return
the same value, ∀α ∈ [0, 1]. It is a reason why we need the term β∗0 , if we hope approximate
eα(X2|X1 = x1). To calculate it, we give the following lemma.

Lemma 4.3. X2 − β∗TX1 is (R, 1)−elliptical with parameters µ2 − Σ21Σ−1
11 µ1 and Σ2|1 = σ2

2 −
Σ21Σ−1

11 Σ12.

Proof. X2 − β∗TX1, as affine transformation of a consistent (R, d)−elliptical random vector, is
obviously (R, 1)−elliptical. Furthermore, with the expression of β∗ given in Proposition 4.2, E[X2−
β∗TX1] = µ2 − Σ21Σ−1

11 µ1. The second parameter equals (−β∗, 1)TΣ(−β∗, 1), thus:

(−β∗, 1)TΣ(−β∗, 1) = σ2
2 − 2

n∑
i=1

β∗i ρixσ1iσ2 +
n∑
j=1

β∗j

n∑
i=1

β∗i ρijσ1iσ1j ,

or, in matrix form:
(−β∗, 1)TΣ(−β∗, 1) = σ2

2 − 2β∗TΣ12 + β∗TΣ11β
∗

Thanks to Equation (4.5), we have β∗ = Σ−1
11 Σ12. Then the following equation holds:

(−β∗, 1)TΣ(−β∗, 1) = σ2
2 − 2Σ21Σ−1

11 Σ12 + Σ21Σ−1
11 Σ11Σ−1

11 Σ12 = σ2
2 − Σ21Σ−1

11 Σ12

�

With the help of Lemma 4.3, we can give the Expectile Regression Predictor, and its distribution
in the following theorem.

Theorem 4.4 (Expectile Regression Predictor).

(4.6)

{
β∗ = Σ−1

11 Σ12

β∗0 = µ2 − Σ21Σ−1
11 µ1 + σ2|1Ψ−1

R

(
α

2α−1

)
The Expectile Regression Predictor with level α ∈ [0, 1] is given by:

(4.7) êα(X2|X1 = x1) = µ2|1 + σ2|1Ψ−1
R

(
α

2α− 1

)
Furthermore,

(4.8) êα(X2|X1) ∼ E1
(
µ2 + σ2|1Ψ−1

R

(
α

2α− 1

)
,Σ21Σ−1

11 Σ12, g1

)

Proof. β∗ is given in Equation (4.5). β∗0 satisfies:

β∗0 = arg min
β0∈R

E
[
Sα(X2 − β∗TX1 − β0)

]
Thus, β∗0 is the α−expectile of the random variable X2 − β∗TX1. We have seen in Lemma 4.3
that X2 − β∗TX1 is (R, 1)−elliptical with parameters µ2 − Σ21Σ−1

11 µ1 and σ2|1. Then, using the
expectile formula of Equation (3.6), we get:

β∗0 = µ2 − Σ21Σ−1
11 µ1 + σ2|1Ψ−1

R

(
α

2α− 1

)
We can now express our Expectile Regression Predictor of X2 given X1 = x1:

êα(X2|X1 = x1) = β∗x1 + β∗0 = µ2 + Σ21Σ−1
11 (x1 − µ1) + σ2|1Ψ−1

R

(
α

2α− 1

)
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We recognize, on the left, the expression of µ2|1 given in Equation (2.6).

Since êα(X2|X1) = µ2 +Σ21Σ−1
11 (X1−µ1)+σ2|1Ψ−1

R

(
α

2α−1

)
, with X1 ∼ EN (µ1,Σ11, gN ). We get,

using Proposition 2.4,

êα(X2|X1) ∼ E1
(
µ2 + σ2|1Ψ−1

R

(
α

2α−1

)
, (Σ21Σ−1

11 )Σ11(Σ−1
11 Σ12), g1

)
Hence the result. �

We have given in Theorem 4.4 our first expectile predictor. As an illustration, we propose to
calculate this predictor in several cases.

4.1. Examples. In this subsection, we apply the Expectile Regression Predictor êα(X2|X1) given
in Theorem 4.4 on several examples, in order to compare it with the theoretical conditional expec-
tiles eα(X2|X1). We recall the formulas: eα(X2|X1 = x1) = µ2|1 + σ2|1Ψ−1

R∗

(
α

2α−1

)
êα(X2|X1 = x1) = µ2|1 + σ2|1Ψ−1

R

(
α

2α−1

)
Obviously, if R 6= R∗, we do not have the same algorithms to compute eα(X2|X1) and êα(X2|X1).
We have seen in Section 3 that we were able to compute eα(X2|X1) in the Gaussian, Student and
Gaussian Mixture cases. In the Laplace and Beta Gaussian Mixture cases, we cannot compute
eα(X2|X1), but we are able to compute êα(X2|X1). In the following, we thus apply the Expectile
Regression Predictor for these last two cases.

4.1.1. Laplace example. The Laplace case is interesting, because we have no explicit algorithm to

calculate Ψ−1
R∗

(
α

2α−1

)
, since ΦR∗ is unknown in this case. However, it is possible to calculate

Ψ−1
R

(
α

2α−1

)
. Indeed, the following algorithm converges to this value.

(4.9)



e(0) = 0

e(k+1) =
(1−2α) exp

(
−
√

2
λ
e(k)

)(√
λ
2

+e(k)

)
(2α−2)−(1−2α) exp

(
−
√

2
λ
e(k)

) , if e(k) > 0

e(k+1) =
(1−2α) exp

(√
2
λ
e(k)

)(√
λ
2
−e(k)

)
(2α−1) exp

(√
2
λ
e(k)

)
−2α

, if e(k) ≤ 0

4.1.2. BGM example. Consider the Beta Gaussian Mixture as in Table 2. As in the Laplace case,

we have no explicit algorithm for Ψ−1
R∗

(
α

2α−1

)
, but we can approximate Ψ−1

R

(
α

2α−1

)
:

(4.10)

e(0) = 0

e(k+1) =

(1−2α)2
a
2−1 a

a−1

Γ( 1+a
2 )
√
π

χ2
1+a

(
(e(k))

2
)

(e(k))
a−1 + 2

1−a
2

Γ( 1+a
2 )

exp

(
−(e(k))

2

2

)
(2α−1)

Φ(e(k))−sgn(e(k))
2
a
2−1

Γ( 1+a
2 )

√
π

χ2
1+a

(
(e(k))

2
)

|e(k)|a
−α , if e(k) 6= 0

e(k+1) = (2α− 1) a
a−1

√
2
π , if e(k) = 0

Numerical applications of this example are proposed in Section 6.

We have seen that, in general, our Expectile Regression Predictor is not equal to the theoreti-
cal conditional expectiles. The difference between these quantities is an error term, which may
be huge, especially for high levels of α (see Section 6). This is why, in the following section, we
propose another predictor for extreme levels of expectiles.
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5. Extremal Expectiles

In the previous part, we have proposed some algorithms to calculate the Expectile Regression
Predictor. Let us recall:  eα(X2|X1 = x1) = µ2|1 + σ2|1Ψ−1

R∗

(
α

2α−1

)
êα(X2|X1 = x1) = µ2|1 + σ2|1Ψ−1

R

(
α

2α−1

)
Notice that the difference lies in the use of the radius R∗ or R. Whereas the distribution of
R∗ is in general hard to obtain, the one of R may be known or estimated. Our aim is thus to

etablish a relation between Ψ−1
R∗

(
α

2α−1

)
and Ψ−1

R

(
α

2α−1

)
for extremal values of α, i.e for α → 0

or α → 1. We have done a similar study in Maume-Deschamps et al. (2016), with the same kind
of assumption(but for ΨR):

Assumption 1. Their exist 0 < ` < +∞ and γ ∈ R such that:

(5.1) lim
x→+∞

ΨR∗(x)

ΨR(xγ)
= ` ,

where Ψ = 1−Ψ.

We recall ΨR(x) = ΦR(x) +
1

x

+∞∫
x

yc1g1(y2)dy, and ΨR∗(x) = ΦR∗(x) +
1

x

+∞∫
x

yc∗1gN+1(q1 + y2)dy,

with c∗1 = cN+1

cNgN (q1) (see Equation 2.8). Then, the coefficients γ and ` satisfy:

(5.2) lim
x→+∞

xγ−1

+∞∫
x

yc∗1gN+1(q1 + y2)dy

γ

+∞∫
xγ

yc1g1(y2)dy

= `

Proposition 5.1. Gaussian, Student, Unimodal Gaussian Mixture and Beta Gaussian Mixture
satisfy Assumptions 1 and 2 with coefficients γ and ` given in Table 3.

The proof is detailed in Appendix section 8.

Distribution γ `
Gaussian 1 1

Student, ν > 0 N+ν
ν

Γ( ν+N+1
2 )Γ( ν2 )

Γ( ν+N
2 )Γ( ν+1

2 )

(
1 + q1

ν

)N+ν
2 ν

N
2

+1

ν+N
ν−1

ν+N−1

Unimodal Gaussian Mixture 1
min(θ1,...,θn)N exp

(
−min(θ1,...,θn)2

2 q1

)
n∑
k=1

πkθNk exp

(
−
θ2
k
2 q1

)

Beta Gaussian Mixture N
a + 1

21− a
2 (a−1)Γ(N+1+a

2 )q
N+a

2
1

a(Na +1)(N+a−1)Γ(N+a
2 )Γ( 1+a

2 )χ2
N+a(q1)

Table 3. Coefficients γ and ` for classical consistent elliptical distribu-
tions, where q1 = (x1 − µ1)TΣ−1

11 (x1 − µ1).

Thanks to Equation 5.2, we have, under Assumption 1, the following equivalence:

(5.3) ΨR∗(x) ∼
x→+∞

`ΨR(xγ)

Our aim is now to get an equivalence relationship between functions Ψ−1
R∗ and Ψ−1

R∗ . For that
purpose, we refer to the paper of Djurcić and Torgasev (2001), which gives some conditions to
obtain the equivalence of inverse functions if these functions are equivalent.
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Definition 5.1. A function f is a ϕ−function if f : [0,+∞[→ [0,+∞[, f(0) = 0, f is continuous,
non decreasing on [0,+∞[, and f → +∞ when x→ +∞.

Clearly, our two equivalent functions ΨR∗(x) and `ΨR(xγ) are not ϕ−functions for several
reasons: lim

x→0
ΨR∗(x) = lim

x→0
`ΨR(x) = −∞, lim

x→+∞
ΨR∗(x) = lim

x→+∞
lΨR(xγ) = 0−. We have to

transform these functions in order to find an equivalence. Let us define first some more definitions
and properties. The following is the definition of a general class of functions Kc, which contains in
particular Regularly Varying functions. The results will thus be more general than those derived
from Karamata’s theorem.

Definition 5.2. Kc is the set of all ϕ−functions f with the property:

(5.4) lim
x→+∞
λ→1

f (λx)

f(x)
= 1

In order to inverse the equivalence 5.3, we do the following assumption.

Assumption 2. Let Ω and Ω∗ be

(5.5)

{
Ω(x) = − 1

`ΨR(xγ)

Ω∗(x) = − 1
ΨR∗ (x)

Then Ω−1 or Ω−1
∗ belongs to the class Kc.

Using Definitions 5.1, 5.4, and Assumptions 1, 2, we are able to inverse equivalence 5.3, hence
the following proposition.

Proposition 5.2. Under Assumptions 1 and 2, we have

(5.6) Ψ−1
R∗

(
α

2α− 1

)
∼
α→1

[
Ψ−1
R

(
1− α− 1

(2α− 1)`

)] 1
γ

Remark that Ψ−1
R∗

(
1− α−1

(2α−1)`

)
corresponds to an expectile of level (2α−1)`+1−α

(2α−1)`+2(1−α) . Obviously,

if ` = 1, this level is α.

We now define two predictors ˆ̂eα↑ and ˆ̂eα↓. Using our several analytical results, we will prove later
that they are equivalent to the theoretical expectile for extreme values of α.

Definition 5.3 (Extremal Expectiles Predictors). Define

(5.7)


ˆ̂eα↑(X2|X1 = x1) = µ2|1 + σ2|1

[
Ψ−1
R

(
1− α−1

(2α−1)`

)] 1
γ

ˆ̂eα↓(X2|X1 = x1) = µ2|1 − σ2|1

[
Ψ−1
R

(
1− α

(2α−1)`

)] 1
γ

Using Equation (5.6), we are able to prove the asymptotic equivalences between our predictors
ˆ̂eα↑, ˆ̂eα↓ and the theoretical expectiles, respectively for α→ 1 and α→ 0.

Theorem 5.3 (Equivalence with theoretical expectiles). Under Assumptions 1 and 2,

(5.8)


ˆ̂eα↑(X2|X1 = x1) ∼

α→1
eα(X2|X1 = x1)

ˆ̂eα↓(X2|X1 = x1) ∼
α→0

eα(X2|X1 = x1)

Proof. We recall the relationship eα(X2|X1 = x1) = µ2|1 +σ2|1Ψ−1
R∗

(
α

2α−1

)
. With Equation (5.6),

the first equivalence is immediate. Concerning the second one, i.e when α→ 0, we use the symmetry

properties of elliptical distributions: we know that eα(X2|X1 = x1) = µ2|1 − σ2|1Ψ−1
R∗

(
1−α
1−2α

)
. Or

if α′ = 1 − α, we have eα(X2|X1 = x1) = µ2|1 − σ2|1Ψ−1
R∗

(
α′

2α′−1

)
, with α′ → 1. Using Equation

(5.6), we get

eα(X2|X1 = x1) ∼
α′→1

µ2|1 − σ2|1

[
Ψ−1
R

(
1− α′ − 1

(2α′ − 1)`

)] 1
γ

.

Replace α′ by 1− α to the second equivalence. �
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From Theorem 5.3, we can deduce that ˆ̂eα↑, ˆ̂eα↓ are approximations of eα, respectively when
α is close to 1 or 0. We propose, in Appendix section 8, to check if Assumptions 1 and 2 are
fulfilled, and the calculation of ` and γ for each example. In Section 6, we propose some numerical
applications and graphical illustrations.
Let us now consider some numerical illustrations on the examples we have given, in order to compare
our extremal predictors with the Expectile Regression Predictor and the theoretical expectiles.

6. Numerical study

In order to give a visual overview of the predictors, we have plotted in Figure 1, the conditional
expectiles of an elliptical process observed at N = 5 points. We call X1 ∈ R5 the covariates vector.
For x ∈ R, X2 denotes the process at x and the aim is to predict the expectile of X2|X1 = x1. For
simplicity, we assume that the process is centered, and stationary (matrices Σ and Σ11 are obtained
through an exponential kernel). But our results would be applicable without these assumptions.
Parameters for the Gaussian Mixture example are θ1 = 1, θ2 = 2 and p = 0.9.

Figure 1. Expectile Regression Predictor in red, theoretical expectiles in
blue, and Extremal Expectile Predictors in black, for a level α = 0.9995

Of course, for the Gaussian process, the curves coincide. For the other examples, Expectile
Regression Predictors seem very far from the theoretical curves, especially in the Beta Mixture
case. On the other hand, Extremal predictors perform significantly better; they look closer to the
target conditional expectiles here. We propose to use the following RMSE in order to quantify
the difference between expectile regression and theoretical expectile.

(6.1) RMSE(êα) =

√√√√ 1

n

n∑
i=1

(
eα(X

(i)
2 |X1 = x1)− êα(X

(i)
2 |X1 = x1)

)2

.

We also consider the RMSE for the Extremal Predictor:

(6.2) RMSE(ˆ̂eα) =

√√√√ 1

n

n∑
i=1

(
eα(X

(i)
2 |X1 = x1)− ˆ̂eα(X

(i)
2 |X1 = x1)

)2

.

The RMSE measures the average error in the prediction of the conditional expectiles. Table 4 is
a summary of the RMSE for all treated examples, and different levels of α. Obviously, we only
consider the cases α ≥ 1

2 because elliptical distributions are symmetric.
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α Gaussian Student Unimodal GM Beta GM

r(êα) r(ˆ̂eα) r(êα) r(ˆ̂eα) r(êα) r(ˆ̂eα) r(êα) r(ˆ̂eα)

0.5 0 0 0 0 0 0 0 0

0.6 0 0 0.031 0.275 0.002 0.021 0.042 0.294

0.7 0 0 0.066 0.293 0.005 0.041 0.091 0.284

0.8 0 0 0.112 0.290 0.008 0.062 0.160 0.255

0.9 0 0 0.197 0.272 0.014 0.083 0.302 0.205

0.95 0 0 0.300 0.252 0.021 0.091 0.513 0.162

0.995 0 0 0.913 0.190 0.069 0.078 2.368 0.066

0.9995 0 0 2.384 0.142 0.153 0.032 8.840 0.031

0.999995 0 0 13.432 0.079 0.152 8.089 · 10−06 97.567 0.015

Table 4. r(ˆ̂eα) = RMSE(ˆ̂eα) and r(êα) = RMSE(êα), for different levels
of α, and different consistent elliptical distributions.

As expected, the error of êα is increasing with α, and may be huge, like in the BGM case. On

the other hand, the error of ˆ̂eα tends to 0 when α tends to 1. This trend is highlighted by the
ee−plots (theoretical expectile vs expectile prediction plots) in Figure 2.

Figure 2. Theoretical expectiles vs expectile predictions for Gaussian,
Student, UGM and BGM examples. Expectile regression appears on the
left of each pair of panels, extremal predictor on the right.

7. Conclusion

In this paper, we focused on conditional expectiles prediction, for elliptical random fields with
the consistency property. We have shown that theoretical expectiles were relying on a radius R∗

whose distribution was, in the general case, difficult to obtain. We thus have proposed two different
methods to predict conditional expectiles.
The first one is to use expectile regression, i.e to express the conditional expectile as an affine
transformation of the observed values. This approach is widely used in the literature but it often
requires a large number of simulations, especially for extreme levels of expectile (when α → 0 or
α → 1). We have seen, in a first time, that we can obtain some iterative algorithms in our case
of consistent elliptical random fields. Furthermore, we have given the distribution of the expectile
regression (Theorem 4.4). We have seen that expectile regression is not suited to non Gaussian
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distributions.
A second predictor is given in order to cope with expectile regression problems for extremal expec-
tile levels. We have shown that the proposed extremal expectile predictor is equivalent to the true
conditional expectile for extreme expectile levels. We have also illustrated on several numerical
examples the better performance of this predictor for extreme levels.
As a perspective, these prediction methods require the knowledge of the distribution of the co-
variates vector X1. We have not explored the prediction procedure when the X1’s distribution is
estimated (parametrically e.g.).
Finally, we would like to emphasize that we have given examples in dimension d = 1, but all the
results may be used in higher dimensions.

8. Appendix

Proof of Proposition 5.1.

Gaussian example. Firstly, we have to calculate the limit in Equation (5.2), with gn(t) = exp
(
− t

2

)
,∀n ∈

N, c1 = 1√
2π

and c∗1 = 1√
2π

exp
(
q1
2

)
. Then, we consider

lim
x→+∞

xγ−1

∫ +∞

x

y exp

(
−y

2

2

)
dy

γ

∫ +∞

xγ
y exp

(
−y

2

2

)
dy

.

If we take γ = 1, we directly get the limit ` equal to 1.
Now, we have to prove that Ω−1 belongs to the class Kc. For that purpose, we consider the limit

lim
x→+∞
λ→1

Ω−1(λx)

Ω−1(x)
.

We have previously seen that Ω−1(x) =
[
Ψ−1
R

(
1 + 1

`x

)] 1
γ . Then we have to consider the limit of

Ψ−1
R (1+ 1

`λx )
Ψ−1
R (1+ 1

`x )
. With δ = λ− 1 and y = 1

x , this limit becomes

lim
(y,δ)→(0,0)

Ψ−1
R

(
1 + y

`(δ+1)

)
Ψ−1
R

(
1 + y

`

) .

In order to calculate this kind of limit, we move to polar coordinates, i.e we take δ = r cos(θ),
y = r sin(θ), and verify whether the limit when r → 0 exists and is not related to θ. Hence

f(θ) = lim
r→0

Ψ−1
R

(
1 + r sin(θ)

`(r cos(θ)+1)

)
Ψ−1
R

(
1 + r sin(θ)

`

)
The two terms both tend to 0, then we can use the l’Hôpital’s rule, and

f(θ) = lim
r→0

sin(θ)(r cos(θ)+1)−r sin(θ) cos(θ)
(r cos(θ)+1)2

sin(θ)

Ψ′R

(
Ψ−1
R

(
1 + r sin(θ)

`

))
Ψ′R

(
Ψ−1
R

(
1 + r sin(θ)

`(r cos(θ)+1)

))
The ratio on the left clearly tends to 1. Furthermore, we have seen in the proof of Lemma 3.1 that

Ψ′R(x) = − 1

x2

+∞∫
x

yc1g1(y2)dy. In the Gaussian case, this value is equal to − 1

x2
ϕ(x), and ` = 1.

Then, we get

f(θ) = lim
r→0

[
Ψ−1
R

(
1 + r sin(θ)

r cos(θ)+1

)]2
[
Ψ−1
R (1 + r sin(θ))

]2 ϕ
(
Ψ−1
R (1 + r sin(θ))

)
ϕ
(

Ψ−1
R

(
1 + r sin(θ)

r cos(θ)+1

))
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The ratio on the left is clearly equal to f(θ)2. Concerning the term on the right, we apply once
again the l’Hôpital’s rule. Since ϕ′(x) = −xϕ(x), it leds to

f(θ) = f(θ)2 lim
r→0

[
Ψ−1
R (1 + r sin(θ))

]3[
Ψ−1
R

(
1 + r sin(θ)

r cos(θ)+1

)]3 =
1

f(θ)
= 1

Student example. At a first stage, we calculate the limit in Equation (5.2) with gn(t) =
(
1 + t

ν

)−n+ν
2 ,∀n ∈

N, c1 =
Γ( 1+ν

2 )
Γ( ν2 )

1√
νπ

and c∗1 =
Γ(N+1+ν

2 )
Γ(N+ν

2 )
1√
νπ

(
1 + q1

ν

)N+ν
2 . It remains

lim
x→+∞

xγ−1
+∞∫
x

yc∗1

(
1 + q1+y2

ν

)−N+1+ν
2

dy

γ
+∞∫
xγ

yc1

(
1 + y2

ν

)− 1+ν
2

dy

= `.

The two functions under the integrals are polynomials, then easy to integrate, hence

lim
x→+∞

xγ−1c∗1
ν

ν+N−1

(
1 + q1+x2

ν

) 1−N−ν
2

γc1
ν
ν−1

(
1 + x2γ

ν

) 1−ν
2

= `.

Then, if we take γ = N+ν
ν , and replace c1 and c∗1 by their values, we get

Γ
(
ν+N+1

2

)
Γ
(
ν
2

)
Γ
(
ν+N

2

)
Γ
(
ν+1

2

) (1 +
q1

ν

)N+ν
2 ν

N
2 +1

ν +N

ν − 1

ν +N − 1
= `.

Now, we have to check if Assumption 2 is fulfilled, i.e if the function Ω−1 belongs to the class Kc.
Let us calculate the limit

lim
x→+∞
λ→1

Ω−1(λx)

Ω−1(x)
.

Using the same changes of variables as in the Gaussian case, we consider

f(θ) = lim
r→0

Ψ′R

(
Ψ−1
R

(
1 + r sin(θ)

`

))
Ψ′R

(
Ψ−1
R

(
1 + r sin(θ)

`(r cos(θ)+1)

))
In the Student case, ΨR(x)′ = − 1

x2

Γ( 1+ν
2 )

Γ( ν2 )
1√
νπ

ν
ν−1

(
1 + x2

ν

) 1−ν
2

. Then, it only remains

f(θ) = lim
r→0

Ψ−1
R

(
1 + r sin(θ)

`(r cos(θ)+1)

)2

Ψ−1
R

(
1 + r sin(θ)

`

)2

 1 +
Ψ−1
R (1+

r sin(θ)
` )

2

ν

1 +
Ψ−1
R (1+

r sin(θ)
`(r cos(θ)+1) )

2

ν


1−ν

2

On the left, the ratio tends to f(θ)2. Concerning the term on the right the limit is equal to

lim
r→0

(
Ψ−1
R (1+

r sin(θ)
` )

2

Ψ−1
R (1+

r sin(θ)
`(r cos(θ)+1) )

2

) 1−ν
2

= f(θ)ν−1. Finally, we get the relationship

f(θ) = f(θ)ν+1, ν > 0

Hence f(θ) = f(θ)
1
γ = 1.

Unimodal Gaussian Mixture example. Let us calculate the limit in Equation (5.2). In the Uni-

modal GM case, gd(t) =
n∑
k=1

πkθ
d
k exp

(
− θ

2
k

2 t
)

, c1 = 1√
2π

and c∗1 = 1
√

2π
n∑
k=1

πkθNk exp

(
−
θ2
k
2 q1

) . The

calculation of limit (5.2) gives

lim
x→+∞

xγ−1
n∑
k=1

θN−1
k c∗1 exp

(
− θ

2
k

2 q1

)
exp

(
− θ

2
k

2 x
2
)

γ
n∑
k=1

πk
1
θk
c1 exp

(
− θ

2
k

2 x
2γ
) .
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From now, let us consider that γ = 1. Asymptotically, we only consider the terms exp
(
− θ

2
k

2 x
2
)

with the highest coefficient − θ
2
k

2 , i.e the smallest θk. Let k∗ such that θk∗ = min{θ1, ..., θn}. We
have

` = lim
x→+∞

c∗1πk∗θ
N−1
k∗ exp

(
− θk∗2 q1

)
exp

(
− θk∗2 x2

)
c1πk∗θ

−1
k∗ exp

(
− θk∗2 x2

) .

After simplifications, and replacing c1 and c∗1 by their values, we get

` =
θNk∗ exp

(
− θk∗2 q1

)
n∑
k=1

πkθNk exp
(
− θ

2
k

2 q1

) .
We have just seen that Assumption 1 is satisfied. We have to check now if Assumption 2 is fulfilled.
As usual, we consider the limit

f(θ) = lim
r→0

Ψ′R

(
Ψ−1
R

(
1 + r sin(θ)

`

))
Ψ′R

(
Ψ−1
R

(
1 + r sin(θ)

`(r cos(θ)+1)

))
In the UGM case, we have the relationship Ψ′R(x) = − 1

x2

n∑
k=1

πk
θk
ϕ (θkx). Rewriting Ψ′R(x) in the

previous limit, we get

f(θ) = lim
r→0

Ψ−1
R

(
1 + r sin(θ)

`(r cos(θ)+1)

)2

Ψ−1
R

(
1 + r sin(θ)

`

)2

n∑
k=1

πk
θk
ϕ
(
θkΨ−1

R

(
1 + r sin(θ)

`

))
n∑
k=1

πk
θk
ϕ
(
θkΨ−1

R

(
1 + r sin(θ)

`(r cos(θ)+1)

)) .
The term on the left is equal to f(θ)2. In order to calculate the limit of the second ratio, we
consider only the leading terms in the numerator and denominator, i.e the terms with the biggest

− θ
2
k

2 , or the smallest θk. Let k∗ be such that θk∗ = min{θ1, ..., θn}. It remains

f(θ) = f(θ)2 lim
r→0

ϕ
(
θk∗Ψ

−1
R

(
1 + r sin(θ)

`

))
ϕ
(
θk∗Ψ

−1
R

(
1 + r sin(θ)

`(r cos(θ)+1)

)) .
We have calculated, in the Gaussian case, this kind of limit, and proved that it was equal to 1.

Beta Gaussian Mixture example. We consider the limit in Equation (5.2), with gn(t) =
χ2
n+a(t)

t
n+a

2

,∀n ∈

N∗, c∗1 = 1√
π

Γ(N+1+a
2 )

Γ(N+a
2 )

q
N+a

2
1

χ2
N+a(q1)

and c1 =
2
a
2
−1aΓ( 1+a

2 )√
π

. Using integrations by parts, we get

` = lim
x→+∞

xγ−1 c∗1
N+a−1

(q1 + x2
) 1−N−a

2 χ2
N+1+a

(
q1 + x2

)
+

2
1−N−a

2 exp

(
− q1+x2

2

)
Γ(N+1+a

2 )


γ c1
a−1

[
xγ(1−a)χ2

1+a(x2γ) +
2

1−a
2 exp

(
− x2

2

)
Γ( 1+a

2 )

] .

Asymptotically, it only remains

` = lim
x→+∞

(a− 1)xγ−1c∗1x
1−N−a

γc1(N + a− 1)xγ(1−a)
.

Using γ = N
a + 1, and replacing c∗1 and c1 by their values, we directly obtain the value of ` given

in Table 3. Concerning Assumption 2, we consider

f(θ) = lim
r→0

Ψ′R

(
Ψ−1
R

(
1 + r sin(θ)

`

))
Ψ′R

(
Ψ−1
R

(
1 + r sin(θ)

`(r cos(θ)+1)

)) .



SPATIAL EXPECTILE PREDICTIONS FOR ELLIPTICAL RANDOM FIELDS 21

In the BGM case, Ψ′R(x) = − 1
x2 2

a
2−1 a

a−1

Γ( 1+a
2 )√
π

(
χ2

1+a(x2)

|x|a−1 + 2
1−a

2

Γ( 1+a
2 )

√
2πϕ(x)

)
. Hence the limit

f(θ) = lim
r→0

Ψ−1
R

(
1 + r sin(θ)

`(r cos(θ)+1)

)2

Ψ−1
R

(
1 + r sin(θ)

`

)2

χ2
1+a

(
Ψ−1
R (1+

r sin(θ)
` )

2
)

|Ψ−1
R (1+

r sin(θ)
` )|a−1 + 2

1−a
2

Γ( 1+a
2 )

√
2πϕ

(
Ψ−1
R

(
1 + r sin(θ)

`

))
χ2

1+a

(
Ψ−1
R (1+

r sin(θ)
`(r cos(θ)+1) )

2
)

|Ψ−1
R (1+

r sin(θ)
`(r cos(θ)+1) )|

a−1 + 2
1−a

2

Γ( 1+a
2 )

√
2πϕ

(
Ψ−1
R

(
1 + r sin(θ)

`(r cos(θ)+1)

))
The ratio on the left is obvously equal to f(θ)2. Concerning the term on the right, the ratios
χ2

1+a(x)

x clearly tends to 0 when x→∞. Then, the limit may be written more easily

f(θ) = f(θ)2 lim
r→0

ϕ
(

Ψ−1
R

(
1 + r sin(θ)

`

))
ϕ
(

Ψ−1
R

(
1 + r sin(θ)

`(r cos(θ)+1)

))
We have already calculated this limit in the Gaussian case, and seen the relationship f(θ) = 1

f(θ) =

1, hence Assumption 2.

Proof of Proposition 5.2. We firstly introduce two lemmas.

Lemma 8.1 (Djurcić and Torgasev (2001)). Suppose that f and g are two strictly increasing
ϕ−functions, and that at least one of the functions f−1, g−1 belongs to the class Kc, and f(x) ∼

x→∞
g(x). Then f−1(x) ∼

x→∞
g−1(x)

Lemma 8.2. If γ > 0, then Ω and Ω∗ are ϕ−functions. Furthermore, under Assumption 1, we
have

(8.1) Ω(x) ∼
x→∞

Ω∗(x)

The proof of Lemma 8.2 is straightforward, using properties given in Lemma 3.1. Using these
two lemmas, we can now give the proof of Proposition 5.2.

Proof. By quick calculations, we get Ω−1(x) =
[
Ψ−1
R

(
1 + 1

`x

)] 1
γ and Ω−1

∗ (x) = Ψ−1
R∗

(
1 + 1

x

)
.

Thanks to Assumption 1, we have Ω(x) ∼
x→∞

Ω∗(x) (Lemma 8.2), with Ω and Ω∗ ϕ−functions.

With Assumption 2, Ω−1 or Ω−1
∗ belongs to the class Kc. Then, we can apply Lemma 8.1. Hence

the equivalence Ω−1(x) ∼
x→∞

Ω−1
∗ (x). In other words,

Ψ−1
R∗

(
1 +

1

x

)
∼

x→∞

[
Ψ−1
R

(
1 +

1

`x

)] 1
γ

If we do the change of variable 1 + 1
x = α

2α−1 , we get the result (5.6). �
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Djurcić, D. and Torgasev, A. (2001). Strong Asymptotic Equivalence and Inversion of Functions
in the Class Kc. Journal of Mathematical Analysis and Applications, 255:383–390.

Eltoft, T., Kim, T., and Lee, T.-W. (2006). On the multivariate Laplace distribution. IEEE Signal
Processing Letters, 13(5).

Frahm, G. (2004). Generalized Elliptical Distributions: Theory and Applications. PhD thesis,
Universität zu Köln.
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