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Abstract. Supporting interactive database exploration (IDE) is a prob-
lem that attracts lots of attention these days. Exploratory OLAP (On-
Line Analytical Processing) is an important use case where tools sup-
port navigation and analysis of the most interesting data, using the best
possible perspectives. While many approaches were proposed (like query
recommendation, reuse, steering, personalization or unexpected data rec-
ommendation), a recurrent problem is how to assess the effectiveness of
an exploratory OLAP approach. In this paper we propose a benchmark
framework to do so, that relies on an extensible set of user-centric met-
rics that relate to the main dimensions of exploratory analysis. Namely,
we describe how to model and simulate user activity, how to formalize
our metrics and how to build exploratory tasks to properly evaluate an
IDE system under test (SUT). To the best of our knowledge, this is the
first proposal of such a benchmark. Experiments are two-fold: first we
evaluate the benchmark protocol and metrics based on synthetic SUTs
whose behavior is well known. Second, we concentrate on two different
recent SUTs from IDE literature that are evaluated and compared with
our benchmark. Finally, potential extensions to produce an industry-
strength benchmark are listed in the conclusion.

1 Introduction

Supporting exploration of databases is of prime importance, especially in a con-
text of big, distributed and heterogeneous data, as shown in a recent survey of
the topic [17]. Both researchers and companies that supply data analysis tools are
increasingly focused on mechanisms for improving user experience, in particular
aids for effective data exploration. As researchers and companies implement, test
and tune alike their Interactive Data Exploration (IDE) solutions, a major issue
they face is how to assess and compare solutions, improvements and alternatives.

While there exist a set of benchmarks recognized by the database commu-
nity as relevant for evaluation and comparison of performance of database sys-
tems, such as the benchmarks from TPC organization, there is yet no commonly
agreed upon benchmark for evaluating to what extent database systems help the
user during data exploration. Our objective is to propose such a benchmark as,



roughly speaking, actual TPC benchmarks assess data retrieval, and not data
exploration.

In this work, we focus on the context of OLAP analysis of data, as an impor-
tant use case of IDE, first because exploration of data has been deeply studied
in this context, and second because to our opinion OLAP is an ideal first step
before generalizing to other database systems. OLAP is defined as the process of
analyzing multidimensional datasets (cubes), online, interactively, summarizing
key performance indicators (called measures) from different perspectives or axes
of analysis (called dimensions).

In order to motivate our work, let’s now consider the following toy example:
a user navigating OLAP sales cube faces an unexpected difference between sales
in year 2014 and year 2015 for a product P in France. The user will then explore
the surrounding region of the cube by means of OLAP operators such as roll-up
(at the Europe level for example), drill-down (at the month level for example)
and slices (for other products) to find evidences that may explain and corrob-
orate the first fact. The user might even get some support from a system that
automatically proposes next moves in the analysis [1,13]. We consider that the
surrounding region of the first interesting fact corresponds to a neighborhood
that has to be covered to ensure the exploration task success. If one wants to
evaluate this particular data exploration, it is then possible to measure several
metrics such as the number of queries that the user needed to cover this neigh-
borhood, the ratio of this area that has been finally discovered, the ratio of the
rest of the cube that the user had to visit to reach this result etc. So far, the
assessment of data exploration through quality measures has been overlooked
by the database community, but we can benefit from experience in the fields of
information retrieval and exploratory search [33], which are particularly driven
by the quality of the user’s experience and metrics for measuring it.

This paper covers all the aspects of the implementation of a data exploration
benchmark for OLAP. This benchmark was designed with a set of guiding prin-
ciples in mind. It has to be easy to use by anyone, considering that a developer
or researcher working in an OLAP exploration tool or algorithm, should be able
to quickly plug his approach to the benchmark and use it, without requiring
complex development or setting up of schema, dataset or OLAP exploration
characteristics. The benchmark should also return objective evaluation metric
results that are independent of the approach being tested. This means that both
the mechanisms of the benchmark and the evaluation metrics must be agnostic of
the IDE approach. Therefore, the benchmark includes generating skewed data
with interesting facts, generating past query logs on this data and simulating
OLAP users to evaluate a System Under Test (SUT) that provides support for
next data analysis moves to the user. The benchmark can be used with any SUT,
to evaluate any strategy that one may design. It reports objective measures for
a set of metrics that characterize the degree to which the SUT fulfills certain
objectives. Extensive experiments have been conducted to validate our bench-
mark proposal. First we evaluate the benchmark protocol and metrics based on
synthetic SUTs whose behavior is well known. Second, we show that it is possible



Input
Category DB instance Query log Current query Output

[5] Automatic exploration X X Tuples
[1] Automatic exploration X X Sequence of queries
[12] Automatic exploration X X X Queries
[3] Automatic exploration X X Queries
[13] Visual optimization X X Queries

Automatic exploration result highlighting
[14] Visual optimization X Query
[29] Data prefetching X X X Tuples
[28,30] Data prefetching X X Tuples
[18] Data prefetching X X Sequence of queries
[27] Data prefetching X X Queries

Table 1. Interactive cube exploration techniques signatures

and meaningful to compare two state-of-the-art SUT from IDE literature [1,13]
with our benchmark.

The paper is organized as follows. Section 2 discusses related work. Section 3
explains how interactive explorations can be scored and defines the benchmark
metrics. Section 4 presents the benchmark itself. Experimental results are dis-
cussed in section 5. Finally, section 6 concludes the paper with considerations
on potential extensions to produce industry-strength benchmark. A long version
of this paper, with additional details, examples and tests, is available in [8]3.

2 Related Work

The variety of database exploration approaches Many approaches have recently
been developed to support interactive database exploration (IDE), as illustrated
by a recent survey of the topic [17]. Techniques range from Visual optimization
(like query result reduction [4]), automatic exploration (like query recommen-
dation [9]), assisted query formulation (like data space segmentation [31]), data
prefetching (like result diversification [19]) and query approximation [16]. The
core of most of these approaches consists of a function that, given the database
instance and users’ history with the database (i.e., past and current queries),
computes new relevant queries, tuples or visualizations that are meant to sup-
port user exploration.

Given the exploratory nature of OLAP analysis of multidimensional data
(see e.g., [29,18]), many exploration techniques have been specifically developed
in the context of interactive OLAP exploration of data cubes. Table 1 lists these
exploration approaches, indicating their categories (in terms of those proposed in
[17]), and details their inputs and outputs. For instance, the PROMISE prefetch-
ing approach [27], that predicts a query based on a Markov Model constructed
out of the server’s log, corresponds to a function with signature 〈L, 〈q〉〉 → 〈q′〉,
where L is the query log, q is the current user query and q′ is the predicted
query.

3 More information on the benchmark can be found on its web page: http://www.
info.univ-tours.fr/~marcel/benchmark.html

http://www.info.univ-tours.fr/~marcel/benchmark.html
http://www.info.univ-tours.fr/~marcel/benchmark.html


Measuring the quality of an exploration Measuring the quality of exploration has
attracted a lot of attention in Information Retrieval, in particular in the field
of Exploratory Search4 [33] that can be defined as a search paradigm centered
on the user and the evolution of their knowledge. It is particularly driven by
the quality of the user’s experience, and metrics for measuring it have been
categorized as follows. Engagement and Enjoyment measures the ”degree
to which users are engaged and are experiencing positive emotions”. It includes
”the amount of interaction required during exploration”, the ”extent to which
the user is focused on the task”. Task Success assesses ”whether the user
reaches a particular target” and finds a ”sufficient amount of information and
details” along the way. Information Novelty measures the ”amount of new
information encountered”. Task Time measures the ”time spent to reach a state
of task completeness”. Learning and Cognition measures the ”attainment of
learning outcomes”, ”the amount of the topic space covered” and ”the number
of insights acquired”. While these categories have been proposed in the context
of web search, they make perfect sense for interactive database exploration, and
we next focus on measures that have been proposed in the literature in these
categories.

User engagement measures are popular in web search to measure how a user
is engaged in using a website or search engine. Many implicit measures have
been proposed [22] to track online behavior. These measures are classically cate-
gorized in activity (how a website is used), loyalty (return of users to a website)
and popularity (how much a website is used). While loyalty and popularity essen-
tially make sense for relative comparison of websites, activity enables measuring
engagement for a particular website independently of other websites. The most
commonly used activity metrics include number of queries per session, number
of clicks, number of clicks per query, dwell (presence) time (see e.g., [10,32]).

Task success is well studied in information retrieval, with even conferences
devoted specifically to this, like the TREC conference5. Task success is tradi-
tionally measured with precision/recall-based measures, which supposes that the
target of the task is known. In this case, roughly speaking, recall measures how
complete the answer to a query is, while precision measures how noisy the answer
to a query is.

Many works have been interested with measuring information novelty in re-
lational databases. For instance, in [11], the authors propose to describe the data
space covered by a session with a vector of the tuples accessed by the queries
of the session. In [23], the authors propose the notion of access area to capture
the portion of the dataset a user is interested in. In [19], the authors use a sim-
ilar notion to propose query result diversification. In data cubes exploration,
Sarawagi [29] assimilates novelty with the most informative constraints so that
the expected distribution of a cube’s cell values - based on a maximum entropy
principle - is closer to the actual observed values. Here, a constraint is defined at
an aggregate level of the observed cells and is expressed as a sum over the values

4 http://wp.sigmod.org/?p=1183
5 http://trec.nist.gov/

http://wp.sigmod.org/?p=1183


of a subset of the observed cells. It is then expected that bringing more con-
straints modifies the expected distribution of values and thus allows to reduce
the divergence between the observation and the expectation. The constraints
that best reduce this divergence is declared to be the most informative.

Measuring task time may seem straightforward, but one needs to carefully
define what is timed and how to report it. Performance related metrics like query
per hour can be adapted from TPC benchmarks to this end.

Finally, measuring learning and cognition has attracted lots of attention in
learner models [7]. Learner models are central components of intelligent tutoring
systems, that infer a student’s latent skills and knowledge from observed data.
A very influential and widespread accepted model is the Knowledge Tracing
model [6]. Knowledge tracing is a Bayesian network allowing to measure the
probability that a skill is mastered when resolving a problem (opportunity to use
the skill). The model relies on four parameters, usually experimentally tuned:
P (L0): the probability the skill is already mastered before the first problem,
P (T ): the probability the skill will be learned at each opportunity to use the
skill (transition from not mastered to mastered), g: the probability the resolution
is correct if the skill is not mastered (guess), s: the probability a mistake is made
if the skill is mastered (slip). The probability that the skill L at opportunity n
is mastered is the probability the skill is learned at step n− 1 or not learned at
step n− 1 but learned at this step n. It can be computed as:

P (Ln|Xn = xn) = P (Ln−1|Xn = xn) + (1− P (Ln−1|Xn = xn))× P (T ) (1)

where:
P (Ln−1|Xn = 1) = P (Ln−1)(1−s)

P (Ln−1)(1−s)+(1−P (Ln−1))g

P (Ln−1|Xn = 0) = P (Ln−1)s
P (Ln−1)s+(1−P (Ln−1))(1−g)

Xn = 1 (resp. 0) means problem n has been solved (resp. not solved).

Current benchmarks for decision support, big data and analytic workloads TPC
proposes a number of popular benchmarks and metrics for assessing the per-
formance of database systems, covering time, performance, price, availability
or energy consumption (see Table 2). However, while TPC acknowledges the
importance of the explorative nature of decision support queries (see e.g., the
OLAP interactive queries in the TPC-DS benchmark), none of the existing TPC
metrics are appropriate for measuring database exploration support in the sense
of the categories proposed in Exploratory Search. A recent benchmark targets
analytical workloads [21], but it too overlooks assessing the quality of interactive
data exploration by proposing metrics covering only query response time, tuning
overhead, data arrival to query time, storage size and monetary cost.

OLAP exploration as a relevant use-case Interestingly, the literature on OLAP
already provides the building blocks for benchmarking cube exploration. OLAP
has been the subject of specific benchmarks, like the TPC-H-based Star Schema
Benchmark (SSB) [24]. SSB models a realistic use case of sales analysis, for which



Metrics TPC-H TPC-DS TPC-DI TPCx-HS TPCx-BB
Query per hour/minute X X X X
Price/performance X X X X X
Availability date X X X X X
Power/performance X X X X
Power X
Throughput X X X X X
Load time X X
Power test elapsed time X X

Table 2. Metrics of relevant TPC benchmarks

realistic instances with skewed data can be produced with the PDGF data gener-
ator [25]. Realistic OLAP workloads can be generated with the CubeLoad session
generator [26]. CubeLoad takes as input a cube schema and creates the desired
number of sessions according to templates modeling various user exploration
patterns: users with limited OLAP skills pursuing a specific analysis goal, more
advanced users navigating with a sequence of slice and drill operations, users
tracking unexpected results with explorative sessions. OLAP literature also pro-
vides techniques for characterizing analytic behaviors [27,3]. In these works, the
user’s behavior is defined as a Markov model, whose states are built from the
past queries of the user, and the transitions between states are weighted by the
probability of observing a query after another in the user’s query log. Finally,
OLAP literature also provides characterizations of interesting data in the multi-
dimensional space. Discovery-driven analysis of data cube [28,29,30,5] aimed at
measuring potentially surprising data, knowing already evaluated queries. These
work characterize surprising data as being groups of tuples that are connected
(usually one OLAP operation apart), and that, taken altogether, appear to be
meaningful (usually unexpected, in the sense of e.g., information theoretic mea-
sures).

3 Evaluating an exploration

This section describes how interactive explorations can be scored, by implement-
ing the metrics related to user experience identified in the previous section. We
first start with presenting formally the definition of an exploration in an OLAP
context. A complete formal framework, with illustrative examples, can be found
in the full paper [8].

3.1 Exploration in an OLAP context

Our benchmark incorporates the explorative and interactive nature of IDE by
considering user sessions as first class citizens. We define a session s = 〈q1, . . . , qk〉
of length |s| = k as a sequence of k OLAP queries over a data warehouse and
a log as a finite set of sessions. In what follows, a log can be associated to one
particular user profile (representing this user’s activity) or can represent the
overall activity (being the union of all user logs).



Without loss of generality, the OLAP queries we consider are dimensional
aggregate queries over a data cube [15]. A query is defined as a group by set
(identifying the query granularity) and a set of Boolean predicates, one for each
hierarchy. During their sessions, after each query is processed, users inspect
the cube cells retrieved by the query. A cell c is an element of a cube that
has a particular coordinate and a measure value. The answer to a query q,
denoted answer(q), is the set of retrieved cells whose coordinates are defined
by the query group by set and selection predicates. Thanks to the the popular
OLAP operations (roll-up, drill-down, slice-and-dice), users navigate the cube
by exploring cells neighborhood, querying at coarser granularity (roll-up), finer
granularity (drill-down) or reaching siblings in a hierarchy. This is formalized
using classical relations between cells. For two cells c and c′, we note c � c′ if
c′ is a roll-up of c, i.e., a coordinate of c′ is an ancestor of that of c in some
hierarchy, and we note c ≈ c′ if the two cells are siblings, i.e., their coordinates
differ only in one sibling position in some hierarchy.

Definition 1 (Neighborhood of a cell). The rollup (resp., drill-down, sib-
ling) neighborhood of a cell c is the set of all cells c′ such that c′ � c (resp.
c � c′, c ≈ c′). The OLAP neighborhood of a cell c is the union of its rollup
neighborhood, its drilldown neighborhood and its sibling neighborhood.

The neighborhood of a group of cells C, noted neighborhood(C) is the union
of the neighborhoods of each cell of the group. Intuitively, the neighborhood of
a group of cells defines a zone of the cube to be explored to analyze this group
of cell.

A user is represented by a log, i.e., the user’s past explorations. This allows
to characterize a user’s behavior by constructing a generative model, in the spirit
of what has been successfully applied in OLAP for data prefetching [27].

Definition 2 (Generative model). Let L be a set of sessions characterizing
a user. The generative model to represent this user’s behavior is a Markov model
of order one, i.e., a graph 〈S, P 〉 where S is the set of queries of L and P :
S×S → [0, 1] denotes the probability function for the state transition, computed

as P (q1, q2) = sessions(〈q1,q2〉)
sessions(〈q1〉) where q1 and q2 are queries and sessions(s) gives

the number of sessions where the sequence s appears.

Definition 3 (User). Let S be a set of sessions and x be a percentage. A user
ux is a tuple ux = 〈slog, sseed, g〉 where S = slog ∪ sseed, |slog| = x× |S| and g is
the generative model built from slog.

Finally, a task 〈s, u〉 for a session consists of a set of cells to be analyzed by
a user u. This set of cells is given under the form of a session s, i.e., consists
of the cells retrieved by the queries of this session. This session is based on the
user’s seed sessions.

3.2 Metrics

As explained in Section 2, the benchmark metrics follow the categorization pro-
posed in the field of Exploratory Search [33]. For each category, we propose a



primary metric and a secondary metric, with the idea that secondary metrics
can be used to counterbalance primary ones. Metrics of different categories have
been defined so that the overlapping between them is minimal: User engage-
ment relates only to the number of queries, novelty to cells, task success to cell
neighborhood and task time only to time. Only Learning and cognition overlaps
with novelty and task success since it aims at measuring the skill of finding new
and relevant information. In what follows, let u = 〈slog, sseed, g〉 be a user, let
t = 〈s0, u〉 be a task for user u and let s = 〈q1, . . . , qk〉 be a session produced for
the resolution of a task t.

User engagement and enjoyment We use two popular and simple activity metrics
used in web search: click depth as primary metric, to represent overall activity,
and number of clicks per query to represent how focused this activity is. Dwell
time, another popular activity metric, better fits in the Task time category.
In the web search context, a click correspond to following a hyperlink (i.e., an
HTTP query). In the context of the benchmark, a click corresponds to a new
query. The metrics are defined as follows:

– Query depth (QD, primary) = k, i.e., the number of queries in the
session, needed for resolving a task.

– Focus (F, secondary) = max({|focus(q)||q∈s})
|s| , where focus(q) = 〈q, . . . , q′〉 ⊆

S such that for all qi, qi+1 ∈ focus(q) the cells retrieved by qi+1 are in one of
the neighborhood of the cells retrieved by qi. Intuitively, this is to measure
for a query q, the length of the chain of queries starting from q that are
successively distant of only one OLAP operation.

Information Novelty Capturing user interest in the data explored can be done
by measuring the access area [23]. In our context, this access area would be the
set of tuples (recorded in a fact table) contributing to form the cells of a query
result. As this area corresponds to tuples that are not actually presented as
answers to queries (since, being an OLAP context, these tuples are aggregated),
data of interest is better captured with view area, i.e., the cells presented in the
answers. This is defined by: given a set of query Q = {q1, . . . , qn}, the view area
of Q is va(Q) =

⋃
q∈Q answer(q).

In a view area, not all data is interesting in the sense that it brings novel
knowledge. We measure interestingness degree as a simple normalized entropy:

interest(C) =
(−

∑m
i=1 p(i) log(p(i)))

log(m) , with |C| = m, C(i) is the ith value of the set

C and p(i) = C(i)∑m
i=1 C(i) denotes the ith cell probability.

The primary metric then quantifies the amount of interesting data found in
the session. The secondary metric measures the increase in view area compared
to the user’s log view area. They are defined as follows:

– Relevant new information (RNI, primary) = 1−avgq∈s(interest(va(q)))

– Increase in view area (IVA, secondary) = |va(s)\va(slog)|
|va(s)∪va(slog)|



Task Success Intuitively, a task consists of investigating what can be said of a
group of cells C coming from a task 〈s, u〉. The extent to which a task is complete
consists of assessing how much of the neighborhood of this group of cells has
been retrieved during the resolution of the task. A simple way of measuring it is
with recall and precision. Recall is the primary metrics since consistently with
exploratory search, we consider OLAP navigation as a recall oriented activity
(what matters most is to minimize the number of false negative). The metrics
are defined as follows, for a group of cells C:

– Recall (R, primary) = |va(s)∩neighborhood(C)|
|neighborhood(c)|

– Precision (P, secondary) = |va(s)∩neighborhood(C)|
|va(s)|

Task Time Measuring task time is done by adapting metrics of existing TPC
benchmarks. We need to measure the time for the SUT to produce its output
and to process the queries needed for the resolution of the task. The primary
metric comes from the TPC-DS benchmark and measures the number of queries
per the time taken to resolve the task. The secondary metric simply measures
the task elapsed time. The metrics are defined as follows:

– Query per seconds (QpS, primary) = k√
To×Te

, where To is the overall

time for the SUT to produce its outputs and Te is the overall query execution
time.

– Task elapsed time (TET, secondary) = To +Te, where To is the overall
time for the SUT to produce its outputs and Te is the overall query execution
time.

Learning and cognition We adapt the Knowledge Tracing (KT) model to our
context: we assimilate the skill mastering with the ability of finding interesting
and novel information in the neighborhood NC of a group of cells C. In other
words, Xn = 1 if the nth query finds at least one more unknown cell of NC where
novelty increases for those cells compared to query n − 1. In this case, we say
that the query is successful (from the learning point of view). It is 0 otherwise.
The primary metric Learning (L, primary) is defined as in the classical KT
model, see Equation 1 in Section 2. The challenge is then to define the four
parameters of KT: g, s, P (L0) and P (T ) based on the user generative model
(UGM) since it represents the past of the user.

– P (L0) is is the proportion of successful queries in the UGM.
– g (resp. s) is the probability in the UGM of passing from unsuccessful to

successful (resp. from successful to unsuccessful) queries.
– P (T ) is defined as the average weighted position of successful queries in the

sessions of the UGM, giving more importance to queries that happen earlier
in the session.

The secondary metric measures the average progression of the learning curve.
It is defined by the arithmetic mean of the proportional growth of the probabil-
ities.



– Learning growth rate (LGR, secondary) =
1
n

∑n
i=1

(
1 + P (Li|Xi=xi)−P (Li−1|Xi−1=xi−1)

P (Li−1|Xi−1=xi−1)

)
where n is the session length.

4 The Benchmark

In this section we define the interface between the SUT and the benchmark and
how the benchmark runs an experiment.

4.1 Interfacing with a SUT

In order to assess a SUT, the benchmark, simulates a user and interacts with
the SUT. The SUT first builds its inner structures, if any, and obtains input
metadata from the benchmark. Conceptually, a SUT requires as input all or part
of the following parameters: the database (schema and instance), user traces (i.e.,
sequences of queries collected into the query log) and the active user’s current
exploration (a sequence of queries). Let D denote the set of all database instances
for a given schema, Q denotes the set of all possible queries over this schema,
S denotes the set of all sequences of queries (i.e. Q × Q × . . . × Q), and 2A

denotes the power-set of a set A. The functionality of a SUT can be defined
generically as doing the transformation: 〈D, 2S , S〉 → S. Once the SUT is ready,
the evaluation protocol starts resolving a task, successively calling the SUT to
provide suggestions.

In practice, the benchmark is a Java program where SUTs can be plugged
to be evaluated. Its code and javadoc are available for SUT programmers on
BitBucket6. Basically, a SUT is sought twice, (1) before starting the evaluation
so it can initialize, and (2) whenever a next move suggestion is requested. From
the benchmark point of view, SUTs are only seen as black boxes that perform
what they are asked to perform, through a contract. Practically, a SUT is a
class that implements an interface that exposes two functions readMetadata and
nextSuggestion. Function readMetadata is called before starting the actual
evaluation process, so the SUT can read and initialize its internal structure. Its
parameter is a Metadata object whose getters allow to access the cube, the list of
users, past user traces, etc. Function nextSuggestion is called many times during
a task resolution. It provides to the SUT a given user and a current exploration
(sequence of queries), and asks the SUT to suggest. It is the responsibility of the
benchmark to orchestrate the whole process, and to make sure the functions are
called with the right arguments.

4.2 How the Benchmark Works

The benchmark process is composed of three components. The first component
initializes the benchmark. It generates the context: the database (i.e., the cube),

6 https://bitbucket.org/mdjedaini/ea-benchmark



some sequences of queries (i.e., the log), data skews to simulate interesting obser-
vations, and creates user profiles. You do not need to run this component if you
reuse an existing context, but you can also create a new context with different
schema or generation parameters.

The second component is responsible for the actual evaluation of a SUT. The
evaluation is a simulation of a user’s actual navigation, whereby the benchmark
suggests some initial sequence of queries, asks the SUT for next move suggestions,
then proposes some continuation, switches to ask the SUT again, and so on. This
allows the benchmark to ask the SUT for suggestions multiple times, in multiple
phases and focusing multiple view areas.

The third component is in charge of computing scores and reporting results.
It considers the sessions produced with the SUT, and computes values for the
quality metrics presented in Section 3.2.

4.3 Component 1: Benchmark Initialization

Initialization consists of the synthesis of an OLAP user environment. It consists
mainly of data generation and user creation.

Data generation An OLAP database (schema and instance) and a set of user
sessions over it are firstly generated. The default database schema is the one of
SSB benchmark [24], but the benchmark can be initialized with any other OLAP
schema. We use CubeLoad [26] for automatically generating user sessions. Cube-
Load generates realistic OLAP workloads, taking as input a cube schema and
the desired number of sessions. Its templates enable the creation of a large num-
ber of sessions representing varied explorations and patterns. Finally, a realistic
database instance is generated with PDGF [25]. We use the more frequent selec-
tion predicates in the log of sessions to produce data skew in the most queried
zones of the cube.

Users creation While CubeLoad enables the generation of a large workload and
creates feasible exploration patterns, it does not assign sessions to specific users.
We use an off-the-shelf clustering algorithm [20], using a similarity measure tai-
lored for OLAP sessions [2] to generate ”users”. In this way a user is characterized
by a set of sessions focusing on some zones of the cube. Each set of sessions is
split in two parts: log and seed sessions. The former constitutes the user log that
is exposed to the SUT, so that it can build its own knowledge for suggesting next
moves. The latter, not shown to the SUT, is used to seed the benchmark tasks.
The size of each user’s log is ruled by a parameter. This allows the benchmark to
evaluate the SUT when working with novice users versus advanced users, creat-
ing tasks with different difficulty levels, in the sense that it is more difficult for a
SUT to suggest something interesting to a relatively new user. Finally, a genera-
tive model is learned from the log, inspired by techniques of the OLAP literature
[27,3]. This generative model is a Markov Model that is used by Component 2,
for simulating the interaction with a user.



4.4 Component 2: Evaluation of a SUT

This component is responsible for the simulation of a navigation, together with
the SUT, in order to resolve a given task. A task can be seen as an exercise
that has to be solved by SUTs. Tasks are created just before starting a SUT
evaluation. The evaluation protocol first provides a seed session, which is a set of
seed queries representing part of a navigation, as a context for continuation of the
navigation. Then it asks the SUT for a first next move suggestion that consists
of one or more queries. After the SUT suggestion, the benchmark decides if it
accepts or refuses the suggestion (a real user would either follows the suggestion
or not). The probability of discarding the suggestion is given as parameter. The
following step is for the benchmark to indicate the next query (a real user may
evaluate their own queries). This is done by finding the closest query in the user
model to the current query, and stochastically determining the next query in the
user model. This new query is then presented to the SUT to suggest again, and
the process continues as such until a stop condition. The simulation is ran for
a set of tasks (the number of tasks to run is a user-given parameter), and the
whole process is preceded by the definition of tasks to accomplish.

4.5 Component 3: Scoring

All the queries recorded during task resolution are fed to the scoring component
so it can compute a score for the SUT using the metrics defined in Section
3.2. For each metric, the scoring component first scores each task, and then, it
aggregates scores for the SUT. In practice, a metric can be seen as a function
that takes as input a task resolution (the queries that were played), and provides
as output a number that represents the score of the metric for the given task.

5 Experiments

In this section we describe and report results on the experiments designed to
validate the proposed benchmark. A first version of the benchmark application
was coded in Java, using PDGF [25], CubeLoad [26] and Fuzzy C-medoids [20],
as explained in section 4. The tested SUTs were plugged to the benchmark
application using the interface class. Experiments use the default schema (SSB)
[24] with a scale factor of 1, a small global log of 50 sessions, 375 queries and
9 users with 50% of seed sessions. We generated 100 tasks for each SUTs to
resolve. Tests were conducted on a laptop equiped with an i5-3210M CPU @
2.50GHz and 8GB of RAM.

5.1 Experimental setup

Validation. In order to test benchmark ranking, we compared three synthetic
SUTs that have simple behavior, and then expected results. ’Random’, the one
having the worst strategy, returns purely random next move suggestions. ’Naive’



Engagement Success Time Novelty Learning
QD F R P QpS TET RNI IVA L LGR

User 102 0.082 0.122 0.032 0.223 20.080 1.24E-004 0.012 0.377 0.554

stdev 0 0.053 0.229 0.082 0.264 19.706 3.38E-004 0.039 0.387 0.501

Random 102 0.030 0.189 0.002 0.0016 2260.400 3.23E-004 0.728 0.384 0.554

stdev 0 0.013 0.263 0.003 0.001 4151.932 2.33E-004 0.307 0.386 0.502

Naive 102 0.069 0.293 0.014 0.004 1464.560 7.72E-005 0.569 0.377 0.554

stdev 0 0.039 0.302 0.031 0.008 1180.270 1.10E-004 0.289 0.387 0.502

Cheater 101.4 0.029 0.538 0.119 0.014 319.600 7.83E-005 0.155 0.513 0.557

stdev 3 0.039 0.318 0.235 0.016 340.167 2.20E-004 0.277 0.489 0.504

Falseto 467 0.024 0.575 0.005 0.0005 2205.080 1.37E-004 0.737 0.376 0.559

stdev 25.855 0.001 0.344 0.003 0.0001 706.705 9.13E-005 0.236 0.386 0.506

Cinecube 184.2 0.018 0.398 0.013 0.006 2891.840 2.20E-004 0.908 0.377 0.556

stdev 51.027 0.006 0.333 0.039 0.010 4210.870 5.38E-004 0.092 0.387 0.503
Table 3. Scores of the SUTs

generates queries that are one OLAP operation away from the previous query.
It naively tries to stay close from the current query, but still chooses the next
move randomly within that neighborhood. ’Cheater’ uses ’insider information’
in order to return good suggestions. Concretely, it generates queries containing
exclusively one cell from the neighborhood NC of cells in the seed session, which
should fit the user’s needs in terms of task success. The goal of this experiment
is to confirm that the benchmark ranks these approaches as expected.

Benchmarking existing approaches. We created an experimental setup to com-
pare the following approaches: CineCube [13] and Falseto [1]. CineCube is a
multifaceted approach focusing on building a user-friendly sequence of explana-
tions for the analysts. The approach highlights relevant cells in current views
and explores automatically expansion into two one-distance children and two
one-distance sibling queries, also summarizing the findings. Falseto is an OLAP
session composition tool that implements a recommender system based on col-
laborative filtering. It features three phases: (i) search the log for sessions that
bear some similarity with the one currently being issued by the user; (ii) extract
the most relevant subsessions; and (iii) adapt the top-ranked subsession to the
current user’s session. As a baseline we also report the scores without a SUT,
i.e. when sessions are created only by playing the user generative model (’User’).

5.2 Analysis of Experimental Results

Table 3 shows the benchmark results for the tested SUTs. For each SUT, we
report its average score and standard deviation for the 100 tasks, for all the
benchmark primary and secondary metrics.

Validation. Regarding the three basic SUTs designed, the results globally al-
low us to rank ’Cheater’ highest, followed by ’Naive’ and ’Random’ with the



poorest performance, as expected. Having access to detailed insider information,
’Cheater’ achieved a higher task success and it provides better learning, with a
slightly higher learning curve. Theoretically, cheater should suggest all neighbor
cells (recall of 1), but in practice, it is stopped by the protocol (number of chances
reached). That explains that its recall is good, but not maximal. However, as
it plays only queries containing the coverage of the study, increase in view area
is lower. ’Random’ proposes completely random jumps in the multidimensional
space, which is less effective (lower task success). As it slowly contributes to task
resolution, the stop condition (50 chances) stops its execution. That is why it ob-
tains maximum query depth for all tasks (stdev=0). Nevertheless, it randomly
explores other cube zones, so consequently increases view area and increases
learning at the cost of a poor precision. As expected, ’Naive’ stays half-way be-
tween ’Cheater’ and ’Random’. By moving always close to the current query, it
was able to stay within relevant regions (so succeeding quite well). As ’Naive’,
it executes until the stop condition obtaining maximum query depth.

Benchmarking existing approaches Results in Table 3 highlight the differences
between Falseto and Cinecube and helps deciding which is best in which case.
By definition, Falseto generates longer sessions than Cinecube as reflected by the
Query Depth score. Falseto also generates queries that are not only related to the
neighborhood of the last queries as Cinecube but that are based on collaborative
filtering with user past sessions to recommend next analysis moves. This leads
Falseto to produce more diverse queries than Cinecube. This is an advantage
when it comes to explore the data as shown by the Recall of Falseto which is
slightly better than that of Cinecube. However this comes at the cost of a lower
precision, because it explores parts of the cube outside seed neighborhood.

When it comes to compare existing approaches with basic SUTs, we also
retrieve coherent and intuitive results. Indeed, the scores allow to globally rank
both Falseto and Cinecube better than Naive and worse than Cheater, while
being good in some points. Indeed, contrary to Random and Naive that do not
seem to effectively support data exploration, Falseto and Cinecube are clearly of
great help for the user. According to User scores (i.e. user playing alone), they
lead to a more complete exploration of relevant regions with more engagement
and better task success.

6 Conclusion

In this paper we proposed the first benchmark for assessing OLAP exploration
approaches. Modern OLAP exploration approaches are expected to suggest next
moves to users, but an important question is how to evaluate the quality of such
suggestions, and how to compare alternatives. Our benchmark uses state of the
art techniques to generate data and user traces, and for its metrics definition. The
benchmark is easy to use, requiring the SUT tester to write only a well-defined
interface, and classifies the SUT according to a set of user-centric metrics. This
is an important advance, since existing benchmarks focus almost exclusively on



performance, cost or energy. To validate the approach, we have proved that the
benchmark correctly ranks a set of strategies for which the behavior is known.

We plan to make all the details of the benchmark public for anyone to use
and improve, and our long-term goal is that it serves as a building block of a
more general benchmark for exploratory search over databases in general. We are
currently working on turning our proposal into an industry-strength benchmark:
we are detailing rules, procedures, reporting procedures and documentation; we
are investigating the benchmark robustness and its sensitivity to the data and
traces. We are currently studying how to use KT to aggregate our metrics to
easily rank SUTs. We are also applying the benchmark to rank other existing
exploratory approaches, as a way to create a regular use base.
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