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Pierre-Olivier Goffard∗, Claude Lefèvre†
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Abstract

The dual risk model is considered when the gain arrivals are governed
by an order statistic point process (OSPP). The p.d.f. of the ruin time is
obtained in terms of a remarkable family of polynomials. By duality, the
p.d.f. of the ruin time is deduced for a Sparre-Andersen insurance risk
model where the claim sizes are distributed as the inter-arrival times in
an OSPP. On the other hand, duality is used again to derive the finite-
time ruin probability in a dual model where the gains correspond to the
inter-arrival times of an OSPP.

MSC 2010: 60G55, 60G40, 12E10.
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1 Introduction

Dual risk model. In this model, a company (not necessarilly operating on
the insurance market) is able to follow its financial reserves’ at any time. The
company holds an initial capital v > 0 and faces operational expenses as time
goes on. The financial reserves are therefore decreasing linearly in time with
a slope a > 0. The company experiences capital gains that form a sequence
{Yi ; i ≥ 0} of i.i.d. non-negative random variables. These capital gains oc-
cur at random times {Sn ; n ≥ 0} that correspond to the jump times of an
independent counting process {M(s) ; s ≥ 0}. The dual risk reserve process
{U(s) ; s ≥ 0} is given by

U(s) = v − as+

M(s)∑
i=1

Yi, s ≥ 0. (1)

This model suits a company that is investing money in various business sectors
such as oil prospection, pharmaceutical research or new technology development.
The expected return on such investments is often uncertain.
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The dual risk model has been less treated in the literature than the insurance
risk model. It is discussed, however, in several books, e.g. by Cramér [10,
Section 5.13], Seal [33, pages 116-119] and Takàcs [36, pages 152-154]. An
application in life insurance is mentioned in the monograph of Grandell [18,
page 8]. Here, a life insurance company pays annuities on a regular basis and
earns from time to time part of the reserve when a policyholder dies. The
practical use of the dual model is also pointed out by Bayraktar and Egami
[6] to model the dynamic of the financial reserves of venture capital funds that
invest in start-ups. Another use of the dual rmodel is to describe the exposure
to a given food contaminant (see Bertail et al. [7]).

The compound Poisson dual model, i.e. when the gain arrival process
{M(s) ; s ≥ 0} in (1) is a homogeneous Poisson process, has received an in-
creasing attention. In particular, much research effort has been made to solving
dividend payment problems (e.g. Avanzi et al. [5], Gerber and Smith [16], Al-
brecher et al. [2], Ng [28], Dai et al. [11], Wen [37] and Afonso et al. [1]). The
ruin time in the dual risk model is the first instant σv at which the reserve U(.)
reaches the level 0, i.e.

σv = inf{s ≥ 0 ; U(s) = 0 (≤ 0)|U(0) = v}. (2)

For the compound Poisson case, Kendall’s identity (see e.g. Borovkov and Burq
[8]) provides us directly with the p.d.f. of σv. For the Sparre-Andersen dual
risk model, where {M(s) ; s ≥ 0} is a renewal process, the Laplace transform
of the ruin time was obtained by Sendova and Yang [39]. In Zhu and Yang
[40], Lundberg type bounds were derived for the ultimate ruin probability in a
Markov-modulated dual risk model.

In the present paper, we first focus on a dual risk model where the gain
arrival process is an order statistic point process (OSPP). This means that con-
ditionally on the number of gain arrivals up to time t ≥ 0, the jump times
are distributed as the order statistics for a random sample drawn from some
probability distribution with support (0, t). The OSPP family includes classi-
cal point processes such as the homogeneous Poisson process, the linear birth
process with immigration and the linear death process. This family has been
extensively used to model claim frequencies in insurance (see e.g. Willmot [38],
De Vylder and Goovaerts [12, 13], Lefèvre and Picard [23, 25], Sendova and
Zitikis [34] and Dimitrova et al. [14]).

Our purpose is to derive an explicit formula for the p.d.f. of the ruin time
σv for such a dual risk model. For that, we take advantage of the polynomial
representation of the joint distribution of the order statistics associated to a
random sample drawn from a uniform distribution. The involved polynomials
are of the Appell or Abel-Gontcharov type. A review of these polynomials with
applications in risk and epidemic modelling is given by Lefèvre and Picard [26].
In the compound Poisson case, Kendall’s identity is retrieved, of course.

Insurance risk model. In insurance, a classical risk process is the Sparre-
Andersen model (Andersen [3]). The risk reserve process {R(t) ; t ≥ 0} is here
given by

R(t) = u+ ct−
N(t)∑
i=1

Xi, t ≥ 0, (3)

where u ≥ 0 is the initial capital of the company, the premiums are collected
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linearly in time at a rate c > 0, the claim amounts form a sequence {Xi ; i ≥ 0}
of i.i.d. non-negative random variables, and the number of claims up to time
t ≥ 0 is a renewal counting process {N(t) ; t ≥ 0}. The time to ruin is defined
as the first time τu at which the reserve R(.) becomes negative, i.e.

τu = inf{t ≥ 0 ; R(t) < 0|R(0) = u}. (4)

For an overview of results for this model, we refer to the book of Asmussen and
Albrecher [4].

It is well established that to the insurance risk model (3) is associated a dual
risk model (1) whose characteristics are inverted in a certain sense. Specifically,
the capital gains in the dual model correspond to the inter-arrival times in the
insurance model while the inter-arrival times in the dual model correspond to
the claim sizes in the insurance model, and the cost rate in the dual model is the
inverse of the premium rate in the insurance model. A close connection between
the ruin time distributions in both models was established by e.g. Mazza and
Rullière [27, Theorem 2] and Dimitrova et al. [15, Lemma 2.1] within a more
general framework.

This link between the ruin times can lead to new results by simply making
a passage between the dual and insurance models. This idea was well embod-
ied in Mazza and Rullière [27]. Starting with the dual model, they worked out
a recursive formula for the ruin probability in a compound Poisson dual risk
model with lattice claim sizes [27, Theorem 5] (see e.g. Picard and Lefèvre [30],
Loisel and Rullière [32] and Lefèvre and Loisel [22] for a similar result in insur-
ance). Passing to the insurance model, they then deduced a formula for the ruin
probability when the claim arrival process is generated by a sequence of lattice
inter-arrival times and exponentially distributed claim sizes [27, Theorem 6].
On the other hand, Dimitrova et al. [15] derived the finite-time ruin probability
for a generalized dual model by using results obtained in Ignatov and Kaishev
[19, 20] for the insurance model; see also Lefèvre and Picard [24].

We consider here a round trip between the two models. We start by deriving
the ruin time p.d.f. for an OSPP dual risk model. From this formula, we deduce
the p.d.f. of the ruin time in the Sparre-Andersen insurance model when the
claim arrivals are governed by a renewal process and the successive claim sizes
may be dependent and are distributed as the inter-arrival times in an OSPP.
As a special case, we recover a result derived by Borovkov and Dickson [9] for
the case of the Sparre-Andersen model with i.i.d. exponential claim amounts.

Our second journey is from the insurance model to the dual model. We begin
from an insurance model where the claim arrivals are described by an OSPP and
the claim sizes are i.i.d. non-negative random variables. The finite-time ruin
probability in that case was obtained by Lefèvre and Picard [23, Proposition
4.1]. By duality, we get the finite-time ruin probability in the corresponding dual
risk model where gains are distributed as the inter-arrival times of an OSPP and
their arrivals are governed by a renewal process.

Summary. The paper is organized as follows. In Section 2, we give an overview
of the order statistic point processes. In Section 3, we obtain the ruin time
p.d.f. in the dual risk model when the gain arrivals are governed by an OSPP.
In Section 4, we deduce the ruin time p.d.f. in a Sparre-Andersen insurance
risk model where the claim sizes are distributed as the inter-arrival times of an
OSPP. In Section 5, we obtain the finite-time ruin probability in the dual model
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when the gains correspond to the inter-arrival times of an OSPP.

2 Order statistic property

The Poisson process is a common model for counting events that arise randomly
in the course of time. Of simple construction, it has also many desirable prop-
erties. In particular, it belongs to the class of order statistic point processes.

Definition 2.1. A point process {N(t), t ≥ 0} with N(0) = 0 is an OSPP if
for every n ≥ 1, provided P[N(t) = n] > 0, then conditioned upon [N(t) = n],
the successive jump times (T1, T2, . . . , Tn) are distributed as the order statistics
[U1:n(t), . . . , Un:n(t)] of a sample of n i.i.d. random variables, distributed as
U(t) say, with distribution function P[U(t) ≤ s] = Ft(s) for 0 ≤ s ≤ t.

De Vylder and Goovaerts [12, 13] introduced a risk model, named homo-
geneous, that generalizes the classical Cramér-Lundberg risk model. When
considered on an infinite-time horizon, the homogeneous model assumes that
the claim arrival process satisfies the order statistic property with U(t) uni-
formly distributed on (0, t) (as for the Poisson process). Their research was
made independently of the existing literature on OSPP. More recently, Lefèvre
and Picard [23] developed a risk model in which claim arrivals are modelled by
a general OSPP. This paper was continued in Lefèvre and Picard [25, 26] for
evaluating ruin probabilities over a finite horizon; see also Sendova and Zitikis
[34] and Ignatov and Kaishev [21]. Recently, Goffard and Lefèvre [17] studied
the first-crossing problem of a (simple) OSSP through general boundaries.

A complete representation of the class of OSPP was derived by Puri [31],
following on earlier works.

Proposition 2.2. (Puri [31])
Let {N(t), t ≥ 0} be an OSPP where µ(t) = E[N(t)] is finite for all t.

(i) If lim
t→∞

µ(t) = ∞, then {N(t), t ≥ 0} is a mixed Poisson process up to a

time-scale transformation. So, it can be represented as

N(t) = P [Wν(t)] , t ≥ 0, a.s., (5)

where {P(t), t ≥ 0} is a Poisson process with rate 1, W is an independent
non-negative random variable and ν(t) is a deterministic time function.

(ii) If lim
t→∞

µ(t) = µ < ∞, then {N(t), t ≥ 0} is a death counting process

in which the individual lifetimes are i.i.d. random variables of distribution
function µ(t)/µ, t ≥ 0, and there is initially an independent random number Z
of individuals in the population. So, it can be represented as is a mixed binomial
type process:

N(t) = B [Z, µ(t)/µ] , t ≥ 0, a.s.. (6)

For both cases, the order statistic property holds with

Ft(s) = µ(s)/µ(t), 0 ≤ s ≤ t. (7)

Here are some simple special cases used in various applications.

Particular OSPP.
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(1) A Poisson process of parameter λ. Here, N(t) has a Poisson distribution
of mean µ(t) = λt. So, (5) holds with W = 1 p.s. and ν(t) = λt, and (7)
gives Ft(s) = s/t.

(2) An inhomogeneous Poisson process of continuous intensity function λ(t).

Here, N(t) has a Poisson distribution of mean µ(t) =
∫ t

0
λ(z)dz. So, (5)

holds with ν(t) = µ(t) and W = 1, and Ft(s) is given by (7).

(3) A mixed Poisson process of mixing variable Λ. Here, N(t) has a mixed
Poisson distribution of random parameter Λ, with mean µ(t) = E(Λ)t.
So, (5) holds with W = Λ and ν(t) = t, and (7) gives Ft(s) = s/t (inde-
pendently of Λ).

For instance, if Λ has a gamma distribution Γ(γ, β), then the mixed Pois-
son process is a negative binomial process of parameters γ and β. So, N(t)
has a negative binomial distribution:

P [N(t) = n] =

(
γ + n− 1

n

)(
t

t+ β

)n(
β

t+ β

)γ
, n ≥ 0,

with mean µ(t) = (γ/β)t.

(4) A linear birth process of rate α and with immigration of rate λ. Here,
N(t) has a negative binomial distribution:

P [N(t) = n] =

(
λ/α+ n− 1

n

)
(1− e−αt)n e−λt, n ≥ 0,

with mean µ(t) = (λ/α)(eλt − 1).

This process can also be considered as a inhomogeneous mixed Poisson
process (5) for which W has a gamma distribution Γ(λ/α, 1) and ν(t) =
eλt − 1.

(5) A linear death counting process of rate α and initial size z. Here, N(t)
has a binomial distribution:

P [N(t) = n] =

(
z

n

)
(1− e−αt)ne−αt(z−n), 0 ≤ n ≤ z,

with mean µ(t) = z(1−e−αt), of finite limit µ = z as t→∞. So, (6) holds
with Z = z a.s. and the lifetimes are i.i.d. exponentials of parameter α.

In the sequel, we are also interested in the distributions of the inter-arrival
times ∆Ti = Ti − Ti−1, i ≥ 1 in an OSPP (T0 = 0). They are named here
level spacing distributions (a level spacing in physics is the difference between
two consecutive elements). A general expression for such disributions is not
available, unfortunately. So, let us reexamine the previous special cases.

Particular level spacings.

(1) For a Poisson process, the ∆Ti’s are i.i.d. exponentials of parameter λ.

(2) For an inhomogeneous Poisson process, the ∆Ti’s are dependent and each
vector (∆T1, . . . ,∆Tn) has density

f∆T1,...,∆Tn
(x1, . . . , xn) = e−µ(x1+...+xn)

n∏
i=1

λ(x1 + . . .+ xi), xi ≥ 0.
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(3) For a mixed Poisson process, the ∆Ti’s are mixed exponentials such that
each vector (∆T1, . . . ,∆Tn) has density (for xi ≥ 0)

f∆T1,...,∆Tn(x1, . . . , xn) = E
{
e−Λ(x1+...+xn) [Λ(x1 + . . .+ xn)]

n
/(n!)

}
.

(4) For a linear birth process with immigration, the ∆Ti’s, i ≥ 1, are inde-
pendent exponentials of parameter λ+ α(i− 1).

(5) For a linear death counting process, the ∆Ti’s, 1 ≤ i ≤ z, are independent
exponentials of parameter α(z − i+ 1).

3 Dual model with ordered gain arrivals

Consider the dual risk model described in the Introduction. Its reserves are
given by

U(s) = v − as+

M(s)∑
i=1

Yi ≡ v − as+ V (s), s ≥ 0, (8)

where U(0) = v > 0, a > 0, {M(s) ; s ≥ 0} is an OSPP and {Yi ; i ≥ 1} are
i.i.d. non-negative random variables. Put Vn = Y1 + . . . + Yn, n ≥ 1, with
V0 = 0. The ruin time is

σv = inf{s ≥ 0 ; U(s) = 0|U(0) = v}. (9)

Note that from (8), we have σv ≥ v/a, i.e. ruin cannot arise before time v/a.
Evidently, σv is the first-meeting time of the process {V (s) ; s ≥ 0} with

the lower linear boundary y = −v + as, s ≥ 0. Figure 1 illustrates this first-
meeting problem. Let Si (resp. ∆Si = Si−Si−1) be the i-th arrival time (resp.
inter-arrival period) in {M(s) ; s ≥ 0}, for i ≥ 1, with S0 = 0.

Suppose that the Yi’s have a p.d.f. fY . Its n-th convolution is denoted by
f∗nY , n ≥ 1, and we put f∗0Y (y) = 1(y=0). The following result expresses the
ruin time p.d.f. in terms of a family of polynomials, named Abel-Gontcharoff
(A-G). A short presentation of these polynomials is given in Appendix A. Given
a set of reals U = {ui, i ≥ 1}, the A-G polynomial of degree n in x is denoted
by Gn(x|U).

Theorem 3.1. The ruin time σv has a p.d.f. at point s (≥ v/a) of the form

fσv
(s) = aE

[
(−1)M(s) f

∗M(s)
Y (as− v)hM(s)(s, v)

]
, (10)

where if [M(s) = n] (n ≥ 0), the function hn(s, v) is the conditional expectation

hn(s, v) = E
{
Gn

[
0
∣∣∣Fs(V0 + v

a

)
, . . . , Fs

(
Vn−1 + v

a

)] ∣∣∣Vn = as− v
}
. (11)

Proof. Consider the event [σv ∈ (s, s + ds)] where ds is small enough. We can
express it as

[σv ∈ (s, s+ ds)] =

+∞⋃
n=0

{[M(s) = n] ∩ [σv ∈ (s, s+ ds)]} (12)

=

+∞⋃
n=0

{
[M(s) = n]

n⋂
k=1

[
Sk ≤

Vk−1 + v

a

]
∩
[
Vn + v

a
∈ (s, s+ ds)

]}
. (13)
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Figure 1: Ruin time in the dual risk model. The solid red line represents the
cost function y = −v+ as, and the dashed blue line corresponds to a trajectory
of the aggregated capital gains.

Conditioning on [M(s) = n] (n ≥ 0), (12) gives

P[σv ∈ (s, s+ ds)] =

+∞∑
n=0

P[σv ∈ (s, s+ ds)
∣∣M(s) = n]P[M(s) = n], (14)

and from (13), we get

P[σv ∈ (s, s+ ds)
∣∣M(s) = n]

= P

{
n⋂
k=1

[
Sk ≤

Vk−1 + v

a

]
∩
[
Vn + v

a
∈ (s, s+ ds)

] ∣∣∣M(s) = n

}
. (15)

By the order statistic property, given [M(s) = n] (n ≥ 1), the vector (S1, . . . , Sn)
is distributed as the order statistics [U1;n(s), . . . , Un;n(s)] of a sample of n i.i.d.
random variables with distribution function Fs on (0, s). This implies that

[Fs(U1:n(s)), . . . , Fs(Un:n(s))]
D
= (U1;n, . . . , Un;n), (16)

where (U1:n, . . . , Un:n) are the order statistics of n independent uniform variables
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on (0, 1). Thanks to (16), we may rewrite (15) as

P[σv ∈ (s, s+ ds)
∣∣M(s) = n]

= P

{
n⋂
k=1

[
Uk:n(s) ≤ Vk−1 + v

a

]
∩
[
Vn + v

a
∈ (s, s+ ds)

]}

= P

{
n⋂
k=1

[
Uk:n ≤ Fs

(
Vk−1 + v

a

)]
∩
[
Vn + v

a
∈ (s, s+ ds)

]}

= P

{
n⋂
k=1

[
Uk:n ≤ Fs

(
Vk−1 + v

a

)] ∣∣∣Vn + v

a
∈ (s, s+ ds)

}

P
[
Vn + v

a
∈ (s, s+ ds)

]
. (17)

At this point, the key step is the probabilistic interpretation of the A-G poly-
nomials given in (A.1). Using this property, we obtain that

P

{
n⋂
k=1

[
Uk:n ≤ Fs

(
Vk−1 + v

a

)] ∣∣∣Vn + v

a
∈ (s, s+ ds)

}

= E

{
P

[
n⋂
k=1

[
Uk:n ≤ Fs

(
Vk−1 + v

a

)] ∣∣∣V1, . . . , Vn

] ∣∣∣Vn = as− v

}

= (−1)nE
{
Gn

[
0
∣∣Fs(V0 + v

a

)
, . . . , Fs

(
Vn−1 + v

a

)] ∣∣∣Vn = as− v
}

= (−1)nhn(s, v), n ≥ 1, (18)

in the notation (11). On the other hand, we have

P
[
Vn + v

a
∈ (s, s+ ds)

]
= f∗nY (as− v)ds, n ≥ 0. (19)

Inserting (18), (19) in (17), (14) then provides (10).

The formulas (10), (11) show clearly the algebraic structure underlying the
density of σv. Of course, their numerical implementation can be rather complex
but remain quite practicable. We now show that the result becomes simple and
explicit in the important case where the OSPP is a mixed Poisson process (see
case (3) of OSPP in Section 2).

Corollary 3.2. If {M(s) ; s ≥ 0} is a mixed Poisson process, then

fσv
(s) =

v

s
E
[
f
∗M(s)
Y (as− v)

]
, s ≥ v/a. (20)

Proof. We noted earlier that if the OSPP is a mixed Poisson process, then
Fs(x) = x/s for x ∈ (0, s). Thus, hn(s, v) in (11) becomes

hn(s, v) = E
[
Gn

(
0
∣∣∣V0 + v

as
, . . . ,

Vn−1 + v

as

) ∣∣∣Vn = as− v
]

=
1

(as)n
E
[
Gn(−v|V0, . . . , Vn−1)

∣∣∣Vn = as− v
]
, (21)
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using the identity (52) for Gn. Now, the Yi’s being i.i.d. variables, Property
A.2 for the conditional expectation of Gn is applicable to (21), which yields

hn(s, v) =
1

(as)n
(−v)(−v − as+ v)n−1 = (−1)n

v

as
. (22)

Combining (22) with (10) then gives the result (20).

As explained below, formula (20) is closely related to Kendall’s identity. An
analogous result was obtained by Stadje and Zacks [35].

Remark. Let us focus on the special case where {M(s) ; s ≥ 0} is a standard
Poisson process. Then, the process {X∗(s) = as − VM(s) ; s ≥ 0} is a Lévy
process which is skip free in the positive direction. In other words, it has
no positive jumps and its increments are stationnary and independent. The
stopping time is σv = inf{t ≥ 0 ; X∗(s) = v}. From Kendall’s identity for such
processes (see Borovkov and Burq [8]), we know that

1

v
fσv

(s) =
1

s
fX∗(s)(v).

This matches exactly formula (20).

4 Insurance model with spacing claim amounts

Consider the Sparre-Andersen risk model described in the Introduction. Its
reserves are given by

R(t) = u+ ct−
N(t)∑
i=1

Xi ≡ u+ ct−W (t), t ≥ 0, (23)

where R(0) = u ≥ 0, c ≥ 0, {N(t) ; t ≥ 0} is a renewal process and {Xi ; i ≥ 1}
are non-negative variables, possibly dependent, with a level spacing distribution.
The Xi’s generate an OSPP {M(s) ; s ≥ 0}, say. Put Wn = X1 + . . . + Xn,
n ≥ 1, with W0 = 0. The ruin time is

τu = inf{t ≥ 0 ; R(t) < 0|R(0) = u}. (24)

This time, τu corresponds to the first-crossing time of the stochastic process
{W (t) ; t ≥ 0} through the upper linear boundary x = u + ct, t ≥ 0. Figure
2 illustrates this first-crossing problem. Observe that the crossing is not a
first-meeting as in the previous model since the trajectory is jumping over the
boundary. Let Ti (resp. ∆Ti = Ti − Ti−1) be the i-th arrival time (resp. inter-
arrival period) in {N(t) ; t ≥ 0}, for i ≥ 1, with T0 = 0.

Suppose that the ∆Ti’s have a p.d.f. f∆T . Using a duality argument, we will
deduce the p.d.f. of τu from Theorem 3.1 obtained above for the dual model.
Let us introduce a random variable ∆0 distributed as ∆Ti and independent of
the renewal process {N(t) ; t ≥ 0}.

Theorem 4.1. The ruin time τu has a p.d.f. at point t (≥ 0) of the form

fτu(t) =

E
[
(−1)M(u+ct) f

∗M(u+ct)
∆T (t−∆0)hM(u+ct)(u+ ct, u/c+ ∆0) 1{t≥∆0}

]
,

(25)
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where if [M(u + ct) = n] (n ≥ 0) and [∆0 = d0] (d0 ≥ 0), the function hn(u +
ct, u/c+ d0) is the conditional expectation (similar to (11))

hn (u+ ct, u/c+ d0) =

E
{
Gn

[
0
∣∣∣Fu+ct [u+ c(T0 + d0)] , . . . , Fu+ct [u+ c(Tn−1 + d0)]

] ∣∣∣Tn = t− d0

}
.

(26)

Proof. As the first-crossing happens at a jump of the stochastic process, it is
difficult to derive the p.d.f. of τu by a direct argument. A simple trick consists
in passing to an associated dual model. Such an approach is rather standard
and was used e.g. by Borovkov and Dickson [9].

t

x

u

∆T1

X1

∆T2
X2

∆T3

X3

∆T4

T1

•
T2

•
T3

•

µ1
−

µ2−

µ3−

τu×

Figure 2: Ruin time in the insurance risk model. The solid red line represents
the premium income x = u + ct, and the dashed blue line corresponds to a
trajectory of the aggregated claim amounts.

More precisely, let us construct a new system of coordinates, denoted by
(s, y), where the roles of space and time are swapped. This means that now the
abscissa is the space axis and the ordinate is the time axis. First, we put the
new origin of these coordinates at the point (0,∆T1) of the original coordinates.
Then, we make an anticlockwise rotation of 90◦ of the whole graph in Figure
2. This yields the corresponding Figure 3. We notice that the straight line
is now of equation y = −V + s/c, s ≥ 0, where V = u/c + ∆T1 is a random
variable. By that operation, we have built a dual risk model as in Section 3
whose characteristics are the inverse of those in the insurance model. Thus, this
dual risk model is defined as

U(s) = V − s

c
+

M(s)∑
i=1

∆Ti+1, s ≥ 0, (27)

where the cost function is linear with slope 1/c and intercept V = u/c + ∆T1,
the inter-arrival times ∆Ti become the capital gains and the claim amounts Xi

become the inter-arrival times in an OSPP {M(s) ; s ≥ 0}.
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t

x

s

y

−V = −uc −∆T1

u

∆T1

X1

∆T2

X2

∆T3

X3

∆T4

T1•

T2 −∆T1•

µ1
|

µ2
|

µ3
|

T3 −∆T1 = τu −∆T1 = σV

c − V×

σV×

Figure 3: Ruin time in the dual risk model with inverted characteristics. The
solid red line represents the cost function y = −V + s/c with V = u/c + ∆T1,
and the dashed blue line corresponds to a trajectory of the aggregated capital
gains.

From Figure 3, we see that the first-crossing problem in the insurance model
is equivalent to a first-meeting problem in the dual model. In fact, we have the
simple identity

τu −∆T1 = σV /c− V,

where σV is the first-meeting time in the dual model. From the definition of V ,
this becomes

τu =
(
σu/c+∆T1

− u
)
/c, (28)

11



so that the p.d.f. of τu can be expressed as

fτu(t) = c fσu/c+∆T1
(u+ ct), t ≥ 0. (29)

Note that the random variables ∆T1 and V are independent of the ∆Ti+1’s.
The dual risk model (27) satisfies all the assumptions made for the model

of Section 3. Note also that σV ≥ cV , otherwise ruin is not possible. Thus,
Theorem 3.1 provides us with the p.d.f. of σV , namely

fσV
(s) = E

[
(−1)M(s)f

∗M(s)
∆T (s/c− V )hM(s)(s, V ) 1{s≥cV }

]
, (30)

where if [M(s) = n] (n ≥ 0) and [V = v = u/c + t1] (t1 ≥ 0), the function
hn(s, v) is given by

hn(s, v) = E
{
Gn

[
0
∣∣∣Fs[c(T̃0 + v)], . . . , Fs[c(T̃n−1 + v)]

] ∣∣∣T̃n = s/c− v
}
. (31)

In accordance with (11), we introduced in (31) a sequence of new variables T̃i
defined by T̃0 = 0 and T̃i =

∑i
j=1 ∆Tj+1 for i ≥ 1. Combining (30), (31) with

(29), we then deduce that the p.d.f. of τu at point t is

fτu(t) = E
[
(−1)M(u+ct) f

∗M(u+ct)
∆T (t−∆T1)hM(u+ct)(u+ ct, u/c+ ∆T1)

1{t≥∆T1}
]
, (32)

where if [M(u+ ct) = n] (n ≥ 0) and [∆T1 = t1] (t1 ≥ 0),

hn(u+ ct, u/c+ t1) = E
{
Gn

[
0
∣∣∣Fu+ct[u+ c(T̃0 + t1)], . . . ,

Fu+ct[u+ c(T̃n−1 + t1)]
] ∣∣∣T̃n = t− t1

}
. (33)

To close, note that T̃i = Ti+1− t1, i ≥ 1, and remember the definition of ∆0

given before (25). Substituting ∆0 for ∆T1 above, we see that formulas (32),
(33) may be rewritten as (25), (26).

Here again, formulas (25), (26) point out the algebraic structure underlying
the density of τu. Let us show that they become quite explicit in the case where
the claim amounts are mixed exponentials, i.e when {M(s) ; s ≥ 0} is a mixed
Poisson process (see case (3) of level spacings in Section 2).

Corollary 4.2. If the Xi’s have a mixed exponential distribution, then

fτu(t) =
1

u+ ct
E
[
(u+ c∆0) f

∗M(u+ct)
∆T (t−∆0) 1{t≥∆0}

]
, t ≥ 0. (34)

Proof. We proceed as for Corollary 3.2. By assumption, Fs(x) = x/s, x ∈ (0, s).
Thus, inside (26), we have

hn

(
u+ t,

u

c
+ d0

)
= E

{
Gn

[
0
∣∣∣u+ c(T0 + d0)

u+ ct
, . . . ,

u+ c(Tn−1 + d0)

u+ ct

] ∣∣∣Tn = t− d0

}
=

(
c

u+ ct

)n
E
[
Gn

(
−u
c
− d0

∣∣∣T0, . . . Tn−1

) ∣∣∣Tn = t− d0

]
, (35)

12



using the relation (52) for Gn. Since the ∆Ti’s are i.i.d. variables, Property
A.2 can be applied to the conditional expectation of Gn in (35), which yields

hn(u+ ct, u/c+ d0) = [c/(u+ ct)]n (−u/c− d0) (−u/c− d0 − t+ d0)
n−1

= (−1)n(u+ cd0)/(u+ ct). (36)

Inserting (36) in (25) then gives (34) as announced.

By formula (34), we retrieve the result obtained by Borovkov and Dickson
[9, Theorem 1, Formula 3] in the case where the claim sizes are i.i.d. and
exponentially distributed (i.e. correspond in our framework to the inter-arrival
times in a Poisson process).

5 Dual model with spacing capital gains

Let us go back to the dual risk model described in Section 3. By (8), the reserves
are modeled through

U(s) = v − as+

M(s)∑
i=1

Yi, s ≥ 0. (37)

using the same notations as before. This time, however, we consider a different
set of assumptions. On one side, {M(s) ; s ≥ 0} is a renewal process generated
by its i.i.d. inter-arrival times {∆Si ; i ≥ 1}. On the other side, the capital
gains {Yi ; i ≥ 1} are non-negative random variables, possibly dependent, with
a level spacing distribution. These Yi’s generate an OSPP {N(t) ; t ≥ 0}, say.

Instead of focusing on the p.d.f. of the ruin time, we are now interested in
the non-ruin probability over any finite time horizon. So, let

ϕv(s) = P(σv > s), s ≥ 0, (38)

be the probability of non-ruin until time s. Obviously, ϕv(s) = 1 if s < v/a,
so from now on we will suppose that s ≥ v/a. Proposition 5.1 below expresses
ϕv(s) in terms of a family of Appell polynomials. We refer to the Appendix A for
a short presentation of these polynomials. Given a set of reals U = {ui ; i ≥ 1},
the Appell polynomial of degree n in x is denoted by An(x|U).

For the proof, we will use again a duality argument to take advantage of a
result known for the insurance risk model. Indeed, Lefèvre and Picard [23] de-
rived a formula for the finite-time non-ruin probability when the claim amounts
are i.i.d. and the claim arrival process is an OSPP. Similarly in what was
done in Section 4, we introduce a random variable ∆0 distributed as ∆Si and
independent of the renewal process {M(s) ; s ≥ 0}.
Theorem 5.1. The non-ruin probability ϕv(s) (s ≥ v/a) can be expressed as

ϕv(s) =

E
[
1{∆0>v/a} + gN(as−v)(as− v, v/a−∆0) 1{∆0≤v/a, SN(as−v)≤s−∆0}

]
,

(39)

where if [N(as− v) = n] (n ≥ 0) and [∆0 = d0] (0 ≤ d0 ≤ v/a), the function
gn(as− v, v/a− d0) is the conditional expectation

gn(as− v, v/a− d0)

= E
{
An

[
1
∣∣∣Fas−v [a(S1 + d0 − v/a)+] , . . . , Fas−v [a(Sn + d0 − v/a)+]

]}
. (40)

13



Proof. As announced, we apply duality to convert the first-meeting problem
under study for the dual model (39) into an equivalent first-crossing problem in
the insurance model with inverted characteristics. Such a reasoning was followed
recently by Dimitrova et al. [15] in the same purpose. The results used here
for the insurance model, however, were obtained by Lefèvre and Picard [23] and
their form is especially simple and compact.

Let us start by looking again at Figure 1. We now construct a new system
of coordinates, denoted by (t, x), in which space and time are swapped. So, the
abscissa is the space axis and the ordinate is the time axis. The new origin of
these coordinates is put at the point (0,∆S1) of the original coordinates. Then,
an anticlockwise rotation of 90◦ is operated on the whole graph of Figure 1.
This yields the corresponding Figure 4. The new straight line is of equation
x = U + t/a, t ≥ 0, where U = v/a −∆S1 is a random variable. In that way,
we have built an insurance model whose characteristics are the inverse of those
in the dual model. This insurance risk model is defined as

R(t) = U +
t

a
−
N(t)∑
i=1

∆Si+1, (41)

where the premium rate is equal to 1/a and the initial reserves are of amount
U = v/a − ∆S1, the inter-arrival times ∆Si become the claim sizes and the
capital gains Yi become the inter-arrival times in an OSPP {N(t) ; t ≥ 0}.

It is clear from Figure 4 that the first-meeting problem in the dual model is
equivalent to a first-crossing time in the insurance risk model. Specifically, we
see that

σv −∆S1 = τU/a+ U,

where τU is the first-crossing time in the insurance model. Using the definition
of U , this yields

σv = (τv/a−∆S1
+ v)/a. (42)

From (38) and (42), we can the rewrite the probability ϕv(s) as

ϕv(s) = P
(
τv/a−∆S1

> as− v
)

= E
[
φv/a−∆S1

(as− v)
]

say, (43)

where the expectation is with respect to the variable ∆S1, and if ∆S1 = S1 = s1

(≥ 0) is fixed, then φv/a−s1(as − v) = P(τv/a−s1 > t) denotes the probability
of non-ruin until time as− v in the corresponding insurance model with initial
reserves v/a − s1. Note that if s1 > v/a, then the initial reserves are negative
so that ruin arises at time 0.

Since the counting process {N(t) ; t ≥ 0} is an OSPP, the result of Lefèvre
and Picard [23, Proposition 4.1] is applicable. We have, however to account for
the possibility that the initial reserves U = v/a − ∆S1 are here random and
can be negative. Then, the non-ruin probability until time t = as − v can be
expressed as

E[φU (t)] = E
[
1{U<0} + gN(t)(t, U) 1{U≥0,S̃N(t)≤U+t/a}

]
, (44)

where if [N(t) = n] (n ≥ 0) and [U = u] (u ≥ 0), gn(t, u) is given by

gn(t, u) = E
{
An

[
1
∣∣∣Ft[a(S̃1 − u)+], . . . , Ft[a(S̃n − u)+]

]}
. (45)
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s

y

t

x

−v
•

U = v
a −∆S1

•

∆S1

Y1
∆S2

Y2

∆S3

Y3

∆S4

S2 −∆S1•

S3 −∆S1•

ν1
|

ν2
|

τU = ν3
×

σv −∆S1 = τU
a + U×

Figure 4: Ruin time in the insurance risk model with inverted characteristics.
The solid red line represents the premium function x = U + t/a with U =
v/a−∆S1, and the dashed blue line corresponds to a trajectory of the aggregated
claim amounts.

15



In (44), (45), we introduced a sequence of new variables S̃i defined by S̃0 and

S̃i =
∑i
j=1 ∆Sj+1 for i ≥ 1. Thus, from (43), (44), (45), we obtain

ϕv(s) = E
[
1{∆S1>v/a}+ (46)

gN(as−v)(as− v, v/a−∆S1) 1{∆S1≤v/a, S̃N(as−v)≤s−∆S1}

]
,

where if [N(as− v) = n] (n ≥ 0) and [∆S1 = s1] (0 ≤ s1 ≤ v/a),

gn(as− v, v/a− s1) = (47)

E
{
An

[
1
∣∣∣Fas−v[a(S̃1 − v/a+ s1)+], . . . , Fas−v[a(S̃n − v/a+ s1)+]

]}
.

Finally, as S̃i = Si+1 − s1, i ≥ 1, and using the definition of ∆0, we see that
(46), (47) match formulas (39), (40).

The result of Theorem 5.1 looks a little like the one obtained by Dimitrova
et al. [15, Proposition 2.2]. The risk process examined there is another dual
model where the capital gain arrival process is arbitrary and their amounts are
distributed as independent linear combinations of exponential variables.

6 Concluding remarks

Our study deals with three ruin problems for different risk models with depen-
dence. The first risk process is the dual model where the capital gains are i.i.d.
but their arrival process satisfies the order statistic property. Using a direct
analysis, we derived the p.d.f. of the ruin time for the model. The second risk
process is the Sparre-Andersen insurance model where claims arrive according
to a renewal process and their amounts have a level spacing distribution. We
obtained here the p.d.f. of the ruin time by applying a duality argument to
the previous problem. The third risk process is again the dual model but where
the capital gains have a level spacing distribution and their arrival is modeled
by a renewal process. By exploiting duality, we derived the finite-time non-
ruin probability for the model. In all cases, the formulas have a clear algebraic
structure and can be used for numerical computation. Some illustrations for
simpler variants of these models can be found in e.g. Goffard and Lefèvre [17]
and Dimitrova et al. [15]. Of course, other ruin topics could be studied by a
similar duality approach. To close, we mention that an alternative approach to
such problems would consist in working with Laplace transforms. This is the
method followed e.g. in Perry et al. [29] and the references therein.
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A Appell and A-G polynomials

Appell and Abel-Gontcharov (A-G) polynomials are well-known in mathematics.
Recently, they were used to solve various problems in statistics and applied
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probabilty. A short presentation is provided below. We refer to Lefèvre and
Picard [26] for a review with many references.

Let U = {ui, i ≥ 1} be a sequence of reals, non-decreasing in our context.
To U is attached a (unique) family of Appell polynomials of degree n in x,
{An(x|U), n ≥ 0}, defined as follows. Starting with A0(x|U) = 1, the An(x|U)’s
satisfy the differential equations

A(1)
n (x|U) = nAn−1(x|U),

with the border conditions

An(un|U) = 0, n ≥ 1.

So, each An, n ≥ 1, has the integral representation

An(x|U) = n!

∫ x

un

[∫ yn

un−1

dyn−1 . . .

∫ y1

u1

dy1

]
dyn. (48)

In parallel, to U is attached a (unique) family of Abel-Gontcharov (A-G)
polynomials of degree n in x, {Gn(x|U), n ≥ 0}. Starting with G0(x|U) = 1,
the Gn(x|U)’s satisfy the differential equations

G(1)
n (x|U) = nGn−1(x|EU),

where EU is the shifted family {ui+1, i ≥ 1}, and with the border conditions

Gn(u1|U) = 0, n ≥ 1.

So, each Gn, n ≥ 1, has the integral representation

Gn(x|U) = n!

∫ x

u1

[∫ y1

u2

dy2 . . .

∫ yn−1

un

dyn

]
dy1. (49)

Note that the Appell and A-G polynomials are sometimes defined without
the factor n! in (48) and (49). Of course, these polynomials are related through
the identity

Gn(x|u1, . . . , un) = An(x|un, . . . , u1), n ≥ 1. (50)

However, the two families, i.e. considered for all n ≥ 0, are distinct and enjoy
different properties (see Lefèvre and Picard [26]).

From (48) and (49), we see that the polynomials An and Gn can be inter-
preted in terms of the joint distribution of the vector (U1:n, . . . , Un:n) of order
statistics for n independent uniform variables on (0, 1).

Proposition A.1. For 0 ≤ u1 ≤ . . . ≤ un ≤ x ≤ 1, and n ≥ 1,

P [U1:n ≥ u1, . . . , Un:n ≥ un and Un:n ≤ x] = An(x|u1, . . . , un),

while for 0 ≤ x ≤ u1 ≤ . . . ≤ un ≤ 1, and n ≥ 1,

P [U1:n ≤ u1, . . . , Un:n ≤ un and U1:n ≥ x] = (−1)nGn(x|u1, . . . , un). (51)
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These representations play a key role in the first-passage problems discussed
in the paper. We will also use the simple relation

An(x|a+ bU) = bnAn [(x− a)/b |U ] , n ≥ 1, (52)

and similarly for Gn. An important particular case in our study is when the
parameters in U are random and correspond to partial sums of exchangeable
random variables.

Proposition A.2. Let {Xn ; n ≥ 1} be a sequence of exchangeable random
variables, with partial sums Sn =

∑n
k=1Xk (S0 = 0). Then, for n ≥ 1,

E [An(x|S1, . . . , Sn)|Sn] = xn−1(x− Sn), (53)

E [Gn(x|S0, . . . , Sn−1)|Sn] = x(x− Sn)n−1. (54)

Proof. The identity (53) was derived in Lefèvre and Picard [23, Property A.1].
For (54), we write

E [Gn(x|S0, . . . , Sn−1)|Sn] = E [Gn(x− Sn|S0 − Sn, . . . , Sn−1 − Sn)|Sn]

= (−1)nE [Gn(Sn − x|Sn, . . . , Sn − Sn−1)|Sn]

= (−1)nE [An(Sn − x|Sn − Sn−1, . . . , Sn)|Sn] , (55)

using the relations (52) and (50). As the Xn’s are exchangeable, we deduce
from (55) and (53) the desired formula (54).
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