
HAL Id: hal-01398905
https://hal.science/hal-01398905v1

Preprint submitted on 18 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SYMMETRIC POWER CONGRUENCE IDEALS AND
SELMER GROUPS

Haruzo Hida, Jacques Tilouine

To cite this version:
Haruzo Hida, Jacques Tilouine. SYMMETRIC POWER CONGRUENCE IDEALS AND SELMER
GROUPS. 2016. �hal-01398905�

https://hal.science/hal-01398905v1
https://hal.archives-ouvertes.fr


SYMMETRIC POWER CONGRUENCE IDEALS AND SELMER GROUPS

HARUZO HIDA AND JACQUES TILOUINE

Contents

1. Introduction 1
2. Theorems Rn−1 = Tu

n−1 for n ≥ 4 4
2.1. Big ordinary Hecke algebra for unitary groups 4
2.2. Symmn−1 Langlands functoriality 6
2.3. Galois representations 7
2.4. Galois cohomology 11
2.5. Application of Chebotarev density theorem 13
2.6. Construction of a Taylor-Wiles system 14
2.7. End of the proof 16
3. Proof of Theorem 1.3 17
3.1. The case j = 3 17
3.2. The case j = 2 19
4. The case j = 4 21
5. Digression: a Kummer type criterion for the non triviality of certain Selmer groups 22
6. The case j = n 23
7. The case of the standard representation of GSp(4) 24
8. Congruence ideal formalism 24
8.1. Differentials 24
8.2. Congruence and differential modules 26
8.3. Transfer property of congruence modules 26
8.4. Local complete intersections 28
8.5. Proof of Tate’s theorem 29
8.6. A more general setting 32
References 33

1. Introduction

In this paper we define relative congruence ideals for various automorphic symmetric powers
Symmm f of a Hida family f over Q in big ordinary Hecke algebras for symplectic and unitary
groups (these powers are now known to be automorphic for m ≤ 8) and we prove, under some
assumptions, that they coincide with the characteristic power series of (the Pontryagin duals of)
Greenberg Selmer groups over Q for related symmetric powers Anf = Symm2n ⊗ det−n ρf of the
Galois representation of the family f . Note that these Selmer groups over Q are modules over the
weight variable Iwasawa algebra which are finitely generated but a priori not known to be torsion
except for the symmetric square. It follows from our result that they are. Similar results when one
includes the cyclotomic variable (that is, for Selmer groups over the Zp-extension Q∞ of Q) could
probably also be studied but are not dealt with in this paper. Let us be a little more precise.

LetN ≥ 1 and let p be an odd prime not dividingN . Let Λ1 = Zp[[X]] be the one variable Iwasawa
algebra identified to the completed group algebra of 1 + pZp by the choice of a topological generator
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u of the group 1+pZp. Let h1 be the cuspidal Hida Hecke algebra (generated by the T`’s for ` prime
to Np, by the diamond operators < a >0 for a ∈ Z×p for the cohomological weight 0, and by Up. The
ring h1 is reduced; it is endowed with a structure of Λ1-algebra by the homomorphism sending X to
〈u〉0−1 for which it is finite and flat. Let µ : h1 → A1 be a surjective Λ1-algebra homomorphism onto
a local domain which is finite and torsion free over Λ1. Geometrically, it amounts to considering
an irreducible component of Spech1. Let k = A1/mA1

be the residue field of A1. Let ΓQ be
the absolute Galois group. We assume that the residual Galois representation ρµ : ΓQ → GL2(k)
associated to µ is irreducible. It is well-known that under this assumption there exists a continuous
Galois representation ρµ : ΓQ → GL2(A1) associated to µ. Let ω be the cyclotomic character modulo
p (we shall also denote by ω its Teichmüller lift). The ordinarity condition for µ implies that there
exists a unique integer a ∈ [0, p− 2] such that the restriction of the representation ρµ to an inertia
group Ip at p is conjugate to (

1 ∗
0 ω−a−1

)
The integer a is fixed throughout the paper. Let St2 be the standard representation of GL2. For any
j ≥ 1, let Aj = Symm2j ⊗ det−j St2 ; we assume from now on that p > 2j + 1; in particular, viewed
as a Zp-schematic representation, the (2j+1)-dimensional representation of GL2, Aj has irreducible
geometric fibers. Let Ajµ = Aj ◦ ρµ : ΓQ → GL2j+1(A1). Its restriction to the local Galois group

ΓQp leaves stable a decreasing filtration (F kAjµ)k with A1-free graded pieces grkAjµ on which the

inertia subgroup Ip acts by Xk. Here, X : ΓQ → Λ×1 denotes the restriction (to Ip) of the universal

deformation of the p-adic cyclotomic character χ unramified outside p∞: if χ(σ) = ω(σ)u`(σ) (that
is, `([z,Qp]) = logp(z)/ logp(u) for z ∈ Z×p ). then

X(σ) = χ(σ)(1 +X)`(σ)

Let Ã1 be the normal closure of A1. It is a two dimensional normal local ring, hence it is Cohen-

Macaulay so that Ã1 is free over Λ1. For any Zp-module M , we denote by M∗ = Hom(M,Qp/Zp)
its Pontryagin dual. Let us consider the minimal p-ordinary Selmer group associated to Ajµ :

Sel(Ajµ) = Ker

H1(Q,Ajµ ⊗A1 Ã
∗
1)→

∏
` 6=p

H1(I`,Ajµ ⊗A1 Ã
∗
1)×H1(Ip, (Ajµ/F 1Ajµ)⊗A1 Ã

∗
1)

 .

Its Pontryagin dual Sel(Ajµ)∗ is finitely generated over Ã1. Recall that the Greenberg-Iwasawa
main conjecture implies (by taking the cyclotomic variable s to be 1) that

1) there is a p-adic L function Lp(Ajµ) in Ã1 interpolating normalized special values L∗(Ajfk , 1)
where fk runs over the eigenforms of classical weights k ≥ 2 occuring in µ.

2) Sel(Ajµ)∗ is torsion and a characteristic power series is equal to Lp(Ajµ) up to a unit in Ã1; this

means, more precisely, that the localization at each height one prime of Ã1 of its first Fitting ideal
Fitt0

(
Sel(Ajµ)∗

)
is generated by Lp(Ajµ).

Let T1 be the localization of h1 at the maximal ideal corresponding to the residual representation
ρµ. The homomorphism µ factors through T1. We still denote µ : T1 → A1 the resulting homomor-

phism. Extending the scalars, it gives rise to a surjective homomorphism T̃1 = T1 ⊗Λ1
Ã1 → Ã1

which we again denote by µ. The context should make clear the meaning of this notation. Since T1

is reduced and Ã1 is a domain which is flat over Λ1, we see that T̃1 is reduced too. By tensoring
with K1 = Frac(A1), we have a splitting

T̃1 ⊗Ã1
K1
∼= K1 × T̃′1,K1

where the first projection is given by µ ⊗ IdK1
. Let T̃′1 be the image of the second projection

T̃1 → T̃′µ,K1
. One defines the congruence ideal of µ by cµ = T̃1 ∩ (Ã1 × {0T̃′µ

}). We view this ideal

as an ideal of Ã1. Recall that for a finitely generated Ã1-module M , any generator of the smallest
principal ideal XM containing the first Fitting ideal Fitt0(M) of M is called a characteristic power
series : XM = (Char(M)). It is non zero if and only if M is torsion. Consider the assumption
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(∗) N is squarefree, there exists a subfield k′ ⊂ k such that SL2(k′) ⊂ Im ρµ ⊂ GL2(k′), moreover
for any prime ` dividing N , the restriction to I` of ρµ is non trivial (hence unipotent).

Let α = µ(Up). Let R1 be the universal deformation ring for N -minimal p-ordinary deformations
of ρµ. Recall a special case of theorems by Wiles and Hida

Theorem 1.1. Assume (∗) and either α2 6≡ 1 (mod mA1) or a+ 1 < p− 1, then R1 = T1 and T1

is local complete intersection over Λ1. Moreover, cµ is a principal ideal of Ã1.

The precise definition and some properties of local complete intersection algebras are given Section
8.4 below.

Corollary 1.2. Assume (∗) and a+ 1 < p− 1, then

(a) cµ = (Char(Sel(A1
µ)∗)),

(b) cµ = (Lp(A1
µ)).

Note that the p-adic L function Lp(A1
µ) interpolating the special values L∗(A1

fk
)) has been con-

structed by one of the authors [H88b] (see also his notes of the Pune course [H16]).
The goal of this paper is to establish analogues of part (a) of the theorem above for higher j’s,

provided the automorphic base change is established for Symmm for certain values of m less than
2j.

Theorem 1.3. Assume (∗) and 3(a+ 1) < p− 1. Then,

• for j = 3, the characteristic power series of Sel(Ajµ)∗ is a generator of the ideal of congru-

ences between the family Symm3µ and Siegel families which are not of the form Symm3µ′

for other GL2-families µ′,
• for j = 2, the characteristic power series of Sel(Ajµ)∗ is a generator of the congruence ideal

between the family Symm3µ and families on U(4) which don’t come from Siegel families.

Similarly, we have

Theorem 1.4. If one assumes besides (∗) that 4(a+ 1) < p− 1, then for j = 4, the characteristic
power series of Sel(Ajµ)∗ is a generator of the congruence ideal between the family Symm4µ and

families of unitary forms on U(5) which don’t come from congruences between Symm3µ and families
on GSp4 by the integral transfer from GSp4 to U(5).

See Sections 3 and 4 for a more precise form of the statement and its proof. To put these results
in perspective, let us mention a more elementary result.

Let p be a prime of Ã1. For j = 3, 2, 4, consider the condition

(Sj) Fitt0(Sel(Ajµ)∗) ⊂ p

and the conditions
(C3) there exists a Hida family G of Iwahori level N on GSp4 which is not the Symm3 of a Hida

family on GL2 and such that Symm3µ ≡ G (mod p)
(C2) there exists a Hida family G of Iwahori level N on U(4) which does not come from GSp4 by

base change and such that Symm3µ ≡ G (mod p)
(C4) there exists a Hida family G of Iwahori level N on U(5) which does not come from GSp4 by

base change and such that Symm4µ ≡ G (mod p),

Theorem 1.5. Assume (∗), then (C3) implies (S3) or (S2) or (S4).

See Section 5. It requires a theorem of big image of Galois established by [HT15] when A1 = Λ1

and by A. Conti in his thesis [Con16b] in general. Note that the conditions (Cj) are not mutually
exclusive so that the difficulty of separating a priori the possible conclusions (Sj) is not so surprising.

Our theorems do separate the conclusions and imply in particular for j = 3, 2, 4 that (Cj)implies
(Sj). Their proof require using more advanced tools, namely R = T type theorems in the minimal
level case and Hida–Tate theory of conguence ideals for Gorenstein rings. Actually our method
applies to more cases:
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Theorem 1.6. Assume (∗) and that p− 1 > n(a+ 1). Assume also that N has at least two prime
factors. Assume that the transfers Symmn−1 and Symmn from GL2(Q) to GLn resp. GLn+1 are
established.

Then, the characteristic power series of Sel(Anµ)∗ is a generator of the quotient of the congruence
ideal between the family Symmnµ and families of unitary forms on U(n+ 1) by the congruence ideal
between the family Symmn−1µ and families of unitary forms on U(n). In particular, the quotient of
these ideals is integral and principal.

This theorem applies for n = 5, 6, 7, 8 by [CT15] where the Symmm transfer is established for
m ≤ 8. See Section 6 for a more precise statement and the proof.

We finally give an analogue result starting from a Hida family σ on GSp4(Q) instead of a Hida
family µ on GL2(Q). The method and result are similar although the Hida family σ is two variable
so that the commutative algebra results involve three–dimensional local rings, so that we can only
compare localizations at height one primes of the congruence ideal and the characteristic power
series of the standard (degree 5) Selmer group. The tool this time is the base change from GSp4(Q)
to U(4) (for an imaginary quadratic field) established by C.-P. Mok [Mok14] and [Clo91] and the
conclusion is that the two variable characteristic power series of the degree 5 Galois representation
associated to the family σ generates the height one part of the ideal of congruences between the
base change of σ to U(4) and families on U(4) which don’t come from GSp4(Q). See Section 7 for
the statement and the proof.

2. Theorems Rn−1 = Tu
n−1 for n ≥ 4

2.1. Big ordinary Hecke algebra for unitary groups. Recall that we fixed a squarefree integer
N = q1 · . . . · qk prime to p. As stated in Theorem 1.6, we will need to assume in some cases that
k ≥ 2. Hida theory for unitary groups [PAF, Chapt.8] is developed using coherent cohomology but
hereafter we follow the presentation of [Ge10, Section 2] (see also [Ge16]) using definite forms of
unitary groups. We fix an auxiliary imaginary quadratic field K = Q(

√
−∆) of negative discriminant

−∆ relatively prime to Np such that p = ppc and q1 = q1q
c
1 split and q2 remains inert in K. Let

D be a central division algebra over K of rank n2 whose ramification set SD consists in the primes
above q1. From the calculations of [Clo91, (2.3) and Lemma 2.2], we see that

(Case 1) If n is odd or is divisible by 4, then for any k ≥ 1, there exists an involution of second
kind ∗ on D which is positive definite at ∞ and such that the unitary group U(D, ∗) is quasisplit at
all inert places.

(Case 2) If n = 2m with m odd; for k ≥ 2 there exists an involution of second kind ∗ on D which
is positive definite at ∞ and such that the unitary group U(D, ∗) is quasisplit at all inert places
except q2.

We fix G = U(D, ∗) as above.

Definition 2.1. We fix an auxiliary level group Up =
∏k
i=1 Uqi ×UNp of Iwahori type of squarefree

level N ; this means that for each prime q dividing N , Uq is
-equal to the standard Iwahori subgroup of Gq if G is quasi-split at q (that is, either Gq = GLn(Kq)

if q splits in K, or if Gq is the quasi-split unitary group),
-Uq is a minimal parahoric subgroup if Gq is not quasisplit.

Remark 2.2. Let ΠG be any cuspidal automorphic representation on G with cohomological weight

and level U = Up × Up. Let q be a prime dividing N which is inert in K; the condition Π
Uq
G,q 6= 0

implies that the base change of ΠG,q to Kq has fixed vectors by the Iwahori subgroup of GLn(Kq). Let
σΠG,q be the p-adic Weil-Deligne representation of ΠG,q. Let σ̃ΠG,q be its restriction to the inertia
subgroup Iq. If the reduction modulo p of σ̃ΠG,q is regular unipotent, the same holds for σ̃ΠG,q and
ΠG,q is the twist of the Steinberg representation by an unramified at most quadratic character.

This remark will be useful later.
We fix an isomorphism ip : Gp = G(Qp) ∼= GLn(Qp), which we use to identify these groups. Thus,

we can view Up = i−1
p (GLn(Zp)) as a hyperspecial maximal compact subgroup of Gp. From now on,

we omit the mention of ip and we simply write Up = GLn(Zp). Let Ip ⊂ Up be the Iwahori subgroup
and for 0 ≤ b ≤ c, Ib,cp ⊂ Up be the subgroup of matrices whose reduction modulo pc, resp. pb,
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belong to the group of Z/pcZ-points of the subgroup B of upper triangular matrices of GLn, resp.
to the group of Z/pbZ-points of the group N ′ = diag(1, . . . , 1, ∗) · N+ where N+ is the group of
upper unipotent matrices. Note the difference with [Ge10, Def.2.1] where the condition modulo pb

is that u ∈ N+(Z/pbZ). Here we enlarge the group N+ to N ′. This is because we want to define a
big ordinary Hecke algebra depending only on the semisimple variables of the diagonal torus T , not
on the whole of T . Let T ss = Ker(det : T → Gm). We have a decomposition T ∼= T ss × Gm given
by u 7→ (uss,det u) where u = diag(u1, . . . , un) and uss = diag(u1, . . . , un−1, (u1 · . . . · un−1)−1).

Let Gf be the locally compact group of finite adèles of G and GQ be the subgroup of principal
adèles. By compactness of G∞, GQ is discrete in Gf and for any compact open subgroup U of Gf ,
the quotient GQ\Gf/U is finite (see [PR94, Chap.5, Section 3, Th.5.5]). We fix from now on the
auxiliary level group U = Up × Up of Iwahori type of squarefree level N in the sense of Definition
2.1. As usual, one can add another auxiliary prime r (in the sense of Taylor-Wiles) prime to Np to
assure that U is sufficiently small: GQ ∩ U = 1. After localization at a suitable maximal ideal, it
will not introduce extra ramification at r for the automorphic forms occuring in the Hida-Geraghty
Hecke algebra of auxilary level U defined below.

For c ≥ b ≥ 0, let U b,c = Up×Ib,cp . Let E be a sufficiently large p-adic field; let O be its valuation

ring. Any (n − 1)-tuple λ = (λ1, . . . , λn−1) ∈ Zn−1 defines a character of the diagonal torus T of
GLn (and of T ss = T ∩ SLn) by

diag(t1, . . . , tn) 7→ tλ1
1 · . . . · t

λn−1

n−1

Let us assume that λ1 ≥ . . . λn−1 ≥ 0, let Lλ(O) be the ”maximal” O-representation of GLn of
highest weight λ (see [PT02]). Let w0 be the longest element of the Weyl group of GLn. Then
Lλ(O) is defined as the algebraic induction of w0λ from B to GLn, that is, the O-module of rational
functions φ ∈ O[GLn] such that φ(tn+g) = (w0λ)(t)φ(g) for any b = tn+ ∈ B. We define the
O-module Sλ(U b,c;O) of cuspidal forms of level U b,c for G by

Sλ(U b,c;O) = {s : GQ\Gf → Lλ(O); s(xu) = u−1
p · s(x) for anyu ∈ U b,c}

For c > 0, let hλ(U b,c;O) be the O-algebra of endomorphisms of Sλ(U b,c;O) generated by the Hecke
operators

• Tξ,i = [U b,cα
(i)
$ξU

b,c]λ, where i = 1, . . . , n, α
(i)
$ =

(
$ξ1i 0

0 1n−i

)
, and ξ runs over the

degree one primes of OK , relatively prime to M∆p.

• U$,i = (w0λ)(α
(i)
$ )−1[U b,cα

(i)
$ U b,c]λ, i = 1, . . . , n− 1, where $ is a uniformizing parameter

of p and α
(i)
$ =

(
$1i 0

0 1n−i

)
as before,

• 〈u〉λ = [U b,cuU b,c]λ where u ∈ T (Z) (actually, it depends only on the image of u in
T ss(Z/pbZ)).

Recall that [U b,cαU b,c]λ acts by ([U b,cαU b,c]λ·s)(x) =
∑
i αi,p·s(xαi) where U b,cαU b,c =

⊔
i αiU

b,c

(see beginning of [Ge10, Sect. 2.3]). The operators Tξ,i, U$,i and 〈u〉λ preserve integrality [Ge10,
Def. 2.3.1 and 2.3.2].

Let e be the ordinary idempotent associated to U$ =
∏n−1
i=1 U$,i. We define

hn−1 = lim←−
c

e · hλ(U c,c;O)

It does not depend on the dominant weight λ [Ge10, Prop.2.6.1]. It is reduced [Ge10, Lemma
2.4.4]. Let T0 = T (Zp), T ss0 = T ss(Zp); and similarly let Tb = Ker(T (Zp) → T (Z/pbZ)), T ssb =
Ker(T ss(Zp)→ T ss(Z/pbZ)). We can decompose T0 = T (Z/pZ)×T1 and T1 = T ss1 × (1 + pZp). For
p > 2, let u = 1 + p. We can identify the O-algebra Λn−1 of power series in n − 1 variables to the
completed group algebra O[[T ss1 ]] by sending 1 +Xi to diag(1i−1, u, 1n−1−i, u

−1). We view hn−1 as
a Λn−1-algebra via the weight 0 diamond action T1 → h×n−1, u→ 〈u〉0. As a Λn−1-algebra, hn−1 is
finite torsion-free. Indeed, the proof of [Ge10, Prop.2.5.3] goes through when one replaces the group
Tb by the group T ssb , because with our modified definition of the groups U b,c, we do have

Sλ(U c,c;O)T
ss
b = Sλ(U b,c;O)
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hence, by Hida’s lemma (see [Ge10, Lemma 2.5.2], we see that

e · Sλ(U(p∞);E/O)T
ss
b = e · Sλ(U b,b;E/O)

which is the key step for the vertical control theorem and its corollary [Ge10, Coroll.2.5.4]. From
this fact, the finiteness and torsion-freeness of our Hecke algebra over Λn−1 follow as in [Ge10,
Coroll.2.5.4].

2.2. Symmn−1 Langlands functoriality. We assume that the Symmn−1 Langlands functoriality
from GL2 to GLn is established (sending non CM classical cusp eigensystems to cuspidal eigensystems
on GLn). It is known for n − 1 ≤ 8 thanks to the works of Kim-Shahidi [KS02b], Kim [Kim03]
and Clozel-Thorne [CT14], [CT15]. Let π be a non CM holomorphic cuspidal representation of
GL2(AQ) cohomological for a local system of highest weight a ≥ 0, with conductor N and level

group U
(1)
0 (N) = {u ∈ GL2(Ẑ);u (mod N) upper triangular}, (that is, dim πU

(1)
0 (N) = 1). The

Langlands parameter r∞ : WR → GL2(C) of π∞ is given by r∞(z) = diag((z/z)(a+1)/2, (z/z)a+1)/2)

for z ∈WC and r∞(j) =

(
0 1

(−1)a+1 0

)
.

By assumption, there is an automorphic cuspidal representation Π = Symmn−1π on GLn. The
Langlands parameter R∞ : WR → GLn(C) of Π∞ is given by its restriction to WC by

R∞(z) = diag((z/z)(n−1)(a+1)/2, (z/z)(n−3)(a+1)/2 . . . , (z/z)−(n−1)(a+1)/2).

It follows from the local Langlands correspondence for GLn(AQ) that Π is Steinberg at all primes
dividing N . Let ΠK the base change of Π to GLn(AK) (see [AC89, III,5]); the Langlands parameter
of ΠK,∞ is R∞|WC . It is cohomological. Moreover, ΠK,q is Steinberg at all primes q of K dividing
N . In particular, ΠK is square-integrable at both places of SD; therefore, by the Jacquet-Langlands
correspondence for GLn (see [Vi84] and [AC89]), it descends to a cuspidal representation ΠD on
D×(AK). Note that ΠD,∞ = ΠK,∞ is cohomological. By [Clo91, Lemma 3.8 and Prop.4.11 ], ΠD

descends as a cuspidal representation ΠG on G (for more general results of descent from D× to
G, see Labesse [Lab09, Th.5.4] and C.-P. Mok [Mok14]). The difference with [Clo91, Prop.4.11] is
that here ΠG,∞ is the irreducible representation of highest weight ((n − 1)a, (n − 2)a, . . . , a, 0) of
the compact group U(n) (instead of being a cohomological representation of U(n− 1, 1)); moreover,
ΠG,q is Steinberg at all places q of K dividing N . Note that

• For any rational prime q prime to Np which splits in K, say, q = ξξc, the Hecke eigenval-

ues tξ,i on the 1-dimensional space Π
Uξ
ξ of the Hecke operators Tξ,i, i = 1, . . . , n − 1, are

determined by the relation between Hecke polynomials:

P
(n−1)
Πξ

(T ) = Symn−1 P (1)
πq (T ) ∈ E[T ]

where
P (1)
πq (T ) = T 2 − aqT + qa+1 = (T − αq)(T − βq),

Symn−1 P (1)
πq (T ) = (T − αn−1

q )(T − αn−2
q βq) . . . (T − βn−1

q ),

and

P
(n−1)
Πξ

(T ) = Tn − tξ,1Tn−1 + . . .+ (−1)jqj(j+1)/2tξ,jT
n−j + . . .+ (−1)nqn(n+1)/2tξ,n

• if a 6= 0, the local component Πp is unramified and the eigenvalues u$,i of the normalized

Atkin-Lehner operators U$,i (i = 1, . . . , n − 1), on the finite dimensional vector space Π
Ip
p

are given by
n∏
i=1

(T − pi−1 u$,i
u$,i−1

$(i−1)a) = Symn−1 P (1)
πp (T )

where one has put U$,0 = U$,n = Id. Explicitely, one has u$,1 = αn−1
p , u$,2 = αn−2

p
βp
p$a ,...,

u$,n−1 = αp(
βp
p$a )n−2, where αp is the unit root of P

(1)
πp (T ). Note that the eigenvalues u$,i

are p-adic units since $
p is. This follows from Lemma 2.7.5 of [Ge10] because the weight

λ = (λ1, . . . , λn) is given by ((n− 1)a, (n− 2)a, . . . , a, 0), hence it is regular if a 6= 0, hence
the lemma applies.
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Let hN−new1 be the N -new quotient of h1. For any prime q prime to Np splitting in K as ξξc, let

P
(n−1)
ξ (T ) = Tn − Tξ,1Tn−1 + . . .+ (−1)jqj(j+1)/2Tξ,jT

n−j + . . .+ (−1)nqn(n+1)/2Tξ,n

be the universal Hecke polynomial of the spherical Hecke algebra of GLn at ξ and P
(1)
q (T ) =

T 2 − TqT + qSq the universal Hecke polynomial of the spherical Hecke algebra for GL2 at q. Recall

that ` : Z×p → pZp is defined by x = ω(x)u`(x)). We can interpolate the formulas above:

Proposition 2.3. There exists a ring homomorphism θ : hn−1 → h1 above the algebra homomor-
phism Λn−1 → Λ1 given by 1 + Xi → (1 + X)n−i for i = 1, . . . , n − 1. The homomorphism θ is
characterized by the fact that for any prime q prime to Np splitting in K as ξξc, the image by

θ of the universal Hecke polynomial P
(n−1)
ξ (T ) is Symn−1 P

(1)
q (T ), while the images θ(U$,i) are

given by (U
(1)
p )n−2i+1 · (ω( p$ )(1 +X)`(

p
$ ))i−1. Let π be an N -new p-ordinary holomorphic cuspidal

automorphic form π on GL2(Q) of highest weight a > 0. Let µπ : hN−new1 → O be the associated
eigensystem. Let θa = θ (mod X−ua + 1). Then for any rational prime q split in K as ξξc, µπ ◦ θa
sends the universal polynomial P

(n−1)
ξ (T ) to Symn−1 Pπq (T ) and if we put Pπp(T ) = (T−αp)(T−βp),

ordp(αp) = 0, we have µπ ◦ θa(U$,i) = αn−ip (
βp
p$a )i−1 for i = 1, . . . , n− 1.

Proof. For primes q 6= p, the statement is obvious. For the prime p, for any a 6= 0, one gets

θ(U$,i) ≡ (U (1)
p )n−2i+1 · ( p

$
)a(i−1) (mod X − ua + 1).

But we have for a ≥ 0

αn−ip (
βp
p$a

)i−1 = αn−ip (
βp
pa+1

)i−1(
p

$
)a(i−1) = αn−2i+1

p (
p

$
)a(i−1)

as desired. �

2.3. Galois representations. Let ΓQ = Gal(Q/Q) and ΓK = Gal(K/K). In this section we
use notations and results of [CHT08, Sect.2.1]. Let Gn = (GLn × GL1) o {1, j} where j2 = 1
and j(g, µ)j−1 = (tg−1µ, µ). It is a non connected group scheme over Z. Let ν : G → GL1 be
the homomorphism given by (g, µ) 7→ µ and ν(j) = −1. We have the inclusions of Lie algebras
sln ⊂ gln ⊂ LieGn. Note that ad(g, µ)(X) = gXg−1 and ad(j)(X) = −tX. We fix a sufficiently large
p-adic field E with valuation ring O. In this section, we consider representations ρ : ΓK → GLn(R)
and homomorphisms r : ΓQ → GLn(R) for various O-algebras R. The theorem below follows from
[Ge10, Proposition 2.7.2] (see also [CHT08, Proposition 3.3.4]) and [Ge10, Corollary 2.7.8].

Theorem 2.4. Let λ′ be a dominant weight for GLn ; for any cuspidal automorphic representation
Π′G of G(AQ) occuring in e · Sλ′(U0,1, E), there exists a continuous semisimple representation

ρΠ′G
: ΓK → GLn(E)

such that
(i) for q prime to Np splitting in K as ξξc, ρΠ′G

is unramified at q and the characteristic polynomial

of Frobξ is PΠ′G,ξ
(T ),

(ii) ρcΠ′G
∼= ρ∨Π′G

χ1−n

(iii) for any prime q inert in K not dividing Np, ρΠ′G
is unramified at q

(iv) if moreover λ′ is regular, ρΠ′G
is crystalline and ordinary at p and pc. For instance at p:

ρΠ′G
|ΓKp

∼


ψp,1 ∗ . . . ∗

χ−1ψp,2 . . . ∗
. . .

χ−n+1ψp,n


where ψp,i ◦Artp : K×p → E× is given on O×p by x 7→ x−λ

′
n−i+1 and by ψp,i ◦Artp($) = uΠ′,i/uΠ′,i−1,

i = 1, . . . , n− 1 where uΠ′,i is the unique unit eigenvalue of U$,i on (Π′G,p)Ip for i = 1, . . . , n− 1.

In particular, denoting by Art the global Artin symbol of K, we have for any x ∈ O×K,p
det ρΠ′G

◦Art(x) = x−
∑n
i=1(λ′n−i+1+i−1).
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As explained in [Ge10, Proposition 2.7.2], the key ingredient in order to apply the main result

of [HT01] is Coroll.5.3 of [Lab09]. The uniqueness of the unit eigenvalue of U$,i on (Π′)
Ip
G,p for

i = 1, . . . , n− 1 is proven in [Ge10, Lemma 2.7.5 (2)].
By the theorem 2.4, we have a perfect pairing 〈 , 〉 : En × En → E and a character µ =

χ1−n : ΓQ : ΓQ → E× such that

• 〈y, x〉 = −µ(c)〈x, y〉
• 〈ρΠ′G

(δ)x, ρΠ′G
(cδc)y〉 = µ(δ)〈x, y〉.

By [CHT08, Lemma 2.1.1], there is a bijection between ”polarized representations” (ρ, µ, 〈 , 〉)
where ρ : ΓK → GLn(E), µ : ΓQ : ΓQ → E× are homomorphisms and 〈 , 〉 : En×En → E is a perfect
pairing, and homomorphisms r : ΓQ → Gn(E). We have −µ(c) = (−1)n. One can take the pairing

to be Symmn−1 of the standard pairing on E2 given by J2 =

(
0 −1
1 0

)
. It is therefore given by

〈x, y〉 = txJny where Jn = Symmn−1J2 is antidiag(1,−1, . . . , (−1)n−1). Therefore, Theorem 2.4
yields

Corollary 2.5. For Π′G as above, there exists a continuous homomorphism

RΠ′G
: ΓQ → Gn(E)

such that

• for δ ∈ ΓK , one has RΠ′G
(δ) = (ρΠ′G

(δ), χ1−n(δ)),

• RΠ′G
(c) = (J−1

n , (−1)n)j.

Let π be an N -new p-ordinary cuspidal holomorphic representation of level N cohomological
of highest weight a ≥ 0 occuring in the Hida family µ. Let ρπ : ΓQ → GL2(O) its p-adic Galois
representation. Assume that the residual representation ρ = ρπ : ΓQ → GL2(k) has big image, in
the sense that there exists a subfield k′ ⊂ k such that

SL2(k′) ⊂ Im ρπ ⊂ GL2(k′).

Note that up to conjugation the restriction of ρπ to a decomposition group Dp at p is given by(
unr(α) ∗

0 unr(α−1)ω−a−1

)
where α = µ(Up).

Let Π = Symmn−1π be the n− 1-symmetric power cuspidal representation of π on GLn(Q) and
ΠG its base change to G. Let

RΠ = Symmn−1ρπ : ΓQ → GLn(O)

be the Galois representation associated to Π.
By [CHT08, Lemma 2.1.2], the continuous homomorphism

RΠG : ΓQ → Gn(O)

associated to ΠG is given as follows. Let c be a complex conjugation in ΓQ. For σ ∈ ΓK , we put

RΠG(σ) = (RΠ(σ), (det ρπ(σ))n−1)

and for σ ∈ ΓQ\ΓK , and Jn = Symmn−1

(
0 −1
1 0

)
(so that Jn = antidiag(1,−1, 1, . . . , (−1)n−1)).

Then we put

RΠG(σ) = (RΠ(σ)J−1, (−1)n−1(det ρπ(σ))n−1)j.

Moreover, we have

ν ◦RΠG = δn · (det RΠ)n−1.

where δ : ΓQ/ΓK ∼= {±1}. It is ordinary at p and each prime q of K dividing N , its restriction to
the inertia subgroup Iq is regular unipotent.

Note that by our assumption, there exists a subfield k′ ⊂ such that

Symmn−1SL2(k′) ⊂ Im RΠ ⊂ k′× · Symmn−1GL2(k′)
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This implies that the residual image of RΠ is big in the sense of [CHT08, Definition 2.5.1] (see
[CHT08, Lemma 2.5.4] for details). Let m be the maximal ideal of hn−1 associated to the residual
representation

R = RΠG : ΓQ → Gn(k).

We fix a decomposition group Dp = ΓKp
at p in ΓQ. Note that after a given conjugation, one can

assume that the restriction to Dp is upper triangular, with diagonal

diag
(

unr(α)n−1,unr(α)n−2ω−a−1, . . . , ω−(n−1)(a+1)
)

which we rewrite as

diag
(
ψ1, ψ2ω

−1, . . . , ψnω
−(n−1)

)
.

Let Tn−1 be the localization of hn−1 at m and, for any weight λ′ ∈ Zn+ congruent to ((n− 1)a, (n−
2)a, . . . , a, 0) modulo p − 1, let Tλ′(U

0,1,O) be the image of Tn−1 in EndO(e · Sλ′(U0,1, E)) We
shall compare, under certain assumptions, Tn−1, resp. Tλ′(U

0,1,O) , with the universal ordinary
deformation ring Rn−1, resp. and Rλ′ of the representation R defined as follows. Let CNLO be the
category of complete noetherian local O-algebras A with residue field k = O/$EO. For an object A
of CNLO, a lifting r : ΓQ → Gn(A) of R is a continuous homomorphism such that r (mod mA) = R.

Two liftings r, r′ : ΓQ → Gn(A) of R are equivalent if there exists g ∈ 1 + mAMn(A) such that
r′ = g · r · g−1. We consider the functors of liftings D and Dλ′ from CNLO to Sets defined as follows:

• The functor D sends an object A to the set of equivalence classes of liftings r : ΓQ → Gn(A)

of R which satisfy the two following conditions
1) r is N -minimal: for each prime q dividing N there exists gq ∈ 1n + mA ·Mn(A) such

that for any σ ∈ Iq,
pr1 ◦r(σ) = gq · exp(tp(σ)Nn) · g−1

q

where

Nn =


0 1 0 . . .
0 0 1 . . .

0 0
. . .

0 0 . . . 1
0 0 . . . 0


2) r|Dp is ordinary, that is, there exist characters ψr,1, . . . , ψr,n : ΓKp

→ A× and g ∈
1n + mAMn(A) such that for any σ ∈ ΓKp

,

pr1 ◦r(σ) = g ·


ψr,1(σ) ∗ . . . ∗

χ−1ψr,2(σ) . . .
. . .

χ−n+1ψr,n(σ)

 · g−1

with the condition that for any j = 1, . . . n, ψr,j is a lifting of ψr,j .
• The functor Dλ′ is defined similarly, replacing condition 2) by the stronger condition 2)λ′

r|Dp is ordinary with characters ψr,j lifting of ψj (j = 1, . . . , n) and for any j = 1, . . . n and

for any x ∈ O×p ,

ψr,j(Artp(x)) = x−λ
′
n−j+1 .

The functor D, resp. Dλ′ is the functor of N -minimal ordinary, resp. N -minimal ordinary of
weight λ′ deformations of R. Note that condition that the characters ψr,j are liftings of ψr,j implies

that ψr,j |Ip is a lifting of ω−(j−1)(a+1) (j = 1, . . . , n).
Let cn be the least common multiple of all integers k less than n.
Let us consider the following conditions
1a) α2cn−1 6≡ 1 (mod $E) holds,
1b) (n− 1)(a+ 1) < p− 1 holds.
Condition 1a) implies that the characters ψj : Dp → k× associated to R|Dp are mutually distinct

on the Frobenius element [p,Qp], while condition 1b) implies that the restrictions to the inertia

subgroup of the characters ψj are mutually distinct. In the following subsections devoted to the
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proof that Rn−1
∼= Tu

n−1, assumption 1a) is assumed (although we could have assumed 1b) instead).
However, in the application of this theorem to the determination of the Selmer group in later sections,
assumption 1b) seems unavoidable to the best of our knowledge, and will therefore be assumed.

Lemma 2.6. Assuming condition 1a) or 1b) , the functors D and Dλ′ are representable by universal
couples (Rn−1, r

univ) and (Rλ′ , r
univ
λ′ ) where Rn−1 and Rλ′ are objects of CNLO and runiv : ΓQ →

Gn(Rn−1) and runivλ′ : ΓQ → Gn(Rλ′) are continuous homomorphisms such that pr1 ◦runiv, resp.
runivλ′ is conjugate in 1 + mRn−1

Mn(Rn−1), resp. in 1 + mRλ′Mn(Rλ′), to
ψuniv1 (σ) ∗ . . . ∗

χ−1ψuniv2 (σ) . . .
. . .

χ−n+1ψunivn (σ)


with ψunivj lifting ψj (j = 1, . . . , n), resp.

ψunivλ′,1 (σ) ∗ . . . ∗
χ−1ψunivλ′,2 (σ) . . .

. . .

χ−n+1ψunivλ′,n (σ)


with the same lifting condition, and such that the restriction of ψunivλ′,j ◦ Artp to O×p is given by

x 7→ x−λ
′
n−j+1 (j = 1, . . . , n).

Proof. As noted above, the restriction of pr1 ◦R to the decomposition group Dp at p is upper trian-

gular and its diagonal is given by diag
(
unr(α)n−1,unr(α)n−3ω−a−1, . . . ,unr(α)−n+1ω−(n−1)(a+1)

)
.

Hence either assumption 1a), resp. 1b), assures that the characters on the diagonal are mutually dis-
tinct on Dp, resp. Ip. This is well known to assure that the functors D and Dλ′ satisfy Schlessinger’s
criterion for representability (see for instance [Ti02]). �

The ring Rn−1 has a natural structure of Λn−1-algebra given by the characters ψunivi : K×p →
R×n−1. More precisely, by identifying Zp = Op, we view the topological generator u of 1 + pZp as
topological generator of 1 + p. we then define the structural morphism Λn−1 → Rn−1 by sending
1 + Xi to ψunivn−i+1 ◦ Artp(u)−1 for i = 1, . . . , n − 1. Note that ψ1 is determined by the determinant

relation
∏n
i=1 χ

−i+1ψi = χ−n(n+1)/2.
Let Pλ′ be the prime ideal of Λn−1 defined as the kernel of the morphism

T ss1 → O×, diag(t1, . . . , tn) 7→ t
λ′1
1 · . . . · t

λ′n
n .

Lemma 2.7. For any λ′ congruent to ((n − 1)a, (n − 2)a, . . . , a, 0) modulo p − 1, the natural ring
homomorphism

Rn−1 → Rλ′

induces an isomorphism

Rn−1/Pλ′Rn−1
∼= Rλ′ .

Proof. It suffices to check for each j = 1, . . . , n that ψunivj ◦ Artp modulo Pλ′ is given on O×p by

x 7→ x−λ
′
n−j+1 . This is the case on 1 + p by definition of Pλ′ . This is also the case on O×p,tors = µp−1

since ψunivj is a lifting of ψj . �

Proposition 2.8. There is a unique lifting Rh : ΓQ → G(Tu
n−1), resp. Rhλ′ : ΓQ → Gn(Tλ′(U

0,1,O))

of R such that for any Hecke eigensystem θΠ′G
: Tu

n−1 → O′, resp. θΠ′G
: Tλ′(U

0,1,O) → O′ asso-

ciated to a cuspidal representation Π′G on G, one has θΠ′G
◦ Rh = RΠ′G

. By universal property,

the homomorphism Rh gives rise to a surjective Λn−1-algebra homomorphism φRh : Rn−1 → Tu
n−1.

Similarly, the homomorphism Rhλ′ gives rise to a surjective O-algebra homomorphism φRh
λ′

: Rλ′ →
Tλ′(U

0,1,O)
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Proof. The existence of Rh resp. Rhλ′ follows from [Ge10, Prop.2.74]. Its restriction to the inertia
group Iq at any prime divisor q of N is regular unipotent by Remark 2.2. Its ordinarity at p follows
from [Ge10, Cor.3.1.4]. This gives rise to ordered characters ψhi , i = 1, . . . , n lifting the ordered

characters ψ
h

i , i = 1, . . . , n and such that

pr1 ◦Rh|ΓKp
∼


ψh1 ∗ . . . ∗

χ−1ψh2 (σ) . . .
. . .

χ−n+1ψhn(σ)

 .

Actually, viewing the topological generator u of 1 + pZp as topological generator of 1 + p, we have

ψhn−i+1 ◦ Artp(u) = (1 + Xi)
−1 as the series (1 + Xi)

−1 interpolates the values u−λ
′
i at Xi = uλ

′
i .

The N -minimality of Rh follows from that of RΠ′G
for all Π′G’s occuring in Tu

n−1. By universal
property, this yields the existence of a unique ring homomorphism φRh : Rn−1 → Tu

n−1 such that

φRh ◦Runiv ∼ Rh. The relation φRh ◦ ψunivi = ψhi implies that φRh is Λn−1-linear.
The surjectivity of φRh and φRh

λ′
follows from the absolute irreducibility of R and Carayol’s

theorem : Tu
n−1 = Λn−1[TrRh|ΓK ] and Rn−1 = Λn−1[TrRuniv|ΓK ] hence Tu

n−1 = φRh(Rn−1).
Similarly for φRhλ′ �

Let λ′ ∈ Zn+ be an arbitrary regular dominant weight congruent to ((n − 1)a, (n − 2)a, . . . , a, 0)
modulo p− 1. We shall use the technique of classical Taylor-Wiles systems to prove that φRh

λ′
is an

isomorphism and that the rings Rλ′ and Tλ′ are local complete intersection over O. From this it
will be easy by varying λ′ to deduce that φRh is an isomorphism and that Rn−1 and Tu

n−1 are local
complete intersection over Λn−1.

We follow (in an easier situation) the proof of [Ge10, Section 3] which itself relies on calculations
of [CHT08, Section 3.5].

2.4. Galois cohomology. Let p > 2 and R = Symmn−1ρπ where π is holomorphic cuspidal on
GL2(Q), of square free conductor N and cohomological for a local system of highest weight a ≥ 0.
We assume it is p-ordinary. Therefore it occurs in a (unique) Hida family µ. We assume that ρπ
has big image and that it is N -minimal as above. We also assume 1a).

Note that the image R(c) of the complex conjugation c is conjugate in Gn(k) to (J−1
n , (−1)n)j

where Jn = antidiag(1,−1, . . . , 1, (−1)n−1) From this we have as in [CHT08, Lemma 2.1.3] :

Lemma 2.9. dimk(gln)c=1 = n(n− 1)/2.

Proof. For X ∈ Mn(k), we have AdR(c)(X) = J−1
n jXj−1Jn. We have J−1

n = (−1)n−1Jn = tJn
and jXj−1 = −tX, hence

AdR(c)(X) = X if and only if J−1
n X is antisymmetric. The subspace of these matrices has

dimension n(n− 1)/2. �

Let M = gln(k) = Adgln R and M∗ = Homk(M,k(1)) its k-Cartier dual. For N = M or M∗,
let h0(N) = dimk H0(ΓQ, N); for any place v of Q, and any fixed decomposition group Dv ⊂ ΓQ,
let hiv(M) = dimk Hi(Dv,M) (i = 0, 1, 2). Let Q = {q1, . . . , qr} be a finite set of primes disjoint of
those dividing Np such that for any i = 1, . . . , r, qi = viv

c
i splits in K. For any finite place v 6= p of

Q with v /∈ Q, let

LQ,v = Lv(M) = H1
unr(Γv,M) = Ker(H1(Γv,M)→ H1(Iv,M)) = Ker(H1(Dv/Iv,M

Iv )

for each v ∈ Q, let LQ,v ⊂ H1(Dv,M) to be specified later in such a way that dimk LQ,v−h0
v(M) = 1.

We also put L∞ = 0 and

LQ,p = Lp(M) = Im(L′p(M)→ H1(Γp,M)

where L′p(M) = Ker(H1Γp, F
0M)→ H1Γp, F

0(M)/F 1(M))).

For any place v of Q, let L⊥Q,v be the orthogonal in H1(Dv,M
∗) of LQ,v ⊂ H1(Dv,M) for the

local Tate duality H1(Dv,M) × H1(Dv,M
∗) → k. When LQ,v = H1

unr(Γv,M), one has L⊥Q,v =

H1
unr(Γv,M

∗). Moreover it is easy to check that Lp(M)⊥ = Lp(M
∗) associated to the p-ordinarity
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filtration of M∗ given by F i(M∗) = (F b−a+1−i(M))⊥ where a, resp. b is the smallest, resp. largest
weight of F •(M) (that is, F a(M) = M 6= F a+1(M), and F b(M) 6= 0 but F b+1(M) = 0). Let
LQ = (LQ,v)v and L⊥Q = (L⊥Q,v)v. We define the Selmer groups

H1
LQ(M) = Ker

(
H1(Γ,M)→

⊕
v

H1(Dv,M)/LQ,v

)

and

H1
L⊥Q

(M∗) = Ker

(
H1(Γ,M∗)→

⊕
v

H1(Dv,M
∗)/L⊥Q,v

)
They are finite and their cardinalities are denoted by h1

LQ(M) resp. h1
L⊥Q

(M∗). The Poitou-Tate

Euler characteristic formula, as formulated for instance in [DDT94, Theorem 2.18], yields

h1
LQ(M)− h1

L⊥Q
(M∗) = h0(M)− h0(M∗) +

∑
v

(dimk LQ,v − h0
v(M)).

Proposition 2.10. We have:
(i) dimk LQ,` − h0

`(M) = 0 for any ` /∈ Q and ` 6= p,
(ii)dimk LQ,q − h0

q(M) = 1 for q ∈ Q,

(iii) dimk LQ,p − h0
p(M) ≤ n(n− 1)/2, (this uses 1a) and 1b)).

(iv) h0
∞ = h0(D∞,M) = n(n− 1)/2

(v) h0(M) = 0 = h0(M∗) = 0.
It follows that

h1
LQ(M)− h1

L⊥Q
(M∗) ≤ ]Q = r.

Proof. From the Poitou-Tate Euler characteristic formula, the last inequality follows from the four
first formulas. The first equality is clear from the exact sequence

0→ H0(D`,M)→M I` F`−1→ M I` → H1(D`/I`,M
I`)→ 0.

Let us check the inequality at p. We proceed as in [GeTi05, Lemma 10.4.4]. Let bn, nn, tn be the
Lie algebras of the upper triangular, upper unipotent subgroup, resp. of their quotient. We have an
exact sequence

H0(Dp, nn)→ H0(Dp, bn)→ H0(Dp, bn/nn))→ H1(Dp, nn)→ H1(Dp, bn)→ H1(Dp, bn/nn))

Moreover, we also have an exact sequence

0→ H1(Dp/Ip, bn/nn)→ H1(Dp, bn/nn)→ H1(Ip, bn/nn)

By assumptions 1a) and 1b), we have h0(Dp, nn) = 0 and h2(Dp, nn) = h0(Dp, n
∨
n(1)) = 0. There-

fore, we have Lp(M)′ = Lp(M) and

h0(Dp, bn)− h0(Dp, bn/nn) + h1(Dp, n)− dimk LQ,p + h1(Dp/Ip, bn/nn) = 0

By cyclicity of Dp/Ip, we have h0(Dp, bn/nn) = h1(Dp/Ip, bn/nn). Moreover By Tate local duality,
we have

h0(Dp, nn)− h1(Dp, nn) + h2(Dp, nn) = −dimk nn

Hence h1(Dp, nn) = dimk nn. We conclude that dimk LQ,p − h0(Dp, bn) = dimk nn = n(n− 1)/2. It
implies dim LQ,p − h0(Dp, gln) ≤ n(n− 1)/2 as desired. Satement (iv) follows from 2.9. Statement

(v) follows from the fact that M (and M∗) is the sum of the irreducible Γ-modules Ajµ = Ajµ(k)

(j = 1, . . . , n− 1) which satisfy H0(Γ,Ajµ) = 0 since 2j < p and SL2(k′) ⊂ Im ρπ ⊂ GL2(k′). �
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2.5. Application of Chebotarev density theorem. LetM = gln(k). Let r = dimk H1
L⊥∅

(ΓQ,M
∗).

For q prime to Np splitting in K, let X2 − aπ,qX + qa+1 = (X − αq)(X − βq), where αq, βq ∈ k.

We write R|Dq = ψq ⊕ sq where ψq = unr(αq)
n−1 and sq is the unramified Dq-module given by

the sum of all eigenspaces corresponding to the other eigenvalues αn−iq β
i

q, i 6= 0. We assume that

(αq/βq)
cn−1 6≡ 1 (mod mE) so that the eigenvalues αn−iq β

i

q, i = 0, . . . , n − 1 are mutually distinct.

Therefore sq does not contain ψq as Dq-submodule. Given a finite set of primes q prime to Np, split
in K as above and such that q ≡ 1 (mod p), let us define

LQ,q = H1(Dq/Iq,Ad sq)⊕H1(Dq,Adψq)

We notice as in [CHT08, Section 2.4.6] the obvious

Lemma 2.11. We have dimk LQ,q − h0
q(M) = dimk H1(Iq,Adψq)

Dq = 1.

Using LQ = (LQ,v)v with LQ,v as before for v /∈ Q, and the definition above for v ∈ Q, we
define H1

LQ(ΓQ,M) and H1
L⊥Q

(ΓQ,M
∗). Note that, as in [CHT08, Prop.2.4.9], we have a short exact

sequence

0→ H1
L⊥Q

(ΓQ,M
∗)→ H1

L⊥(ΓQ,M
∗)→

⊕
q∈Q

H1(Dq/Iq,Adψq(1))

given by the maps ωq : [c] 7→ [cq] for q ∈ Q, where, for any σ ∈ Dq

cq(σ) = prψq ◦ c(σ) ◦ iψq
where iψq is the inclusion of the ψq-line and prψq is the projection onto this line parallely to sq.

Moreover, each term of the right hand side sum is one-dimensional.

Theorem 2.12. For any m ≥ 1 there exists a set Qm of primes q splitting in K, say, (q) = qqc,
and relatively prime to Np, such that

• ]Qm = r
• for any q ∈ Qm, one has q ≡ 1 (mod pm)
• H1

L⊥Qm
(ΓQ,M

∗) = 0

• for any q ∈ Qm, R(Frobq) has distinct eigenvalues in k.

Proof. We follow the proof of [CHT08, Proposition 2.5.9]. Let us first assume that we chose primes
q which split totally in K(ζpm) and such that R(Frobq) has distinct eigenvalues in k. The condition
H1
L⊥Qm

(ΓQ,M
∗) = 0 is implied by the isomorphism

H1
L∅(ΓQ,M

∗) ∼=
⊕
q∈Qm

H1(Dq/Iq,Adψq)

of the sum of the maps ωq defined above Since M ∼= M∨, we have M ∼= M∗ as ΓQ(ζp)-modules. For

this, it is enough to show that for each non-zero class [c] ∈ H1
L∅(ΓQ,M

∗) there is a prime q such

that ωq([c]) ∈ H1(Dq/Iq,Adψq) is non-zero.

By Chebotarev density theorem, it is enough to find for each non zero class [c] ∈ H1
L∅(ΓQ,M

∗)

an element σ ∈ ΓQ such that σ|K(ζpm ) = 1, R(σ) admits an eigenvalue γ with multiplicity 1, and

prγ ◦c(σ) ◦ iγ 6= 0 where iγ is the injection of the γ-eigenspace of R(σ) into the space of R and prγ
the projection to this eigenspace.

Let Fm be the extension of K(ζpm) cut out by AdR, that is, the field fixed by the kernel of

AdR|ΓFm . Let us show that c(ΓFm) 6= 0. By the inflation-restriction exact sequence

H1(Gal(Fm/Q),AdR)→ H1(ΓQ,AdR)→ Hom(ΓFm ,AdR)

it suffices to see that H1(Gal(Fm/Q),AdR) = 0. Consider the inflation-restriction exact sequence

0→ H1(Gal(F0/Q),AdR
Gal(Fm/F0)

)→ H1(Gal(Fm/Q),AdR)→ H1(Gal(Fm/F0),AdR)ΓQ

Since F1/F0 is of degree prime to p, we have

H1(Gal(Fm/F0),AdR)ΓQ = Hom(Gal(Fm/F1),AdR
ΓQ

)
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but AdR
ΓQ

= 0 (by bigness), hence the right hand side vanishes. Similarly, Gal(Fm/F0) acts trivially
on V and H1(Gal(F0/Q),AdR) vanishes by bigness (see [CHT08, Cor. 2.5.4]).

Now, we consider c(ΓQ(ζpm )) as a Gal(Fm/Q(ζpm))-submodule of AdR. Note that Gal(Fm/Q(ζpm))

contains PSL2(k′) hence there exists g ∈ Gal(Fm/Q(ζpm)) of order not dividing p fixing a non zero

element of c(ΓQ(ζpm )); we can even assume that g acting on AdR has distinct eigenvalues in k,
again by bigness of ρπ, provided that p − 1 does not divide cn−1. Let σ0 ∈ ΓQ(ζpm ) lifting g and
let σ = τσ0 where τ ∈ ΓFm is such that c(σ) = c(τ) + c(σ0) /∈ (σ0 − 1)V . Such a τ exists because
c(ΓQ(ζpm )) 6⊂ (g − 1)AdR. The corresponding element σ satisfies the desired conditions for some

γ ∈ k×. �

For q ∈ Qm, let X2−aπ,qX+qa+1 = (X−αq)(X−βq), where αq, βq ∈ k. We write R|Dq = ψq⊕sq
where ψq = unr(αq)

n−1 and sq is the unramified Dq-module given by the sum of all eigenspaces

corresponding to the other eigenvalues αn−iq β
i

q, i 6= 0. Note that sq does not contain ψq as Dq-
submodule. We define

LQm,q = H1(Dq/Iq,Ad sq)⊕H1(Dq,Adψq)

We notice as in [CHT08, Section 2.4.6] the obvious

Lemma 2.13. We have dimk LQm,q − h0
q(M) = dimk H1(Iq,Adψq)

Dq = 1.

Using LQm = (LQm,v)v with LQm,v as before for v /∈ Qm, and the definition above for v ∈ Qm,
we define H1

LQm (ΓQ,M) and H1
L⊥Qm

(ΓQ,M
∗).

Corollary 2.14. For any set Qm as above, one has dimk H1
LQm (ΓQ,M) ≤ ]Qm = r.

2.6. Construction of a Taylor-Wiles system. Recall we fixed in Definition 2.1 a level subgroup

U ⊂ G(Ẑ) of level N . Let Q be a finite set of primes q splitting in K such that q ≡ 1 (mod p) and
(αq/βq)

cn−1 6≡ 1 (mod mE). Let ∆q be the p-Sylow of (Z/qZ)×. We write (Z/qZ)× = ∆q×∆p
q . For

each q ∈ Q, q = qqc, we fix an isomorphism iq : Uq ∼= GLn(Oq); we identify Oq/q = Z/qZ. Let

U ′q = {g ∈ Uq; iq(g) ≡
(
gn−1 ∗

0 δ

)
(mod q) δ ∈ ∆p

q , gn−1 ∈ GLn−1(Oq)}

We also write U ′q = iq(U ′q). We also consider the parahoric group

Uq,0 = {g ∈ Uq; iq(g) ≡
(
gn−1 ∗

0 δ

)
(mod q) δ ∈ (Z/qZ)×, gn−1 ∈ GLn−1(Oq)}

associated to the maximal parabolic subgroup P ⊂ GLn fixing the line < en >. Note that Uq,0/U
′
q
∼=

∆q. Let U ′Q =
∏
q∈Q U

′
q × UQ, UQ,0 =

∏
q∈Q Uq,0 × UQ and ∆Q =

∏
q∈Q ∆q. Note that UQ,0/U

′
Q =

∆Q. Let hn−1,Q, resp. h̃n−1,Q, be the (cuspidal) Hida Hecke algebra of auxiliary level group U ′Q
excluding the Hecke operators at NQ, resp.including the Atkin-Lehner Hecke operators Uq,i at q ∈ Q.
This is naturally an O[∆Q]-algebra. We denote by aQ = ([δ]− 1, δ ∈ ∆Q) the augmentation ideal of
O[∆Q].

If we put U b,cQ = U ′Q ∩ U b,c, we note that these algebras both act faithfully on e · SQ(E/O) =

lim−→c
e · Sλ(U c,cQ ;E/O) (where λ is an arbitrary dominant weight, for instance λ = 0). By using the

diamonds of weight 0, one endows these O-algebras with a structure of Λn−1 = O[[T ss1 ]]-algebra.
We have a morphism hn−1,Q → hn−1 which factors through hn−1,Q → hn−1,Q/aQhn−1,Q.

For any fixed dominant weight λ′ congruent to ((n− 1)a, (n− 2)a, . . . , a, 0), we also consider the

Hecke algebras e · hλ′(U0,1
Q ,O), resp. e · h̃λ′(U0,1

Q ,O) of weight λ′. Recall that

hn−1,Q/Pλ′hn−1,Q → e · hλ′(U0,1
Q ,O)

is a surjection with nilpotent kernel. Let mQ be the maximal ideal of hn−1,Q associated to the residual

representation R. Let Tn−1,Q = (hn−1,Q)mQ resp. Tλ′,Q = e · hλ′(U0,1
Q ,O)mQ be the corresponding

localization-completion. We denote by RhQ : ΓQ → Gn(Tn−1,Q) the lifting of R constructed as Rh =

Rh∅ over Tu
n−1 = Tn−1,∅. Similarly for Rhλ′,Q : ΓQ → Gn(Tλ′,Q).
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For q ∈ Q and for β ∈ K×q , we define compatible Frobenius Hecke operators

qV
c,c
β = i−1

q

(
U ′q

(
1n−1 0

0 β

)
U ′q

)
× (U c,cQ )q

It defines an endomorphism of S0(U c,cQ ,O)mQ . We fix a lifting φq of the geometric Frobenius to

Qq given by the Artin symbol [q,Qq] on Qabq . Let Tc,c
n−1,Q = e · h0(U c,cQ ;O)mQ and Let Rc,cQ : ΓQ →

Gn(Tc,c
n−1,Q) be the push-forward of RhQ via the surjective homomorphism Tn−1,Q → Tc,c

n−1,Q. Let

Ac,cq be the unique root of Char Rc,cQ (φq) in Tn−1,Q lifting the root αn−1
q ∈ k× of Char R(φq). By

Hensel’s lemma, for any c ≥ 1 we have factorizations in Tc,c
n−1:

Char Rc,c(X) = (X −Ac,cq )Qc,cq (X).

Let Y c,cQ =
∏
q∈QQ

c,c
q (qV

c,c
q )eS0(U c,cQ ,O)mQ ; it is the largest e·h0(U c,cQ ;O)mQ [(qVq)q∈Q]-submodule

of S0(U c,cQ ,O)mQ on which for any q ∈ Q, qV
c,c
q −Ac,cq is topologically nilpotent. Let Tn−1(Y c,cQ ) be

the image of e ·h0(U c,cQ ;O)mQ in EndO(Y c,cQ ). We denote by RY c,cQ
be the image of the representation

Rh by the projection Tu
n−1 → Tn−1(Y c,cQ ). Recall that by [CHT08, Prop.3.4.4, 8] (here our level

groups U ,c,cQ play the role of the group U there).

Proposition 2.15. For any c ≥ 1,

• for any β ∈ K×q ∩Oq, we have qV
c,c
β ∈ Tn−1(Y c,cQ ), and X − qV

c,c
q divides Char Rc,c(φq) in

Tn−1(Y c,cQ )[X].

• The map given by qV
c,c([β,Qq]) = qV

c,c
β for β ∈ K×q ∩Oq extends into a continuous character

qV
c,c : Dq → (Tn−1(Y c,cQ ))× and we have

Rc,cY |Dq = sq ⊕ qV
c,c

where sq in unramified of rank n− 1.

Proof. We refer to [CHT08, Prop.3.4.4, 8] for the details; we simply mention that the proof relies
on [CHT08, Lemma 3.1.5] which analyzes the q-component of a cuspidal representation occuring
in Tn−1(Y c,cQ ); the possibility of a partial Steinberg component is excluded by the condition q ≡ 1

(mod p). �

Actually, by Hensel’s lemma one can even define a unique root Aq ∈ Tn−1,Q of Char Rh(φq)
congruent to αn−1

q modulo the maximal ideal such that

Char Rh(X) = (X −Ac,cq )Qq(X)

with Qq(X) ∈ Tn−1,Q[X] and Qq(Aq) ∈ T×n−1,Q. For any c ≥ 1, Aq interpolates the Ac,cq via the

morphisms Tn−1,Q → Tc,c
n−1,Q. For any β ∈ K×q ∩ Oq, the operators qV

c,c
β are compatible when

c ≥ 1 varies; they give rise to an element qVβ ∈ Tn−1,Q and to a continuous homomorphism

Dq → T×n−1,Q.

One can then define a subspace YQ ⊂ SQ(E/O)mQ by YQ =
∏
q∈QQq(Vq)SQ(E/O)mQ such that for

any c ≥ 1, one has YT
ss
c

Q = Y c,cQ ⊗Qp/Zp via the identification

ST
ss
c

Q = e · S0(U c,c;E/O).

We conclude from 2.15 that for any q ∈ Q,

RhQ|Dq = sq ⊕ qV.

where sq is unramified and qV ([q,Qq]) = Aq.
Let DQ be the deformation subfunctor of D imposing that for any q ∈ Q, the liftings r ∈ DQ(A)

of R when restricted to Dq are of the form

sq ⊕A(ψq)
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where sq is unramified of rank n− 1 and lifts sq, and qVq : Dq → A× is such that ψq([q,Qq]) ≡ αn−1
q

(mod mA). Let Rn−1,Q be the universal deformation ring of DQ. It is endowed with a universal
lifting

RunivQ : ΓQ → Gn(RunivQ )

and characters ψunivq : Dq → (RunivQ )× such that

RunivQ |Dq = sunivq ⊕ ψunivq .

where sunivq is unramified and lifts sq,and ψunivq ([q,Qq]) lifts the root αn−1
q ∈ k× of R(Frobq).

Similarly, we have
Rhλ′,Q : ΓQ → Gn(Tλ′,Q)

such that for any q ∈ Q,
Rhλ′,Q|Dq = shλ′,q ⊕ ψhλ′,q.

where ψhλ′,q = qV
0,1
q . By Proposition 2.15, these automorphic liftings give rise to surjective ring

homomorphisms
Rn−1,Q → Tn−1,Q(YQ) andRλ′,Q → Tλ′,Q(YQ)

sending RunivQ to RhQ and ψunivq to qVq, resp. Runivλ′,Q to Rhλ′,Q and ψunivλ′,q to qV
0,1
q . Let mRn−1,Q

resp.
mRλ′,Q be the maximal ideal of Rλ′,Q. Note that we have canonically

mRn−1,Q
/(mO + m2

Rn−1,Q
) = mRλ′,Q/(mO + m2

Rλ′,Q
)

and that the k-dual of this space is canonically isomorphic to H1
LQ(ΓQ,M). Moreover, it follows

from 2.14 that

Corollary 2.16. For any set Qm as above and for r = dimk H1
L∅(ΓQ,M), one has

dimk mRn−1,Qm
/(mO + m2

Rn−1,Qm
) = dimk H1

LQm (ΓQ,M) ≤ ]Qm = r

2.7. End of the proof. We first fix a regular dominant weight λ′ congruent modulo p − 1 to
((n− 1)a, (n− 2)a, . . . , a, 0). We assume either 1a) or 1b), so that the characters on the diagonal of
Symmn−1ρµ|Dd are mutually distinct. We consider the diagram of morphisms

Rλ′,Qm → Tλ′,Qm(YQm)
↓ ↓
Rλ′ → Tλ′(U

0,1,O)

The first line is O[∆Qm ]-linear. Let Mλ′,Qm be the Pontryagin dual of YQm and Mλ′,0,Qm be the
Pontryagin dual of the analogue YQm,0 of YQm obtained by replacing the level group UQm by UQm,0.
Similarly, let Mλ′,∅ be the Pontryagin dual of e · Sλ′(U0,1, E/O)m. We know that Mλ′,Qm is free of
finite rank over O[∆Qm ] and admits a faithful action of Tλ′,Qm(YQm). By [Ge10, Lemma 2.2.6], we
have

Mλ′,Qm/aQmMλ′,Qm
∼= Mλ′,0,Qm

One also knows that
Rλ′,Qm/aQmRλ′,Qm

∼= Rλ′

By Cor.2.14, there are surjections in CNLO :

O[[Y1, . . . , Yr]]→ Rλ′,Qm

Let Ψm : be the composition

O[[Y1, . . . , Yr]]→ Rλ′,Qm → Rλ′

We also have surjections
O[[Z1, . . . , Zr]]→ O[∆Qm ]

whose kernels nm satisfy
⋂
m nm = (0). We can lift the map

O[[Z1, . . . , Zr]]→ O[∆Qm ]→ Rλ′,Qm

to a map
Φm : O[[Z1, . . . , Zr]]→ O[[Y1, . . . , Yr]]
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The composition

Ψm ◦ Φm : O[[Z1, . . . , Zr]]→ Rλ′/mORλ′

has kernel (Z1, . . . , Zr) + mO.
On the other hand, it follows from [CHT08, Cor.3.1.5] that we have a Hecke linear isomorphism

Mλ′,Qm,0
∼= Mλ′,∅

so that

Mλ′,Qm/aQmMλ′,Qm
∼= Mλ′,∅

One can now apply Diamond-Fujiwara’s version of the Taylor-Wiles machine (see Th.2.1 of [Dia97]
as at the end of the proof of [CHT08, Theorem 3.5.1] to conclude that the morphism

Rλ′ → Tλ′(U
0,1,O)

is an isomorphism in CNLO, that Mλ′,∅ is free over Tλ′(U
0,1,O) and that these algebras are local

complete intersection.
In order to deduce that Rn−1 → Tu

n−1 is an isomorphism of Λn−1-algebras and that they are
local complete intersection, we proceed as in [Ti06, Sect.3.2]. We choose a regular dominant weight
λ′ congruent to ((n− 1)a, . . . , a, 0) and we consider the diagram

Rn−1/PRn−1 → Tu
n−1/PTu

n−1

↓ ↓
Rλ′ → Tλ′(U

0,1,O)

where P = Pλ′ . We know that the bottom line is an isomorphism and that the first column
is an isomorphism. It follows that the first line is an isomorphism. and that Tu

n−1/PTu
n−1

∼=
Tλ′(U

0,1,O) is contained in PRn−1. Moreover, by Hida’s control theorem Mn−1/PMn−1 = Mλ′,∅;
hence Mn−1/PMn−1 is free over Tu

n−1/PTu
n−1. This implies by Nakayama’s lemma that Mn−1

is free over Tun−1 (use that Mn−1 is free over Λn−1 by Hida theory). In particular, Tu
n−1 is free

over Λn−1. From this we can deduce by a similar argument that the injectivity of Rn−1/PRn−1 →
Tu
n−1/PTu

n−1 implies the injectivity of Rn−1 → Tu
n−1. Since P is generated by a regular sequence in

Λn−1 and since Tu
n−1/PTu

n−1 is local complete intersection over Λn−1/P , the same holds for Tu
n−1

over Λn−1.

3. Proof of Theorem 1.3

3.1. The case j = 3. The proof of Theorem 1.3 makes use of the Symm3 base change from GL2(Q)
to GSp4(Q) as established in [RS07]. The level of the Symm3 of a newform of squarefree Iwahori
level is still squarefree Iwahori [RS07]. Let h2 be the Hida Hecke algebra constructed in [TU99] (see
also [H02] or [Ti06]). It is a finite torsion-free algebra over Λ2 = Zp[[X1, X2]]. Calculations detailed
in [Con16a, Section 3.3] describe the only possible homomorphism

H(GSp4)Np ⊗Hp(GSp4)Iw,− → H(GL2)Np ⊗Hp(GL2)Iw,−

between our abstract Hecke algebras, deduced from the base change map from GL2 to GSp4 and
compatible with the ordinarity condition. In fact, in [Con16a, Proposition 3.3.5], A. Conti defines
eight homomorphisms λNp ⊗ λp,i, i = 1, . . . , 8 in the context of finite slope case, but only the
first is compatible with our ordinarity assumption. It provides a commutative diagram of algebra
homomorphisms

h2
θ→ h1

↑ ↑
Λ2 → Λ1

the bottom homomorphism is induced on the highest weights of local systems by n ≥ 0 7→ (a, b)
where a ≥ b ≥ 0 are given by a = 2n and b = n. Here, n ≥ 0 corresponds to the irreducible
representation SymmnSt2 of highest weight n of GL2(Q) and (a, b) corresponds to the similar Weyl
representation of GSp4(Q). For any prime ` not dividing Np, let the universal genus 2 Hecke
polynomial at `

P
(2)
` (X) = X4 − T`X3 + `(R` + (1 + `2S`))X

2 − `3T`S`X + `6S3
`
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where the coefficients are given by the universal Hecke operators with the notations of Conjecture
2 Section 7 of [TU99]. Then,the homomorphism θ is defined as follows. For any prime ` not

dividing Np, it send the coefficients of P
(2)
` (X) to those of the symmetric cube Symm3P

(1)
` =

(X − U3
` )(X − U2

` V`)(X − U`V 2
` )(X − V 3

` ) of the genus 1 universal Hecke polynomial P
(1)
` = X2 −

T`X + `S` = (X −U`)(X − V`). For ` = p, let Up,1, resp. Up,2, be the double class of diag(p, p, 1, 1),
resp. diag(p, p2, p, 1), for the Iwahori subbgroup of GSp4(Zp). Then by standard calculations (see
[Con16a, Proposition 3.3.5 and Corollary 3.3.9], we see that θ sends Up,1 to U3

p . and Up,2 to U4
p

Let T2 be the localization of h2 at the maximal ideal associated to Symm3ρµ ; the morphism θ

factors through T2 → T1. Let λ = µ◦θ. Let T̃2 = T2⊗Λ2 Ã1 Let us still denote by the same letters

the homomorphisms obtained by extensions of scalars to Ã1 :

T̃2
θ→ T̃1

µ→ Ã1

and their composition λ = µ ◦ θ. Let us recall Theorem 4.2 of [Pi12b] (especially, in the context of
deformations of a residual representation Symm3ρµ, treated in section 5.8.2 of this paper). Let R2

be the minimal p-ordinary universal deformation ring of Symm3ρµ.

Theorem 3.1. Assuming the assumptions (∗) and that either α12 6≡ 1 (mod mA1
) or 3(a+1) < p−1,

we have R2 = T2 and T2 is local complete intersection over Λ2 ; moreover it is finite flat over Λ2.

Note that the auxiliary level of h2 is Iwahori of the same squarefree level N as h1.
Note that the theorem implies that T2 → T1 is surjective.

The Λ1-algebra T̃2 is reduced and we have quasi-splittings of µ, θ and λ :

(1) T̃1 ⊗Ã1
K1
∼= K1 × T̃′µ,K1

(2) T̃2 ⊗Ã1
K1
∼= (T̃1 ⊗Ã1

K1)× T̃′θ,K1

(3) T̃2 ⊗Ã1
K1
∼= K1 × T̃′λ,K1

.

Let T̃′θ, resp. T̃′λ, be the image of T̃2 by the second projection in (2), resp. in (3). Besides the ideal
cµ already defined, one can define two other congruence ideals :

cθ = T̃2 ∩ (T̃1 × {0T̃′θ
})

and
cλ = T̃2 ∩ (Ã1 × {0T̃′λ

}).

Corollary 3.2. Assume (∗).
1) Assume either α12 6≡ 1 (mod mA1) or 3(a + 1) < p − 1, then the ideals cλ, cµ and λ(cθ) are

principal and we have the relation
cλ = cµλ(cθ)

Proof. We know that Ti is local complete intersection over Λi (i = 1, 2). By flatness of Ã1 over Λ1,

it follows that T̃i (i = 1, 2) are local complete intersection over Ã1. Thus, statement follows from
8.5 and 8.8. �

Proposition 3.3. 2) If one assumes that 3(a+1) < p−1, the ideal cλ is generated by Char(Sel(Adsp4ρµ)).

Proof. Let L be the composition of the isomorphism R2 → T2 with λ : T2 → A1,R̃2 = R2 ⊗Λ2
Ã1

and L̃ : R̃2 → Ã1 the composition of L⊗ IdÃ1
with the multiplication A1⊗ Ã1 → Ã1. By flatness of

Ã1 over Λ1, we see that R̃2 is local complete intersection over Ã1. We first apply 8.7 to see that the

principal ideal cλ coincides with the reflexive envelope of Fitt0(C1(L̃, Ã1)). It remains to see that

C1(L̃, Ã1) ∼= Sel(Adsp4
ρµ)

It is only to prove this that we also need to assume 3(a+ 1) < p− 1. Indeed, let I = Ker(Λ2 → Λ1).
It is a principal ideal, say I = (ξ). The quotient R′2 = R2/ξR2 is local complete intersection over
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Λ1 and is the deformation ring of symplectic N -minimal ordinary deformations whose Hodge-Tate

weights are of the form (3h, 2h, h, 0). We have ΩR2/Λ2
⊗Λ2

Ã1 = ΩR′2/Λ1
⊗Λ1

Ã1. By flatness of Ã1

over Λ1, we conclude

ΩR2/Λ2
⊗Λ2

Ã1 = ΩR̃2/Ã1
.

Let us now compute the Pontryagin dual of C1(L̃, Ã1):

C1(L̃, Ã1)∗ = HomR2
(ΩR̃2/Ã1

, Ã∗1) = HomR2
(ΩR2/Λ2

⊗Λ2
Ã1, Ã

∗
1)

= HomR2(ΩR2/Λ2
, Ã∗1) = DerΛ2(R2, Ã

∗
1)

Let R2(Ã∗1) = R2 ⊕ ε · Ã∗1 with ε2 = 0, then

DerΛ2(R2, Ã
∗
1) = HomL(R2(Ã∗1), Ã∗1) = {ρ ∈ D(R2(Ã∗1)); ρ(σ) = (1 + ε · c(σ))ρuniv(σ)}/ ∼ .

The map ρ 7→ c induces an injective map Φ from this set (which happens to be a group) to the group

of cohomology classes [c] ∈ H1(ΓQ, gln(A1)⊗A1 Ã
∗
1). The image of Φ is contained in the subgroup of

the cohomology classes such that for ` dividing N , c(I`) = 0 (this is the N -minimality condition) and

such that c|Ip takes values, up to conjugation, in n+
n (A1)⊗A1

Ã1 where n+
n (A1) = Fil1Ad (Symm3ρµ)

is the upper nilpotent subgroup of gln(A1) = Ad (Symm3ρµ). This is the min-ord condition. Note
that if ρ is upper triangular on Ip it is still so on Dp. The condition

(1b) 3(a+ 1) < p− 1

has not yet been used. Recall it is equivalent to saying that the characters on the diagonal of
Symm3 ρµ|Ip are mutually distinct. This condition implies the surjectivity of Φ. Indeed, any cocycle
c define a unique conjugacy class [ρ] of liftings of ρWe need to check that [ρ] defines a deformation

in D(R2(Ã∗1)); it amounts to verifying that the characters defined by ρ|Dp are in the right order on
the full decomposition group, knowing that they are in the right order on the inertia at p. This is
precisely what condition (1b) imposes.

�

On the other hand, for p > 3, we have a decomposition of Zp-representations of GL2 : Adsp4
=

A1 ⊕A3. This implies a decomposition of minimal p-ordinary Selmer groups

Sel(Adsp4
ρµ) = Sel(A1

µ)⊕ Sel(A3
µ).

Since we know that cµ = (Char Sel(A1
µ)) and cλ = Char(Sel(Adsp4

ρµ)), we conclude by division

Corollary 3.4. The ideal λ(cθ) is principal generated by Char(Sel(A3
µ)).

By definition, the associated primes of λ(cθ) in in Ã1 are congruence primes between Symm3(µ)
and Siegel families which are not Symm3 of GL2(Q) families. Because of the Greenberg-Iwasawa
conjecture, it is natural to conjecture that the (not yet constructed) p-adic L function ofA3

µ generates
the ideal λ(cθ), hence controls then congruences of the above type. This understands a decomposition
(not only up to algebraic numbers but up to p-adic units in a number field) of periods according to
the decomposition

L(Adsp4(µ), s) = L(A1
µ, s)L(A3

µ, s).

3.2. The case j = 2. In order to treat the case j = 2, we assume that the integer a associated to
T1 (hence to µ) satisfies 3(a+ 1) < p− 1. We also use another decomposition of Zp-representations
of GL2 (valid if p > 3) :

Adsl4 = A1 ⊕A2 ⊕A3

The general formulas over Zp are actually

Adslm =

m−1⊕
i=1

Ai
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for any m ≥ 2, provided p > m− 1, and

Adsp2m
=

m⊕
j=1

A2j−1

for any m ≥ 1 provided p > 2m− 1.
As already mentioned, the Symm3 base change to GL4(Q) is established by Kim. Recall that we

fixed a squarefree level N and a prime factor q1 thereof. As above, we choose an auxiliary imaginary
quadratic field in which p and q1 split. We then choose a degree 16 skew field of center K with
second kind involution, which ramifies exactly at those two primes. There exists a unitary group U(4)
compact at infinity, quasi split at all inert primes. By Arthur and Clozel, automorphic forms can
be transfered from GL2(Q) to U(4). In his thesis [Ge10], D. Geraghty defined a Hida Hecke algebra
hu3 associated to U(4) which is finite torsion free over the Iwasawa algebra Λ3 = Zp[[X1, X2, X3]].
At this stage, it is better to write hs2 for the Hecke algebra for symplectic forms previously denoted
h2, in order to distinguish unitary and symplectic group Hecke algebras. The Symm3 base change
provides a ring homomorphism hu3 → h1 with a commutative diagram

hu3 → h1

↑ ↑
Λ3 → Λ1

The bottom map is induced by n 7→ (λ1, λ2, λ3) where λ1 ≥ λ2 ≥ λ3 ≥ 0 are given by λ1 = 3n,
λ2 = 2n and λ3 = n. But we need a more precise information about this diagram. For this, we note
that the base change from GSp4 to GL4 has also been established [Mok14], so that there is also a
commutative diagram of ring homomorphisms

hu3
θ′→ hs2

θ→ h1
µ→ A1

↑ ↑ ↑ ↑
Λ3 → Λ2 → Λ1 = Λ1

where the first bottom arrow is given by (a, b) 7→ (λ1, λ2, λ3) where a ≥ b ≥ 0 and λ1 ≥ λ2 ≥ λ3 ≥ 0
are given by λ1 = a + b, λ2 = a and λ3 = b. Let Tu

3 be the localization of hu3 at the maximal
prime corresponding to Symm3ρµ. The morphism θ′ factors through Tu

3 and is still denoted as

θ′ : Tu
3 → Ts

2. Let λ′ = λ ◦ θ′. Let T̃u
3 = Tu

3 ⊗Λ3 Ã1. We tensorize the morphisms by Ã1 (without

changing the notation) and we get Ã1-algebra homomorphisms

T̃u
3
θ′→ T̃s

2
λ→ Ã1

Let G4 = (GL4 × GL1) o {1, j} where j(g, ν)j−1 = (νtg−1, ν). Let R3 be the minimal p-ordinary
universal ring of deformations ρ : GQ → G4(B) of Symm3ρµ : GQ → GL4(k). By treating a simpler
case than in [Ge10], we prove

Theorem 3.5. Assuming (∗) and either α12 6≡ 1 (mod mA1
) or 3(a+1) < p−1, we have R3 = Tu

3 ,
and this ring is local complete intersection over Λ3 ; in particular it is finite flat over Λ3.

Again, the Λ1-algebra T̃u
3 is reduced and we have quasi-splittings of (λ and) θ′ and λ′ :

(2′) T̃u
3 ⊗Ã1

K1
∼= (T̃s

2 ⊗Ã1
K1)× T̃′θ′,K1

(3′) T̃u
3 ⊗Ã1

K1
∼= K1 × T̃′λ′,K1

.

Let T̃′θ′ , resp. T̃′λ′ , be the image of T̃u
3 by the second projection in (2′), resp. in (3′). Besides the

ideal cµ already defined, one can define two other congruence ideals :

cθ′ = T̃u
3 ∩ (T̃s

2 × {0T̃′
θ′
})

and
cλ′ = T̃u

3 ∩ (Ã1 × {0T̃′
λ′
}).

The formalism of Sections 8.3-8.5 yields the following
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Corollary 3.6. Assume (∗).
1) Assume either α12 6≡ 1 (mod mA1) or 3(a + 1) < p − 1, then the ideals cλ′ , cλλ(cθ′) and cθ′

are principal and we have the relation

cλ′ = cλλ(cθ′).

2) If one assumes 3(a+1) < p−1, one has moreover that cλ′ is generated by Char(Sel(Adsp4
ρµ)),

Proof. Same proof as in Corollary 3.2. �

Note that the associated primes of λ(cθ′) in Ã1 are congruence primes between Symm3(µ) and
unitary families which don’t come from Siegel families.

Moreover, according to the Greenberg-Iwasawa main conjecture, the ideal λ(cθ′) should be gen-
erated by the (still conjectural) p-adic L function Lp(A2

µ). On the other hand, for p > 3, we have a

decomposition of Zp-representations of GL2 : Adsl4 = Adsp4
⊕A2. This implies a decomposition of

minimal p-ordinary Selmer groups

Sel(Adsl4ρµ) = Sel(Adsp4
ρµ)⊕ Sel(A2

µ)

Since we know that cλ = Char(Sel(Adsp4
ρµ)∗), we conclude by division :

Corollary 3.7. The ideal λ(cθ′) is principal generated by Char(Sel(A2
µ))∗.

Proof. Same proof as in Corollary 3.2. �

4. The case j = 4

To treat this case, we fix an auxiliary imaginary quadratic field as above and we choose unitary
groups U(4) and U(5) which are compact at infinity and with the same local conditions at finite
places.

Besides the Symm3 base change, we also consider the Symm4 base change from GL2 (established
by H. Kim[Kim03] to GL5, and by Clozel to U(5)). We note the commutative diagram of group
schemes over Zp :

(4)
GL2

Symm3 ↙ ↘ Symm4

GSp4 −→ GSO5

where the bottom arrow is the standard (2 : 1)-covering coming from the exceptional isomorphism
GSp(4) ∼= GSpin5. Recall that by definition GSO5 = Gm × SO5. Therefore, the adjoint action of
Symm4GL2 on so5 coincides with the adjoint action of Symm3GL2 on sp4. We therefore have the
following Zp-decompositions for the action of Symm4GL2 :

so5 = A1 ⊕A3

and

sl5 = A1 ⊕A2 ⊕A3 ⊕A4.

Let R4 be the minimal p-ordinary universal ring of deformations ρ : GQ → G5(B) of Symm4ρµ. Since
5 is odd, one can choose an imaginary quadratic field in which p and q1 split, a skewfield D split
outside q1 and qGc1 and a second kind involution ∗ on D such that G = U(D, ∗) is definite at ∞
and quasisplit at all inert places. Again, by Geraghty’s thesis, the Hida Hecke algebra h4 associated
to U(5) is finite torsion free Λ4. Its localization Tu

4 at the maximal ideal associated to Symm4ρµ
satisfies

Theorem 4.1. Assuming α12 6≡ 1 (mod mA1) or 4(a+ 1) < p− 1, we have R4 = Tu
4 ; this ring is

local complete intersection over Λ4. In particular it is finite flat over Λ4.

Note that the universal morphism R4 → R2 induced by the diagram (4) gives rise by identification
to a non obvious base change morphism θ′′ : Tu

4 → Ts
2 above the morphism Λ4 → Λ2 (also induced

by the diagram (4)). Let T̃u
4 = Tu

4 ⊗Λ4
Ã1. We consider the morphisms

T̃u
4
θ′′→ T̃s

2
λ→ Ã1
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Let λ′′ = λ ◦ θ′′. We can define the congruence ideal cλ′′ as before by

cλ′′ = T̃u
4 ∩

(
Ã1 × {0T̃′

λ′′
}
)
.

Corollary 4.2. Assume 4(a + 1) < p − 1. The ideal cλ′′ is principal generated by a characteristic
power series of Sel(Adsl5Symm4ρµ)∗.

Proof. Same proof as in Corollary 3.2. �

We define a new congruence ideal cθ′′ by

cθ′′ = T̃u
4 ∩

(
T̃s

2 × {0T̃′
θ′′
}
)
.

Then,

Corollary 4.3. We have

cλ′′ = cλλ(cθ′′).

Moreover, the congruence ideal λ(cθ′) divides λ(cθ′′) and

λ(cθ′′)

λ(cθ′)
= Char(Sel(A4

µ)∗).

Proof. We have a decomposition of Selmer groups

Sel(Adsl5Symm4ρµ) = Sel(Adso5
Symm4ρµ)⊕ Sel(A2

µ)⊕ Sel(A4
µ)

�

Of course this suggests that the prime factors in Ã1 of the (not yet constructed) p-adic L function
Lp(A4

µ) are congruence primes between Symm4µ and forms on U(5) which don’t come from GSp(4)
(by the base change given by GSpin5 → GSO5).

5. Digression: a Kummer type criterion for the non triviality of certain Selmer
groups

We keep the notations of the introduction and we assume (∗). Let p be a prime of Ã1. For
j = 3, 2, 4, consider the condition

(Sj) Fitt0(Sel(Ajµ)∗) ⊂ p

and the condition
(C3) there exists a Hida family G of Iwahori level N on GSp4 which is not the Symm3 of a Hida

family on GL2 and such that Symm3µ ≡ G (mod p).
We prove

Theorem 5.1. Assume (∗), then (C3) implies (S3) or (S2) or (S4).

Proof. Let νG : T2 → A2 be the Hida family associated to G and ρG : ΓQ → GSp4(A2) be the Galois

representation associated to this Hida family. It is well defined because ρG = Symm3ρµ is absolutely

irreducible by (∗). We define T̃1 = T1 ⊗Λ1
Ã1 and T̃2 = T2 ⊗Λ2

Ã1 and we consider

T̃2
σ̃3→ T̃1

µ̃→ Ã1

We can decompose A2 ⊗Λ2
Ã1 as a product of domains Bi which are finite extensions of Ã1. Let C

be the normalisation of B1. By assumption, ρG,C = ρG ⊗A2
C is not a Symm3 but there exists a

prime ideal pC of C above p such that, denoting by φ, resp. ι, the homomorphism φ : C → C/pC ,

resp. ι : Ã1/p ↪→ C/pC , we have φ∗ρG,C = ι∗Symm3 ρµ (mod p) up to conjugation in C/pC . Note

that pC = Ker φ is a height one prime of the normal ring C. Since ρG,C is not the Symm3 of a
Hida family on GL2, it follows by a theorem of Conti [Con16b] that Im ρG,C contains a congruence
subgroup of GSp4(Λ1) up to conjugation by an element of GSp4(C). In particular, the adjoint action
Ad0 ρG,C on sp4(C) is irreducible while it becomes reducible when one applies φ. More precisely:

φ∗(Ad0 ρG,C) ∼= A1
µ(C/pC)⊕A3

µ(C/pC)
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Note that CpC is a dvr. Let K = Frac(C/pC). By [Ri76, Proposition 4.2], there exists a CpC -lattice
L in sp4(Frac(C)) with Galois action such that on the quotient L/pCL, the action of Galois is a non
trivial extension of A1

µ(K) by A3
µ(K). But Hom(A1

µ(K),A3
µ(K)) = A3

µ(K) ⊕ A2
µ(K) ⊕ A4

µ(K) as
ΓQ-modules. Since we are dealing with N -minimal p-ordinary Selmer groups, the non triviality of
one of the three Selmer groups over K follows. �

6. The case j = n

It follows from [PT02] that for any n with 1 ≤ n < p − 1, we have a decomposition sln+1 =⊕n
j=1Aj over Zp which is GL2-equivariant for the action on the left hand side by Ad Symmn. It

follows that for n ∈ [1, p− 1[, we have

sln+1 = sln ⊕An

where GL2 acts by Ad Symmn on the left hand side and by Ad Symmn−1 on the first factor or the
right-hand side.

From now on, we take j = n − 1 or j = n Let huj be the Hida Hecke algebra associated to the
unitary group U(j + 1) chosen to be compact at infinity and with local conditions af finite primes
as before. This algebra is finite torsion free over the Iwasawa algebra Λj in j variables. Let us

assume the automorphic base change is established for Symmj for j = n − 1 and j = n. This
gives rise to algebra homomorphisms θj : huj → h1 above the homomorphism Λj → Λ1 induced by
m ≥ 0 7→ (x1, · · · , xj) with x1 = m, x2 = 2m,...,xj = jm. Let µ : h1 → A1 be a Hida family and let
λj = µ ◦ θj , for j = n − 1, n. We assume that the image of the residual representation ρµ contains

SL2(Fp). Let Tu
j be the localization of huj at the maximal ideal associated to Symmjρµ. Let Rj be

the universal deformation ring for minimal p-ordinary lifts ρ : GQ → Gj+1(B) of Symmjρµ. We have
proven in Section 2

Theorem 6.1. Assuming (∗), n(a + 1) < p − 1, and that the transfer Symmj is established for
j = n− 1, n, then for j = n− 1, n, we have Rj = Tu

j and these rings are local complete intersection
over Λj.

From this it follows that for j = n − 1, n, the congruence modules cλj and cθj are principal and
related by the relation

cλj = λj(cθj )cµ

Moreover it also follows from the theorem that for j = n − 1, n, the ideal cλj is generated by

Char
(
(Sel(Ad Symmjρµ))∗

)
). Since we have

Sel(Ad Symmjρµ)) = Sel(Ad Symmj−1ρµ))⊕ Sel(Ajµ),

we deduce by passing to the characteristic power series of the Pontryagin duals that

cλn = cλn−1

(
Char(SelAnµ)

)
and dividing by the invertible ideal cµ, we conclude that λn−1(cθn−1) divides λn(cθn) and that the

quotient is the principal ideal
(
Char(SelAnµ)

)
.

This theorem applies to n = 4, 5, 6, 7, 8 since the transfers Symmj , j = 3, 4, 5, 6, 7, 8 of a classical
form of weight ≥ 2 have been established in [CT15]. For n = 4, we obtain a different proof of the
Theorem 4.3 given in 4 relating congruences on U(4) and U(5). In that case, the congruence ideals
refer to transfers from GSp(4) to U(4) and U(5), while here they refer to the congruences between
Symm3, resp. Symm4 transfers and families on U(4) resp. U(5). For n ≥ 5, there is no alternative
proof because there is no known transfer from GSp4 to U(n+ 1) compatible to Symm3 and Symmn.

The meaning of this is that any congruence prime between Symmn−1µ and a family of U(n)-
forms which are not Symmn−1 fromGL2 is also a congruence prime between Symmnµ and a family
of U(n + 1)-forms which are not Symmn from GL2. However, it doesn’t seem that one can define
a cuspidal base change from U(n) to U(n+ 1) which would explain this phenomenon by Tate–Hida
formalism. It appears for the moment only as a consequence of our congruence ideal main conjecture
theorem.
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7. The case of the standard representation of GSp(4)

This is a digression which does not involve symmetric powers of GL2. Let instead consider a Hida
family of Siegel cusp forms that is, a Λ2-algebra homomorphism σ : hs2 → A2 onto a domain A2 which
is finite and torsion free over Λ2. As we noted above, using the base change from GSp(4) to GL(4)
established in [Mok14] and Clozel’s descent to U(4), we constructed a morphism θ′ : hu3 → hs2. We
assume that the residual Galois representation ρσ is absolutely irreducible. Moreover by ordinarity
the restriction of ρσ to an inertia group Ip at p is conjugate to

1 ∗ ∗ ∗
ω−(a2+1) ∗ ∗

ω−(a1+2) ∗
ω−(a1+a2+3)


for a pair of integers a1 ≥ a2 ≥ 0. We assume a1 + a2 + 3 < p − 1. There can be only one pair
(a1, a2) of integers such that a1 ≥ a2 ≥ 0 and a1 + a2 + 3 < p− 1. It is fixed from now on.

We localize the morphism θ′ at maximal ideals associated to ρσ. We write θ′ : Tu
3 → Ts

2 for its
localization. If the residual image is big (in the sense of [Pi12b] Section 5.8), and that the four Hecke
eigenvalues at p are distinct modulo mA1

. Then, let Ri i = 2, 3 be the minimal p-ordinary universal
deformation rings of ρσ (for deformations into GSp4(B) resp. G4(B)), we can prove

Theorem 7.1. Assume a1 + a2 + 3 < p − 1; then we have R2 = Ts
2 and R3 = Tu

3 , and the rings
Ts

2 resp. Tu
3 is local complete intersection over Λ2 resp. Λ3.

If we set λ = σ ◦ θ′, we can define three congruence ideals cλ, cσ c′θ. Because of the assump-
tion a1 + a2 + 3 < p − 1, we see as in the proof of Proposition 3.3 that the differential module

ΩTu3 /Λ2
⊗Tu3

Ã2 is isomorphic to Sel(Adsl4ρσ))∗ and that similarly ΩTs2/Λ2
⊗Ts2

Ã2 is isomorphic

to Sel(Adsp4ρσ))∗. Hence by Theorem 8.7, we conclude that c̃λ = Char ((Sel(Adsl4ρσ))∗) and
c̃σ = Char ((Sel(Adsp4

ρσ))∗). We also have the transfer formula of Proposition 8.14 :

c̃λ = c̃σσ̃(cθ′).

On the other hand, we have

Adsl4(ρσ) = Adsp4(ρσ)⊕ Stσ

where Stσ is the composition of σ with St : GSp4 → GSO5. From this and Proposition 8.14 (for
ν = 2) and Theorem 8.15, we conclude

Theorem 7.2. The reflexive envelope σ̃(cθ′) of the ideal σ(cθ′) of Ã2 is principal and is generated
by Char((Sel(Stσ))∗).

Remark 7.3. The p-adic L function Lp(Stσ) has been constructed by Zheng Liu in her 2016
Columbia thesis, and the main conjecture implies that σ(cθ′) is also generated by Lp(Stσ). It is

therefore natural to ask whether the height one prime factors of Lp(Stσ) in Â2 are congruence
primes between σ and families on U(4) which don’t come from GSp(4).

8. Congruence ideal formalism

We recall a formalism developed by Hida based on Tate’s appendix to [MR70], alongside we
introduce the notion of congruence modules and differential modules for general rings and basic
facts about it. We apply the theory to Hecke algebras and deformation rings to show that these two
torsion modules have the same size (that is, the equal characteristic ideals and Fitting ideals).

8.1. Differentials. We recall here the definition of 1-differentials and some of their properties for
our later use. Let R be a A-algebra, and suppose that R and A are objects in CNLW , where W is
a finite flat extenion of Zp The module of 1-differentials ΩR/A for a A-algebra R (R,A ∈ CNLW )
indicates the module of continuous 1-differentials with respect to the profinite topology.
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For a module M with continuous R-action (in short, a continuous R-module), let us define the
module of A-derivations by

DerA(R,M) =

δ : R→M ∈ HomA(R,M)
∣∣∣ δ: continuous
δ(ab) = aδ(b) + bδ(a)

for all a, b ∈ R

 .

Here the A-linearity of a derivation δ is equivalent to δ(A) = 0, because

δ(1) = δ(1 · 1) = 2δ(1)⇒ δ(1) = 0.

Then ΩR/A represents the covariant functor M 7→ DerA(R,M) from the category of continuous
R-modules into MOD.

The construction of ΩR/A is easy. Let R⊗̂AR be the completion of R ⊗A R with respect to
the (mR ⊗A R + R ⊗A mR)-adic topology. The multiplication a ⊗ b 7→ ab induces a A-algebra
homomorphism m : R⊗̂AR → R taking a ⊗ b to ab. We put I = Ker(m), which is an ideal of
R⊗̂AR. Then we define ΩR/A = I/I2. We endow it with a structure of R-module by action of R⊗̂1.
It is a complete module for the mR-topology. One checks that the map d : R → ΩR/A given by

d(a) = a ⊗ 1 − 1 ⊗ a mod I2 is a continuous A-derivation. Thus we have a morphism of functors:
HomR(ΩR/A, ?) → DerA(R, ?) given by φ 7→ φ ◦ d. Since ΩR/A is generated by d(R) as R-modules
(left to the reader as an exercise), the above map is injective. To show that ΩR/A represents the
functor, we need to show the surjectivity of the above map, which is well known (see [CRT, ]).

Proposition 8.1. The above morphism of two functors M 7→ HomR(ΩR/A,M) and M 7→ DerA(R,M)
is an isomorphism, where M runs over the category of complete R-modules. In other words, for each
A-derivation δ : R → M , there exists a unique R-linear homomorphism φ : ΩR/A → M such that
δ = φ ◦ d.

We have the following fundamental exact sequences:

Corollary 8.2. Let the notation be as in the proposition.

(i) Suppose that A is a C-algebra for an object C ∈ CLW . Then we have the following natural
exact sequence:

ΩA/C⊗̂AR −→ ΩR/C −→ ΩR/A → 0.

(ii) Let π : R� C be a surjective morphism in CLW , and write J = Ker(π). Then we have the
following natural exact sequence:

J/J2 β∗−→ ΩR/A⊗̂RC −→ ΩC/A → 0.

Moreover if A = C, then J/J2 ∼= ΩR/A⊗̂RC.

For any continuous R-module M , we write R[M ] for the R-algebra with square zero ideal M .
Thus R[M ] = R⊕M with the multiplication given by

(r ⊕ x)(r′ ⊕ x′) = rr′ ⊕ (rx′ + r′x).

It is easy to see that R[M ] ∈ CNLW , if M is of finite type, and R[M ] ∈ CLW if M is a p-profinite
R-module. By definition,

(8.1) DerA(R,M) ∼=
{
φ ∈ HomA−alg(R,R[M ])

∣∣φ mod M = id
}
,

where the map is given by δ 7→ (a 7→ (a⊕ δ(a)). Note that i : R→ R⊗̂AR given by i(a) = a⊗ 1 is a
section of m : R⊗̂AR→ R. We see easily that R⊗̂AR/I2 ∼= R[ΩR/A] by x 7→ m(x)⊕ (x− i(m(x))).
Note that d(a) = 1⊗ a− i(a) for a ∈ R.
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8.2. Congruence and differential modules. Let R be an algebra over a normal noetherian
domain A. We assume that R is an A-flat module of finite type. Let φ : R → A be an A-algebra
homomorphism. We define

C1(φ;A) = ΩR/A ⊗R,φ Im(φ)

which we call the differential module of φ . We have seen (for instance Corollary 3.2, (2)) that if R is
a deformation ring, this module is the dual of the associated adjoint Selmer group. If φ is surjective,
we just have

C1(φ;A) = ΩR/A ⊗R,φ A.
We suppose that R is reduced (having zero nilradical of R). Then the total quotient ring Frac(R)
can be decomposed uniquely into Frac(R) = Frac(Im(φ))⊕X as an algebra direct product. Write 1φ
for the idempotent of Frac(Im(φ)) in Frac(R). Let a = Ker(R→ X) = (1φR ∩R), S = Im(R→ X)
and b = Ker(φ). Here the intersection 1φR ∩ R is taken in Frac(R) = Frac(Im(φ)) ⊕X. Then we
put

C0(φ;A) = (R/a)⊗R,φ Im(φ) ∼= Im(φ)/(φ(a)) ∼= 1φR/a ∼= S/b ∼= R/(a⊕ b),

which is called the congruence module of φ but is actually a ring (cf. [H88b] Section 6). We can split
the isomorphism 1φR/a ∼= S/b as follows: First note that a = (R ∩ (1φR⊕ 0)) in Frac(Im(φ))⊕X.
Then b = (0⊕X) ∩R, and we have

1φR/a ∼= R/(a⊕ b) ∼= S/b,

where the maps R/(a ⊕ b) → 1φR/a and R/(a ⊕ b) → S/b are induced by two projections from R
to 1φR and S.

Write K = Frac(A). Fix an algebraic closure K of K. Since the spectrum Spec(C0(φ;A)) of
the congruence ring C0(φ;A) is the scheme theoretic intersection of Spec(Im(φ)) and Spec(R/a) in
Spec(R):

Spec(C0(λ;A)) = Spec(Im(φ)) ∩ Spec(R/a) := Spec(Im(φ))×Spec(R) Spec(R/a),

we conclude that

Proposition 8.3. Let the notation be as above. Then a prime p is in the support of C0(φ;A) if
and only if there exists an A-algebra homomorphism φ′ : R → K factoring through R/a such that
φ(a) ≡ φ′(a) mod p for all a ∈ R.

In other words, φ mod p factors through R/a and can be lifted to φ′. Therefore, if A is the integer
ring of a sufficiently large number field in Q,

⋃
φ Supp(C0(φ;A)) is made of primes dividing the

absolute different d(R/Z) of R over Z, and each prime appearing in the absolute discriminant of
R/Z divides the order of the congruence module for some φ.

By Corollary 8.2 applied to the exact sequence: 0→ b→ R
φ−→ A→ 0, we know that

(8.2) C1(φ;A) ∼= b/b2.

Since C0(φ;A) ∼= S/b, we may further define higher congruence modules by Cn(φ;A) = bn/bn+1.

8.3. Transfer property of congruence modules. Let B be a normal profinite local domain
of characteristic p residue field. We suppose to have a sequence of B-algebra homomorphisms:

R
θ−→ S

µ−→ A of reduced local rings finite flat over B. We put λ = µ ◦ θ : R → A. We assume that
R,S,A are all Gorenstein rings over B. This means that

(8.3) HomB(R,B) ∼= R, HomB(S,B) ∼= S and HomB(A,B) ∼= A as R-modules.

We write B = Λ. Since R is reduced, the total quotient ring Q(R) of R is a product of fields, and we
have Q(R) = QS ⊕Q(S) for the complementary semi-simple algebra QS . Let RS be the projection
of R in QS . We have the following (unique) decomposition

(1) Spec(R) = Spec(RS) ∪ Spec(S), union of closed subschemes inducing R ↪→ (RS ⊕ S) with
Λ-torsion module C0(θ, S) := (RS ⊕ S)/R.

Similarly, we have Q(S) = QA ⊕ Q(A) and Q(R) = Q′A ⊕ Q(A) as algebra direct sums. Write SA
(resp. RA) for the projected image of S (resp. R) in QA (resp. Q′A). Then we have
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(2) Spec(S) = Spec(SA) ∪ Spec(A), union of closed subschemes inducing S ↪→ (SA ⊕ A) with
Λ-torsion module C0(µ,A) := (SA ⊕A)/S.

(3) Spec(R) = Spec(RA) ∪ Spec(A), union of closed subschemes inducing R ↪→ (RA ⊕ A) with
Λ-torsion module C0(λ,A) := (RA ⊕A)/R.

By [H88b, Lemma 6.3] (or [MFG, §5.3.3]), we get the following isomorphisms of R-modules:

(8.4) C0(λ;A) ∼= RA ⊗R A, C0(θ;S) ∼= RS ⊗R S and C0(µ;A) ∼= SA ⊗S A.

Write πS : R � RS and π : R → S for the two projections and (·, ·)R : R × R → B and
(·, ·)S : S × S → B for the pairing giving the self-duality (8.3). We recall [H86c, Lemma 1.6]:

Lemma 8.4. The S-ideal Ker(πS : R→ RS) is principal and S-free of rank 1.

Proof. Let b = Ker(θ : R→ S) and a = Ker(πS : R→ RS). By assumption, R and S are B-free of

finite rank; so, b is B-free, and by duality, we have an exact sequence 0 → S∗
θ∗−→ R∗ → b∗ → 0.

Note that b∗ is naturally an RS-module which is free of finite rank over B. Thus identifying S = S∗

and R∗ = R by (8.3), we have θ∗(S∗) = {r ∈ R; r · b = 0} = (Q(S)⊕ 0) ∩ R = a; hence θ∗ induces
S = S∗ ∼= a. �

Recall the following fact first proved in [H88b, Theorem 6.6]:

Lemma 8.5. We have the following exact sequence of R-modules:

0→ C0(µ;A)→ C0(λ;A)→ C0(θ;S)⊗S A→ 0.

Proof. Write M∗ = HomB(M,B) as an R-module for a R-module M . Note that

Ker(θ) = R∩(RS⊕0) ⊂ RS⊕S, Ker(λ) = R∩(RA⊕0) ⊂ RA⊕A and Ker(µ) = S∩(SA⊕0) ⊂ SA⊕A.

From an exact sequence 0 → Ker(θ) → R → S → 0, we have the following commutative diagram
with exact rows (for a = Ker(πS : R→ RS)):

S∗
↪→−−−−→ R∗

�−−−−→ Ker(θ)∗

o
y o

y y
S ∼= a −−−−→

↪→
R −−−−→

�
RS ,

which shows RS ∼= Ker(θ)∗ = ((RS ⊕ 0) ∩ R)∗ as R-modules. Similarly, we get Ker(λ)∗ ∼= RA,
Ker(µ)∗ ∼= SA We have a commutative diagram with exact rows:

Ker(θ) −−−−→ R
θ−−−−→ S −−−−→ 0y λ

y µ

y
0 −−−−→ A A −−−−→ 0

Applying the snake lemma, we get an exact sequence of R-modules:

0→ Ker(θ)→ Ker(λ)→ Ker(µ)→ 0.

By B-freeness of A and S, all the terms of the above exact sequence are B-free. Thus the above
sequence is split as a sequence of B-modules, and we have the dual exact sequence:

Ker(µ)∗
↪→−−−−→ Ker(λ)∗

�−−−−→ Ker(θ)∗

o
y o

y o
y

SA −−−−→
↪→

RA −−−−→
�

RS .

Tensoring with A over R, from (8.4), we get an exact sequence:

Tor1
R(RS , A)→ C0(µ;A)→ C0(λ;A)→ C0(θ;S)⊗R A→ 0.
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Thus we need to show the vanishing: Tor1
R(RS , A) = 0. To see this, we recall a ∼= S. Thus the exact

sequence a ↪→ R � RS can be rewritten as S ↪→ R � RS . Tensoring with A over R, we get an
exact sequence

0 = Tor1
R(R,A)→ Tor1

R(RS , A)→ S ⊗R A
α−→ R⊗R A→ RS ⊗R A→ 0.

Since we have a commutative diagram:

S ⊗R A A

α

y y
R⊗R A A

and Coker(α) is a torsion A-module, α is a nontrivial A-linear map of the integral domain A into
itself; so, α is injective, and we conclude Tor1

R(RS , A) = 0 as desired. �

By (8.4), the three congruence modules C0(µ;A), C0(λ;A), C0(θ;S)⊗R A are residue rings of R;
so, cyclic A-modules. Moreover, by Lemma 8.4, they are the ring A modulo principal ideals. Write
their generators as Acλ = A∩R ⊂ (RA⊕A), Acµ = A∩S ⊂ (SA⊕A) and Scθ = S ∩R ⊂ (RS ⊕S).
Thus we have C0(λ;A) = A/cλA, C0(µ;A) = A/cµA and C0(θ;S)⊗S A = A/λ(cθ)A for the image
λ(cθ) ∈ A of cθ ∈ S. By the above lemma, we conclude the following result:

Corollary 8.6. We have λ(cθ) · cµ = cλ up to units in A; so, for the ideals c? generated by c?, we
have λ(cθ) · cµ = cλ.

Note here c? (resp. λ(cθ)) is the annihilator AnnA(C0(?;A)) (resp. AnnA(C0(?;S) ⊗S A) of
C0(?;A) in A, and cθ is the annihilator AnnS(C0(θ;A)) of C0(θ;S) in S.

8.4. Local complete intersections. Let A be a complete normal local domain (for example, a
complete regular local rings like A = W or A = W [[T ]] or A = W [[T1, . . . , Tr]] (power series ring)).
Any local A-algebra R free of finite rank over A has a presentation R ∼= A[[X1, . . . , Xn]]/(f1, . . . , fm)
for fi ∈ A[[X1, . . . , Xn]] with m ≥ n. If m = n, then R is called a local complete intersection over
A. Note that if B is a complete normal local domain which is finite flat over A, the extension
R⊗A B of an A-algebra R which is local complete intersection over A is local complete intersection
over B. There is a theorem of Tate giving the identity of the Fitting ideals of the differential
module and the congruence module for local complete intersection rings. To introduce this, let us
explain the notion of pseudo-isomorphisms between torsion A-modules (see [BCM, VII.4.4] for a
more detailed treatment). For two A-modules M,N of finite type, a morphism φ : M → N is
called a pseudo isomorphism if the annihilator of Ker(φ) and Coker(φ) each has height at least 2
(i.e., the corresponding closed subscheme of Spec(A) has co-dimension at least 2). If A = W , a
pseudo-isomorphism is an isomorphism, and if A = W [[T ]], it is an isogeny (having finite kernel and
cokernel). The classification theorem of torsion A-modules M of finite type tells us that we have a
pseudo isomorphism M →

⊕
iA/fi for finitely many reflexive ideal 0 6= fi ∈ A. An ideal f is reflexive

if HomA(HomA(f, A), A) ∼= f canonically asA-modules (and equivalently f =
⋂
λ∈A,(λ)⊃f(λ); i.e., close

to be principal). Then the characteristic ideal Char(M) of M is defined by Char(M) :=
∏
i fi ⊂ A. If

A is a unique factorization domain (for example, if A is regular; a theorem of Auslander-Buchsbaum
[CRT, Theorem 20.3]), any reflexive ideal is principal. If A = W , then |W/Char(M)|p =

∣∣|M |∣∣
p
,

and if further A = Zp, we have Char(M) = (|M |).

Theorem 8.7 (J. Tate). Assume that R is a local complete intersection over a complete normal
noetherian local domain A with an algebra homomorphism λ : R→ A. If after tensoring the quotient
field Q or A, R⊗AQ = (Im(λ)⊗AQ)⊕S as algebra direct sum for some Q-algebra S, then Cj(λ;A)
is a torsion A-module of finite type, and we have

AnnA(C0(λ;A)) = Char(C0(λ;A)) = Char(C1(λ;A)).

For the reader’s convenience, we shall give a proof of this theorem in the following subsection.
Actually we prove

(8.5) lengthA(C0(λ;A)) = lengthA(C1(λ;A)),
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assuming that A is a discrete valuation ring (see Proposition 8.12). If A is a normal noetherian

domain, CharA(M) =
∏
P P

lengthAP
MP for the localization MP at height 1-primes P for a given

A-torsion module M . Since AP is a discrete valuation ring if and only if P has height 1, this implies
the above theorem.

8.5. Proof of Tate’s theorem. We reproduce the proof from [MR70, Appendix] (which actually
determines the Fitting ideal of M more accurate than Char(M)). We prepare some preliminary
results; so, we do not assume yet that R is a local complete intersection over A. Let A be a normal
noetherian integral domain of characteristic 0 and R be a reduced A–algebra free of finite rank r
over A. The algebra R is called a Gorenstein algebra over A if HomA(R,A) ∼= R as R–modules.
Since R is free of rank r over A, we choose a base (x1, . . . , xr) of R over A. Then for each y ∈ R,
we have r × r–matrix ρ(y) with entries in A defined by (yx1, . . . , yxr) = (x1, . . . , xr)ρ(y). Define
Tr(y) = Tr(ρ(y)). Then Tr : R → A is an A–linear map, well defined independently of the choice
of the base. Suppose that Tr(xR) = 0. Then in particular, Tr(xn) = 0 for all n. Therefore all
eigenvalues of ρ(x) are 0, and hence ρ(x) and x is nilpotent. By the reducedness of R, x = 0 and
hence the pairing (x, y) = Tr(xy) on R is non-degenerate.

Lemma 8.8. Let A be a normal noetherian integral domain of characteristic 0 and R be an A–
algebra. Suppose the following three conditions:

(1) R is free of finite rank over A;
(2) R is Gorenstein; i.e., we have i : HomA(R,A) ∼= R as R–modules;
(3) R is reduced.

Then for an A–algebra homomorphism λ : R→ A, we have

C0(λ;A) ∼= A/λ(i(TrR/A))A.

In particular, lengthA C0(λ;A) is equal to the valuation of d = λ(i(TrR/A)) if A is a discrete valuation
ring.

Proof. Let φ = i−1(1). Then TrR/A = δφ. The element δ = δR/A is called the different of R/A.

Then the pairing (x, y) 7→ TrR/A(δ−1xy) ∈ A is a perfect pairing over A, where δ−1 ∈ S = Frac(R)
and we have extended TrR/A to S → K = Frac(A). Since R is commutative, (xy, z) = (y, xz).
Decomposing S = K ⊕X, we have

C0(λ;A) = Im(λ)/λ(a) ∼= A/R ∩ (K ⊕ 0).

Then it is easy to conclude that the pairing ( , ) induces a perfect A–duality between R ∩ (K ⊕ 0)
and A⊕ 0. Thus R ∩ (K ⊕ 0) is generated by λ(δ) = λ(i(TrR/A)). �

Next we introduce two A–free resolutions of R, in order to compute δR/A. We start slightly more
generally. Let X be an algebra. A sequence f = (f1, . . . , fn) ∈ Xn is called regular if x 7→ fjx
is injective on X/(f1, . . . , fj−1) for all j = 1, . . . , n. We now define a complex K•X(f) (called the
Koszul complex) out of a regular sequence f (see [CRT, Section 16]). Let V = Xn with a standard
base e1, . . . , en. Then we consider the exterior algebra∧

•V =

n⊕
j=0

(∧jV ).

The graded piece ∧jV has a base ei1,...,ij = ei1 ∧ ei2 ∧ · · · ∧ eij indexed by sequences (i1, . . . , ij)

satisfying 0 < i1 < i2 < · · · < ij ≤ n. We agree to put
∧0

V = X and
∧j

V = 0 if j > n. Then we

define X–linear differential d :
∧j

X →
∧j−1

X by

d(ei1 ∧ ei2 ∧ · · · ∧ eij ) =

j∑
r=1

(−1)r−1firei1 ∧ · · · ∧ eir−1
∧ eir+1

∧ · · · ∧ eij .

In particular, d(ej) = fj and hence, ∧
0V/d(

∧
1V ) = X/(f).
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Thus, (K•X(f), d) is a complex and X–free resolusion of X/(f1, . . . , fn). We also have

dn(e1 ∧ e2 ∧ · · · ∧ en) =

n∑
j=1

(−1)j−1fje1 ∧ · · · ∧ ej−1 ∧ ej+1 ∧ · · · ∧ en.

Suppose now that X is a B–algebra. Identifying
∧n−1

V with V by

e1 ∧ · · · ∧ ej−1 ∧ ej+1 ∧ · · · ∧ en 7→ ej

and
∧n

V with X by e1 ∧ e2 ∧ · · · ∧ en 7→ 1, we have

Im(d∗n : HomB(
∧

n−1V, Y )→ HomB(
∧

nV, Y )) ∼= (f)HomB(X,Y ),

where (f)HomB(X,Y ) =
∑
j fjHomB(X,Y ), regarding HomB(X,Y ) as an X–module by yφ(x) =

φ(xy). This shows that if X is an B–algebra free of finite rank over B, K•X(f) is a B–free resolution
of X/(f), and

(8.6) ExtnB(X/(f), Y ) = Hn(HomB(K•X(f), Y )) ∼=
HomB(X,Y )

(f)HomB(X,Y )

for any B–module Y .

We now suppose that R is a local complete intersection over A. Thus R is free of finite rank over
A and R ∼= B/(f1, . . . , fn) for B = A[[T1, . . . , Tn]]. Write tj for Tj mod (f1, . . . , fn) in R. Since R
is local, tj are contained in the maximal ideal mR of R. We consider C = B⊗AR ∼= R[[T1, . . . , Tn]].
Then

R = R[[T1, . . . , Tn]]/(T1 − t1, . . . , Tn − tn),

and g = (T1− t1, . . . , Tn− tn) is a regular sequence in C = R[[T1 . . . , Tn]]. Since C is B–free of finite
rank, the two complexes K•B(f) � R and K•C(g) � R are B–free resolutions of R.

We have a Λ–algebra homomorphism Φ : B ↪→ C given by Φ(x) = x ⊗ 1. We extend Φ to Φ• :
K•B(f)→ K•C(g) in the following way. Write fi =

∑n
j=1 bijgj . Then we define Φ1 : K1

B(f)→ K1
C(g)

by Φ1(ei) =
∑n
j=1 bijej . Then Φj =

∧j
Φ1. One can check that this map Φ• is a morphism of

complexes. In particular,

(8.7) Φn(e1 ∧ · · · ∧ en) = det(bij)e1 ∧ · · · ∧ en.
Since Φ• is the lift of the identity map of R to the B–projective resolutions K•B(f) and K•C(g), it
induces an isomorphism of extension groups computed by K•C(g) and K•B(f):

Φ∗ : H•(HomB(K•C(g), B)) ∼= ExtjB(R,B) ∼= H•(HomB(K•B(f), B)).

In particular, identifying
∧n

Bn = B, we have from (8.6) that

Hn(HomB(K•B(f), B)) = HomB(B,B)/(f)HomB(B,B) = B/(f) = R

and similarly

Hn(HomB(K•C(g), B)) =
HomB(C,B)

(g)HomB(C,B)
.

The isomorphism between R and HomB(C,B)
(g)HomB(C,B) is induced by Φn which is a multiplication by d =

det(bij) (see (8.7)). Thus we have

Lemma 8.9. Suppose that R is a local complete intersection over A. Let π : B = A[[T1, . . . , Tn]] �
R be the projection as above. We have an isomorphism:

h :
HomB(C,B)

(T1 − t1, . . . , Tn − tn)HomB(C,B)
∼= R

given by h(φ) = π(φ(d)) for d = det(bij) ∈ C.

We have a base change map:

ι : HomA(R,A) −→ HomB(C,B) = HomB(B ⊗A R,B ⊗A A),

taking φ to id⊗φ. Identifying C and B with power series rings, ι(φ) is just applying the original φ
to coefficients of power series in R[[T1, . . . , Tn]]. We define I = h ◦ ι : HomA(R,A)→ R.
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Lemma 8.10. Suppose that R is a local complete intersection over A. Then the above map I is an
R–linear isomorphism, satisfying I(φ) = π(ι(φ(d)). Thus the ring R is Gorenstein.

Proof. We first check that I is an R–linear map. Since I(φ) = π(ι(φ(d)), we compute I(φ ◦ b)) and
rI(φ) for b ∈ B and r = π(b). By definition, we see

I(π(bx)) = π(ι(φ(r ⊗ 1)d)) and rI(φ) = π(bι(φ(d)).

Thus we need to check π(ι(φ)((r ⊗ 1− 1⊗ b)d)) = 0. This follows from:

r ⊗ 1− 1⊗ b ∈ (g) and det(bij)gi =
∑
i

b′ijfi,

where b′ij are the (i, j)–cofactors of the matrix (bij). Thus I is R–linear. Since ι mod mB for the
maximal ideal mB of B is a surjective isomorphism from

HomA((A/mA)r, A/mA) = HomA(R,A)⊗A A/mA
onto

HomB((B/mB)r, B/mB) = HomB(C,B)⊗B B/mB ,
the map ι is non-trivial modulo mC . Thus I mod mR is non-trivial. Since h is an isomorphism,
HomB(C,B)⊗CC/mC is 1–dimensional, and hence I mod mR is surjective. By Nakayama’s lemma,
I itself is surjective. Since the target and the source of I are A–free of equal rank, the surjectivity
of I tells us its injectivity. This finishes the proof. �

Corollary 8.11. Suppose that R is a local complete intersection over A. We have I(TrR/A) = π(d)
for d = det(bij), and hence the different δR/A is equal to π(d).

Proof. The last assertion follows from the first by I(φ) = π(ι(φ(d)). To show the first, we choose
dual basis x1, . . . , xr of R/A and φ1, . . . , φr of HomA(R,A). Thus for x ∈ R, writing xxi =

∑
i aijxj ,

we have Tr(x) =
∑
i aii =

∑
i φi(xxi) =

∑
i xiφi(x). Thus Tr =

∑
i xiφi.

Since xi is also a base of C over B, we can write d =
∑
j bjxi with ι(φi)(d) = bi. Then we have

I(TrR/A) =
∑
i

xiI(φi) =
∑
i

xiπ(ι(φi)(d)) =
∑
i

xiπ(bi) = π(
∑
i

bixi) = π(d).

This shows the desired assertion. �

We now finish the proof of (8.5):

Proposition 8.12. Let A be a discrete valuation ring, and let R be a reduced local complete inter-
section over A. Then for an A–algebra homomorphism R→ A, we have

lengthA C0(λ,A) = lengthA C1(λ,A).

Proof. Let X be a torsion A–module, and suppose that we have an exact sequence:

Ar
L−→ Ar → X → 0

of A–modules. Then we claim lengthAX = lengthAA/ det(L)A. By elementary divisor theory
applied to L, we may assume that L is a diagonal matrix with diagonal entry d1, . . . , dr. Then the
assertion is clear, because X =

⊕
j A/djA and lengthA/dA is equal to the valuation of d.

Since R is reduced, ΩR/A is a torsion R–module, and hence ΩR/A ⊗R A = C1(λ;A) is a torsion
A–module. Since R is a local complete intersection over A, we can write

R ∼= A[[T1, . . . , Tr]]/(f1, . . . , fr).

Then by Corollary 8.2 (ii), we have the following exact sequence for J = (f1, . . . , fr):

J/J2 ⊗A[[T1,...,Tr]] A −→ ΩA[[T1,...,Tr]]/A ⊗A[[T1,...,Tr]] A −→ ΩR/A ⊗R A→ 0.

This gives rise to the following exact sequence:⊕
j

Adfj
L−→
⊕
j

AdTj −→ C1(λ;A)→ 0,
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where dfj = fj mod J2. Since C1(λ;A) is a torsion A–module, we see that lengthA(A/ det(L)A) =
lengthA C1(λ;A). Since g = (T1 − t1, . . . , Tn − tn), we see easily that det(L) = π(λ(d)). This
combined with Corollary 8.11 and Lemma 8.8 shows the desired assertion. �

8.6. A more general setting. Let Λj be the power series ring W [[T1, . . . , Tj ]]. We consider the
following commutative diagram of local profinite W -algebras sharing the same residue field F with
W :

(8.8)

Rm
θ′−−−−→
�

Rn
µ′−−−−→
�

A

∪
x ∪

x ∪
x

Λm
πm,n−−−−→
�

Λn
πn,ν−−−−→
�

Λν .

We put λ′ := µ′ ◦ θ′. Consider the following conditions:

(A0) A is an integral domain.
(A1) πj,k indices the identity Λj ⊗Λj ,πj,k Λk = Λk for (j, k) = (m,n) and (j, k) = (n, ν); so,

m ≥ n ≥ ν.
(A2) Rj is free of finite rank over Λj for j = m,n, and A is a torsion-free Λν-modules of finite

type.
(A3) HomΛj (Rj ,Λj) ∼= Rj as Rj-modules for j = m,n.
(A4) Rj ⊗Λj Λν is a reduced algebra for j = m,n.
(A5) Rj is a local complete intersection over Λj for j = m,n.

Note that (A5) implies (A4) (e.g., [CRT, Theorem 21.3]).

Lemma 8.13. Suppose (A0–3). Let Ã be the normalization of A and put R̃j = Rj ⊗Λj Ã for
j = m,n.

(1) Suppose that ν = 1. Then R̃j is free of finite rank over Ã and satisfies HomÃ(R̃j , Ã) ∼= R̃j

as R̃j-modules;

(2) Suppose ν > 1. Then for each height 1 prime P of Ã, R̃j,P = R̃j ⊗Ã ÃP for the localization

ÃP of Ã at P is free of finite rank over ÃP and satisfies HomÃP
(R̃j,P , ÃP ) ∼= R̃j,P as

R̃j,P -modules for j = m,n.

Proof. We only prove the assertion (1), since the assertion (2) is easier to prove after localization at

P as ÃP is a discrete valuation ring. If ν = 1, Ã is reflexive and hence flat over Λ1. Thus we get

HomΛj (Rj ,Λj)⊗Λj Ã
∼= HomÃ(R̃j , Ã)

from [BAL, II.5.4]. Since HomΛj (Rj ,Λj) ∼= Rj , we get from the above identity

R̃j = Rj ⊗Λj Ã
∼= HomΛj (Rj ,Λj)⊗Λj Ã

∼= HomÃ(R̃j , Ã)

as R̃j-modules. �

By Lemma 8.13, under (A0–4), the sequences R̃m
θ−→ R̃n

µ−→ Ã if ν = 1 and R̃m,P
θ−→ R̃n,P

µ−→ ÃP

if ν = 1 for θ = θ′ ⊗ 1 and µ = µ′ ⊗ 1 satisfies the requirement of R
θ−→ S

µ−→ A for the transfer

property of congruence modules in 8.3. Thus we get for the annihilators c? := AnnÃ(C0(?; Ã)) with

? = λ, µ and cθ := AnnR̃n(C0(θ; R̃n)) the following transfer formula:

Proposition 8.14. Assume (A0–4).

(1) If ν = 1, the ideals c? (? = λ, µ, θ) are all principal, and satisfies λ(cθ) · cµ = cλ.

(2) If ν > 1, writing M̃ for the reflexive closure of a torsion-free Λν-module M of finite type,

we have the following identity ˜λ(cθ) · cµ = c̃λ.

Proof. By Corollary 8.6, we get the assertion (1) and also the localized identity: λ(cθ)P · cµ,P = cλ,P
for each height 1 prime P in the setting of (2), since λ(cθ,P ) = λ(cθ)P and c?,P is the annihilator of
the corresponding P -localized congruence module by the definition of the congruence module. Since

M̃ =
⋂
P MP inside M ⊗Ã Frac(Ã), we get the assertion (2). �
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Now suppose (A5); so, Rj ∼= Λj [[X1, . . . , Xk]]/(f1, . . . , fk) for a regular sequence (f1, . . . , fk) in

mΛj [[X1,...,Xk]]. Tensoring Ã over Λj with the exact sequence:

0→ (f1, . . . , fk)→ Λj [[X1, . . . , Xk]]→ Rj → 0,

we get a sequence,

0→ (f1, . . . , fk)→ Ã[[X1, . . . , Xk]]→ R̃j → 0,

which is exact. Since Rj is Λj-free of finite rank, the first sequence of Λj-modules is split exact; so,

the exactness is kept after tensoring Ã. Thus (A5) implies that

(A′5) R̃j is a local complete intersection over Ã for j = m,n.

Thus we may apply Tate’s formula Theorem 8.7 to our setting R̃m,P � R̃n,P � ÃP for each height
1 primes and get the following fact:

Theorem 8.15. Assume (A0–5). Then we have

λ̃(cθ) · Char(C1(µ, Ã)) = Char(C1(λ, Ã)).

References

[AC89] J. Arthur, L. Clozel, Simple algebras, Base Change and the Advanced Theory of the Trace Formula, Ann.

of Math. Studies, Princeton U. Press, 1989
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[Clo91] L. Clozel, Représentations galoisiennes associées aux représentations automorphes autoduales de GL(n),
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