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We �rst prove loal-in-time well-posedness for the Muskat problem, modeling �uid �ow in

a two-dimensional inhomogeneous porous media. The permeability of the porous medium

is desribed by a step funtion, with a jump disontinuity aross the �xed-in-time urve

(x1,−1+ f(x1)), while the interfae separating the �uid from the vauum region is given by

the time-dependent urve (x1, h(x1, t)). Our estimates are based on a new methodology that

relies upon a areful study of the PDE system, oupling Dary's law and inompressibility of

the �uid, rather than the analysis of the singular integral ontour equation for the interfae

funtion h. We are able to develop an existene theory for any initial interfae given by

h0 ∈ H2
and any permeability urve-of-disontinuity that is given by f ∈ H2.5

. In partiular,

our method allows for both urves to have (pointwise) unbounded urvature. In the ase

that the permeability disontinuity is the set f = 0, we prove global existene and deay

to equilibrium for small initial data. This deay is obtained using a new energy-energy

dissipation inequality that ouples tangential derivatives of the veloity in the bulk of the

�uid with the urvature of the interfae. To the best of our knowledge, this is the �rst global

existene result for the Muskat problem with disontinuous permeability.
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1 Introdution

1.1 The Muskat problem

The Muskat problem, introdued in [38℄, models the dynamis of an evolving material inter-

fae separating two �uids �owing through a porous medium, i.e. a medium onsisting of a

solid matrix with �uid-�lled pores. Porous media �ow is modelled by Dary's law

µ

β
u = −∇p− (0, gρ)T , (1.1)

where µ is the visosity of the �uid, ρ denotes the density, u is the inompressible �uid

veloity, and p is the pressure funtion; additionally, β > 0 denotes the permeability of the

solid matrix, and g is the aeleration due to gravity, whih we shall heneforth set to 1.
Dary's law (1.1) is an empirial relation between momentum and fore (see, for example,

[3, 39℄), and replaes onservation of momentum, whih is used to model the evolution of

invisid �uid �ows.

The purpose of this paper is to study the evolution of an interfae moving through porous

media with a disontinuous permeability. As the permeability takes two di�erent values, this

ase is known in the literature as the inhomogeneous Muskat problem. Spei�ally, we are

interested in the well-posedness and deay to equilibrium for the inhomogeneous Muskat

problem.

Γ
bot

Ω−
β−

Ω+(t)β+ µ−, ρ−

Vacuum
Γ

perm

Γ(t)

β+ 

Figure 1: The solid urve (blue) is the interfae Γ(t) and the dashed urve (red) denotes the interfae

Γperm, aross whih the permeability is disontinuous.

We let S
1
denote the irle, so that funtions h : S1 → R are identi�ed with [−π, π]-

periodi funtions on R. As shown in Figure 1, we onsider a porous medium oupying an

open time-dependent subset Ω(t) ⊂ S
1 × R suh that

Ω(t) = Ω+(t) ∪ Ω− ∪ Γperm ,
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where

Ω+(t) = {(x1, x2) ∈ S
1 × R, −1 + f(x1) < x2 < h(x1, t)} , (1.2a)

Ω− = {(x1, x2) ∈ S
1 × R, −2 < x2 < −1 + f(x1)} , (1.2b)

Γperm = {(x1,−1 + f(x1)), x1 ∈ S
1} , (1.2)

and where the funtions f and h satisfy

min
x1∈S1

f(x1) > −1 and h(x1, 0) > −1 + f(x1). (1.3)

The �xed-in-time permeability interfae Γperm denotes the urve, aross whih the perme-

ability funtion β(x) is disontinuous; spei�ally, the permeability funtion β(x) is de�ned
as

β(x) =

{
β+ in Ω+(t)
β− in Ω− ,

for given onstants β± > 0. The domain for this problem is also an unknown; thus, we must

trak the evolution of the time-dependent interfae or free-boundary Γ(t), whih is de�ned

as the set

Γ(t) = {(x1, h(x1, t)), x1 ∈ S
1} .

For simpliity, we shall set the �uid density ρ and visosity µ to 1. As the �uid is

inompressible, it follows that

[[u · nperm]] = 0 on Γperm × [0, T ] .

With the domains de�ned, the Muskat problem onsists of the following system of ou-

pled equations:

u±

β±
+∇p± = −e2, in Ω±(t)× [0, T ] , (1.4a)

∇ · u± = 0, in Ω±(t)× [0, T ] , (1.4b)

[[p]] = 0 on Γperm × [0, T ], (1.4)

[[∇p · nperm]] = −
[[ 1
β

]]
u+ · nperm on Γperm × [0, T ], (1.4d)

p+ = 0 on Γ(t)× [0, T ], (1.4e)

V(Γ(t)) = u+ · n on Γ(t)× [0, T ] , (1.4f)

u− · e2 = 0 on Γbot × [0, T ], (1.4g)

where V(Γ(t)) denotes the normal omponent of the veloity of the time-dependent free-

boundary Γ(t), n is the (upward) unit normal to Γ(t), nperm is the (upward-pointing) unit

normal to Γperm, and [[f ]] = f+ − f− denotes the jump of a disontinuous funtion f aross

Γperm.
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1.2 A brief history of the analysis of the Muskat problem

Dary's law (1.1) is a standard model for �ow in aquifers, oil wells, or geothermal reservoirs,

and it is therefore of pratial importane in geosiene (see, for example, [9, 28℄ and the

referenes therein). Furthermore, the Muskat problem is equivalent to the Hele-Shaw ell

problem with gravity (see [36℄) for �ow between two thinly-spaed parallel plates.

There has a been a great deal of mathematial analysis of both the Muskat problem and

the Hele-Shaw ell, and we shall only review a small fration of the results that are, in some

sense, most losely related to our result.

For the Muskat problem with a ontinuous permeability funtion, existene of solutions

in the Sobolev spae H3
has been established by Córdoba & Ganedo [18, 19℄, Córdoba,

Córdoba & Ganedo in [17℄, and Córdoba, Granero-Belinhón & Orive [22℄, using the singular

integral ontour equation for the height funtion h. Cheng, Granero-Belinhón & Shkoller

[12℄ introdued the diret PDE approah (modi�ed for use, herein), and established an

H2
existene theory (see also Cheng, Coutand & Shkoller [11℄ for a similar approah to

the horizontal Hele-Shaw ell problem). This was followed by an H2
existene theory by

Constantin, Ganedo, Shvydkoy & Viol [16℄ using the singular integral approah; they also

obtained a �nite-slope global existene result. Very reently, loal existene in Hs
, s > 3/2

has been obtained by Matio [37℄. In the presene of surfae tension, loal existene in H6

was also obtained by Ambrose [1, 2℄.

In the ase of a disontinuous permeability funtion (with a jump aross the �at urve

(x1,−1)), the loal-in-time existene of solutions has been proved by Berselli, Córdoba &

Granero-Belinhón [4℄. In the ase of two �uids with di�erent visosities and densities and

permeability funtion with a jump given by an arbitrary smooth urve (f1(α), f2(α)) the

loal-in-time existene of solutions has been established by Pernás-Castaño [40℄ .

For the ase of a ontinuous permeability, there are a variety of results showing global

existene of strong solutions under ertain onditions on the initial data. In partiular,

Cheng, Granero-Belinhón & Shkoller [12℄ proved global existene under restritions on the

size of ‖h0‖H2 , while Córdoba, Constantin, Ganedo & Strain [15℄ and Córdoba, Constantin,

Ganedo, Strain & Rodríguez-Piazza [14℄ proved global existene under restritions on the

size of ‖ĥ′0‖L1 , where ĥ denotes the Fourier transform. The global existene of weak solution

has been proved by Córdoba, Constantin, Ganedo & Strain [15℄ and Granero-Belinhón [35℄

for initial data satisfying restritions on ‖h0‖Ẇ 1,∞ and ‖h0‖W 1,∞ , respetively. Note that

the ondition on ‖h0‖L∞
in [35℄ is a onsequene of having a bounded porous media.

Finite time singularities of turning type are known to our. A turning wave is a solution

whih starts as a graph, but then turns-over and loses the graph property. The existene of

suh waves in the Rayleigh-Taylor stable regime has been established by Castro, Córdoba,

Fe�erman, Ganedo & López-Fernández [8℄, Córdoba, Granero-Belinhón & Orive-Illera [22℄,

Berselli, Córdoba & Granero-Belinhón [4℄ and Gómez-Serrano & Granero-Belinhón [34℄.

Finally, some deeper insight on the turning behaviour has been obtained by Córdoba,

Gómez-Serrano & Zlato�s [20, 21℄, where, in partiular, they proved that ertain solutions to

the two-phase Muskat problem start as a graph, then turn-over and lose the graph property

and hene violate the Rayleigh-Taylor ondition but then stabilize and return to being a

graph. Furthermore Castro, Córdoba, Fe�erman & Ganedo [6℄ also proved that there exist
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interfaes suh that, after turning, the interfae is no longer analyti and, in fat,

lim sup
t→T

‖z(t)‖C4 = ∞,

for a �nite time T > 0.
Ganedo & Strain [33℄ have shown that the �nite-time splash and splat singularities

(a self-intersetion of a loally smooth interfae) annot our for the two-phase Muskat

problem (see also Fe�erman, Ionesu & Lie [32℄ and Coutand & Shkoller [27℄). However,

in the ase of the one-phase Muskat problem, Castro, Córdoba, Fe�erman & Ganedo [7℄

proved that the splash singularities may our while Córdoba & Pernás-Castaño [23℄ showed

that splat singularities annot our. See also Coutand & Shkoller [26℄ for splash and splat

singularities for the 3-D Euler equations and related models.

Let us also mention that several results for the multiphase Muskat problem have been

obtained in the ompletely di�erent framework of little Hölder spaes hk+α by Esher &

Matio [30℄, Esher, Matio & Matio [29℄ and Esher, Matio & Walker [31℄.

Very reently, a regularity result in Hölder spaes for the one-phase Hele-Shaw problem

has been obtained by Chang-Lara & Guillén [10℄ using the hodograph transform. Also, Prüss

& Simonett [41℄ studied the two-phase Muskat problem in a more geometri framework using

the Hanzawa transform. In partiular, these authors show well-posedness, haraterize and

study the dynami stability of the equilibria.

Finally, using a onvex integration approah, Castro, Córdoba & Farao [5℄ very reently

proved the existene of weak solutions for the Muskat problem in the ase where the denser

�uid lies above the lighter �uid, so, it is in the Rayleigh-Taylor unstable regime. Remarkably,

these solutions develop a mixing zone (a strip ontaining partiles from both phases and,

onsequently, with �uid partiles having both densities), growing linearly in time.

1.3 Methodology

As noted above, most prior existene theorems have relied upon the singular integral ontour

equation for the height funtion h; in the ase of the in�nitely deep two-phase Muskat

problem with ontinuous permeability, the evolution equation for h an be written as

ht(x1) = p.v.

∫

R

h′(x1)− h′(x1 − y)

y

1

1 +
(
h(x1)−h(x1−y)

y

)2dy; (1.5)

see, for example, [18℄ for the derivation.

The ontour equation (1.5) depends ruially on the geometry of the domain and the

permeability funtion. In partiular, when the porous medium has �nite depth (equal to

π/2) and the permeability funtion is disontinuous aross the urve (x1,−1), it was shown
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in [4℄ that (1.5) takes the form:

ht(x1) =
β+(−[[ρ]])

4π
p.v.

∫

R

(h′(x1)− h′(y)) sinh(x1 − y)

cosh(x1 − y)− cos(h(x1)− h(y))
dy

+
β+(−[[ρ]])

4π
p.v.

∫

R

(h′(x1)− h′(y)) sinh(x1 − y)

cosh(x1 − y) + cos(h(x1) + h(y))
dy

+
1

4π
p.v.

∫

R

̟2(y)(sinh(x1 − y) + h′(x1) sin(h(x1) + 1))

cosh(x1 − y)− cos(h(x1) + 1)
dy

+
1

4π
p.v.

∫

R

̟2(y)(− sinh(x1 − y) + h′(x1) sin(h(x1)− 1))

cosh(x1 − y) + cos(h(x1)− 1)
dβ, (1.6)

where

̟2(x1) =
β+ − β−

β+ + β−
β+(−[[ρ]])

2π
p.v.

∫

R

h′(y)
sin(1 + h(y))dy

cosh(x1 − y)− cos(1 + h(y))

−β
+ − β−

β+ + β−
β+(−[[ρ]])

2π
p.v.

∫

R

h′(y)
sin(−1 + h(y))dy

cosh(x1 − y) + cos(−1 + h(y))

+

(
β+−β−

β++β−

)2

√
2π

β+(−[[ρ]])

2π
Gβ ∗ p.v.

∫

R

h′(y) sin(1 + h(y))dy

cosh(x1 − y)− cos(1 + h(y))

−

(
β+−β−

β++β−

)2

√
2π

β+(−[[ρ]])

2π
Gβ ∗ p.v.

∫

R

h′(y) sin(−1 + h(y))dy

cosh(x1 − y) + cos(−1 + h(y))
, (1.7)

with

Gβ(x1) = F−1




F
(

sin(2)
cosh(x1)+cos(2)

)
(ζ)

1 +
β+−β−

β++β−√
2π

F
(

sin(2)
cosh(x1)+cos(2)

)
(ζ)


 ,

a Shwartz funtion, and where F denotes the Fourier transform. Let us emphasize that,

due to the non-loal harater of ̟2 given by (1.7), the ontour equation (1.6) is signi�antly

more hallenging to analyse than (1.5). Note also, from the de�nition of Gβ(x1) that the
highly non-loal onvolution terms in (1.7) are not expliitly de�ned.

Beause of the ompliations inherent in the singular integral approah of (1.7), we

shall instead analyze the system (1.4) diretly. As (1.4) is set on the time-dependent a

priori unknown domain Ω(t), in order to build an existene theory, we �rst pull-bak this

system of equations onto a �xed-in-time spatial domain. We use a arefully hosen hange-

of-variables that transforms the free-boundary problem (1.4) into a system of equations set

on a smooth and �xed domain, but having time-dependent oe�ients.

To pull-bak our problem, we employ a family of di�eomorphisms ψ±
whih are ellipti

extensions of the interfae parametrizations, and thus have optimal Hs
Sobolev regularity.

The time-dependent oe�ients (in the pulled-bak desription) arise from di�erentiation

and inversion of these maps ψ±
; by studying the transformed Dary's Law, we obtain a

new higher-order energy integral that provides the regularity of the moving interfae Γ(t).
Additionally, we obtain an L2

-in-time paraboli regularity gain, analogous to the regularity
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gain for solutions to the heat equation, exept that we gain a 1/2-derivative in spae rather

than a full derivative. The regularity of the interfae Γ(t) as well as the improved L2
-in-

time paraboli regularity gain are found from the non-linear struture of the pulled-bak

representation of the Muskat problem. In partiular, we do no rely on the expliit struture

of the singular integral ontour equation, and as suh, we are free to study general domain

geometries and permeability funtions.

1.4 The main results

As we will show, the Rayleigh-Taylor (RT) stability ondition, given by − ∂p
∂n > 0 on Γ(t), is

a su�ient ondition for well-posedness of the Muskat problem (1.4) in Sobolev spaes. In

partiular, with

p0 := p(·, 0) and Γ := Γ(0) ,

and letting N := n(·, 0) denote the outward unit normal to Γ, we prove that for any initial

interfae Γ of arbitrary size and of lass H2
, hosen suh that the RT stability ondition

−∂p0
∂N

> 0 on Γ (1.8)

is satis�ed, there exists a unique solution (u±(x, t), p±(x, t), h(x1, t)) to the one-phase Muskat

problem with disontinuous permeability funtion.

More preisely, we prove the following

Theorem 1 (Loal well-posedness in H2
). Suppose the initial interfae Γ is given as the

graph (x1, h0(x1)) where h0 ∈ H2(S1) and
∫
S1
h0(x1)dx1 = 0, and that the RT ondition (1.8)

is satis�ed. Let Γperm be given as the graph (x1,−1 + f(x1)) for a funtion f ∈ H2.5(S1).
Assume also that (1.3) holds. Then, there exists a time T (h0, f) > 0 and a unique solution

h ∈ C([0, T (h0, f)];H
2(S1)) ∩ L2(0, T (h0, f);H

2.5(S1)) ,

u± ∈ C([0, T (h0, f)];H
1.5(Ω±(t))) ∩ L2(0, T (h0, f);H

2(Ω±(t))) ,

p± ∈ C([0, T (h0, f)];H
2.5(Ω±(t))) ∩ L2(0, T (h0, f);H

3(Ω±(t))) ,

to the system (1.4), satisfying

‖h(t)‖2L2(S1) + 2

∫ t

0

∥∥∥∥
u+(s)

β+

∥∥∥∥
2

L2(Ω+(s))

ds+ 2

∫ t

0

∥∥∥∥
u−(s)
β−

∥∥∥∥
2

L2(Ω−)

ds = ‖h0‖2L2(S1),

and

‖h‖C([0,T (h0,f)],H2(S1)) + ‖ht‖L2(0,T (h0,f);H1.5(S1)) + ‖h‖L2(0,T (h0,f);H2.5(S1))

+ ‖p‖C([0,T (h0,f)],H2.5(Ω+(t)∪Ω−)) + ‖p‖L2(0,T (h0,f);H3(Ω+(t)∪Ω−))

+ ‖u‖C([0,T (h0,f)],H1.5(Ω+(t)∪Ω−)) + ‖u‖L2(0,T (h0,f);H2(Ω+(t)∪Ω−)) ≤ C(h0, f)

for a onstant C(h0, f) whih depends on h0 and f .
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Remark 1. It is easy to see that if h0(x1) = f(x1) = 0, the solution is given by

u±(x, t) = 0, h(x1, t) = 0, p±(x, t) = −x2, (1.9)

and the RT ondition is satis�ed. There exist in�nitely many initial data h0 satisfying the

RT ondition; for example, small perturbations of (1.9) satisfy the RT ondition (1.8) via

impliit funtion theorem arguments.

Theorem 2 (Global well-posedness and deay to equilibrium in H2
). Suppose the initial

interfae Γ is given as the graph (x1, h0(x1)) where h0 ∈ H2(S1) and
∫
S1
h0(x1)dx1 = 0. Let

Γperm be given as the graph (x1,−1). Then, there exists a onstant C suh that if

|h0|2 < C ,

the RT ondition (1.8) is satis�ed and there exists a unique solution

h ∈ C([0,∞);H2(S1)) ∩ L2(0,∞;H2.5(S1)) ,

u± ∈ C([0,∞);H1.5(Ω±(t))) ∩ L2(0,∞;H2(Ω±(t))) ,

p± ∈ C([0,∞);H2.5(Ω±(t))) ∩ L2(0,∞;H3(Ω±(t))) ,

to the system (1.4), satisfying

‖h(t)‖H2(S1) ≤ ‖h0‖H2(S1)e
−γt/2

for a onstant γ(h0, β
±), whih depends on h0 and β±.

Remark 2. Note that the question of whether the free boundary Γ(t) an reah the urve

Γperm in �nite time, in a a situation that resembles the splash/splat singularity, remains an

open problem. In fat, suh behavior an be seen as a singular phenomena (for instane,

some of the (non-singular) terms in (1.6) and (1.7) beome singular integral operators). As

Theorem 2 implies that Γ(t) annot reah the urve Γperm in �nite time if h0 is small enough,

this result rules out the possibility of interfae ollision in �nite time for small initial data.

Remark 3. We note that the dry zone (the region without �uid) lies above the urve Γ(t),
and so, as long as (1.3) holds, the dry zone lies above Γperm. The question of whether a

dry zone an form inside Ω−
remains an open problem. In other words, assume that there

exists a solution h(x1, t) up to time T and assume also that Γ(t) intersets Γperm at the

point (x0, t
′) ∈ S

1 × (0, T ), i.e.

h(x0, t
′) = −1 + f(x0).

Then, it is not lear if the urve Γ(t) may ross the urve Γperm, i.e.

h(x1, t) < −1 + f(x1), ∀ (x1, t) ∈ (x0 − ǫ, x0 + ǫ)× (t′, t′ + δ), ,

for ertain ǫ, δ > 0. Note also that, if this happens, then the region

{(x1, x2), x1 ∈ (x0 − ǫ, x0 + ǫ), h(x1, t) < x2 < −1 + f(x1)} ⊂ Ω−

is ontained in the dry zone.
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Remark 4. The exponential deay of the solution h(t) is a onsequene of an energy-

energy dissipation inequality establishing a relationship between the interfae regularity and

the regularity of the semi-ALE veloity (see Setions 5 and 6):

‖h′′(t)‖L2(S1) ≤ C‖w′′‖L2(S1×(−2,−1)∪S1×(−1,0)).

Remark 5. Note that the linearized evolution equation for a small perturbation of the

�at interfae an be written as

ht = −ΛD+h,

where ΛD+ is the Dirihlet-to-Neumann map assoiated with the ellipti system (5.1):

ΛD+h(x1) = δψ,2 (x1, 0).

An integration by parts shows that

∫

S

∫ 0

−1
δψ+∆δψ+dx2dx1 =

∫

S

δψ+(x1, 0)δψ
+,2 (x1, 0)dx1 −

∫

S

δψ+(x1,−1)δψ+,2 (x1,−1)dx1

−
∫

S

∫ 0

−1
|∇δψ+|2dx2dx1,

so that, ∫

Γ
ΛD+hhdx1 =

∫

D+

|∇δψ+|2dx.

We also have the following Poinaré-Wirtinger inequality

∫

D+

|δψ+(x)|2dx =

∫

D+

∣∣∣∣
∫ 1

0
δψ+,2 (x1, sx2 + (1− s)(−1))(x2 + 1)ds

∣∣∣∣
2

dx

≤
∫

S

∫ 0

−1

∫ 1

0

∣∣δψ+,2 (x1, sx2 + (1− s)(−1))
∣∣2 (x2 + 1)2dsdx2dx1

=

∫ 0

−1
(x2 + 1)

∫

S

∫ x2

−1

∣∣δψ+,2 (y)
∣∣2 dy2dy1dx2

≤
∫ 0

−1
(x2 + 1)

∫

D+

∣∣δψ+,2 (y)
∣∣2 dydx2

≤ 1

2

∫

D+

∣∣δψ+,2 (y)
∣∣2 dy.

Thus, using the trae theorem, we onlude that

∫

Γ
ΛD+hhdx1 ≥ 0.5‖δψ+‖21,+ ≥ ν|h|20.5 ≥ ν|h|20,

for ν > 0. Exponential deay for the nonlinear problem (under smallness assumptions) is

hene also expeted.

9



R. Granero-Belinhón and S. Shkoller Inhomogeneous Muskat problem

1.5 Notation used throughout the paper

For a matrix A, we write Aij for the omponent of A loated in row i and olumn j. We use

the Einstein summation onvention, wherein repeated indies are summed from 1 to 2. We

denote the jth anonial basis vetor in R
2
by ej .

For s ≥ 0, we set

‖u‖s,+ := ‖u+‖Hs(D+) , ‖u‖s,− := ‖u−‖Hs(D−) , ‖u‖s,± := ‖u+‖s,+ + ‖u−‖s,−
and

|h|s := ‖h‖Hs(Γ) .

For funtions h de�ned on Γperm, we shall also denote the Hs
norm by |h|s := ‖h‖Hs(Γperm),

whenever the ontext is lear.

We write

f ′ =
∂f

∂x1
, f,k =

∂f

∂xk
, and ft =

∂f

∂t
.

For a di�eomorphism ψ, we let A = (∇ψ)−1
, and de�ne

curlψv = Aj1v
2,j −Aj2v1,j , (1.10)

divψv = Aijv
j ,i . (1.11)

2 The Muskat problem in the ALE formulation

2.1 Construting the family of di�eomorphisms ψ(·, t)
2.1.1 The idea for the onstrution

Our analysis of the Muskat problem (1.4) is founded on a time-dependent hange-of-variables

whih onverts the free boundary problem to one set on smooth referene domains D±

D+ = S
1 × (−1, 0) ,D− = S

1 × (−2,−1) , (2.1)

The boundaries of the domains D±
are de�ned as

Γbot = {(x1,−2), x1 ∈ S
1} ,Γperm = {(x1,−1), x1 ∈ S

1} , and Γ = {(x1, 0), x1 ∈ S
1} . (2.2)

We let N = e2 denote the unit normal vetor on Γ (outwards), Γperm and Γbot.

As our analysis ruially relies on obtaining a paraboli regularity gain, we need a refer-

ene domain D+
with C∞

boundary. In partiular, the initial domain Ω+(0) annot serve
as a referene domain.

We adapt the ideas from [12℄ to onstrut the time-dependent family of di�eomorphisms

with optimal Sobolev regularity, ψ(x, t), that we shall use to pull-bak (1.4) onto the �xed

domain D±
. Before detailing this onstrution, let us sketh the proedure. First, we

onstrut a di�eomorphism with optimal Sobolev regularity at t = 0:

ψ+(0) : D+ → Ω+(0), ψ− : D− → Ω−.

To do so we follow a three step proedure:

10
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• For 0 < δ ≪ 1 a su�iently small parameter (to be �xed later), we de�ne auxiliary

domains, D±,δ(0). These auxiliary domains are onstruted via molli�ation of h(x1, 0)
and f(x1) and, thus, they are in�nitely smooth. We de�ne the graph di�eomorphism

φ±1 : D± → D±,δ.

These di�eomorphisms are of lass C∞
beause of the smoothness of the domains D±

and D±,δ
.

• We need another di�eomorphisms from the auxiliary domain D±,δ
to Ω±(0). We need

these di�eomorphisms to gain 1/2 derivatives with respet to the regularity of Ω±(0).
In order that this optimal regularity is obtained, we make use of the de�nition of D±,δ

and the properties of our molli�ers. We de�ne

φ±2 : D±,δ → Ω±(0)

as the solution to Laplae problems with appropriate boundary onditions. Using the

boundary data and the inverse funtion theorem, these mappings φ±2 are H2.5−lass
di�eomorphisms.

• Finally, we de�ne

ψ+(0) = φ+2 ◦ φ+1 , ψ− = φ−2 ◦ φ−1 .
As omposition of di�eomorphisms, ψ±(0) is a di�eomorphism.

One the initial di�eomorphism with optimal Sobolev regularity is onstruted, we solve

Poisson problems (to be detailed below) for ψ±(x, t). An appliation of the inverse funtion

theorem together with standard ellipti estimates will show that these mappings ψ±(x, t)
are a family of di�eomorphisms with the desired smoothness.

2.1.2 Construting the initial regularizing di�eomorphism ψ(·, 0)

Given a funtion h ∈ C(0, T ;H2) with initial data h(x1, 0) = h0(x1), we �x 0 < δ ≪ 1 and

de�ne our auxiliary domains and boundaries

D+,δ(0) = {(x1, x2), x1 ∈ S
1, −1 + Jδf(x1) < x2 < Jδh0(x1)},

D−,δ = {(x1, x2), x1 ∈ S
1, −2 < x2 < −1 + Jδf(x1)},

Γδ(0) = {(x1,Jδh0(x1)), x1 ∈ S
1}, Γδperm = {(x1,−1 + Jδf(x1)), x1 ∈ S

1}.
As we said previously, we de�ne the graph di�eomorphism

φ+1 (x1, x2) = (x1, (x2 + 1)Jδh0(x1)− (−1 + Jδf(x1))x2) ,

φ−1 (x1, x2) = (x1, x2 + Jδf(x1)(x2 + 2)) ,

where Jδ denotes the onvolution with a standard Friedrih's molli�er. This funtion

φ±1 : D± → D±,δ(0)

11
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is a C∞
di�eomorphism.

Next, we have to de�ne the regularizing di�eomorphisms

φ±2 : D±,δ(0) → Ω±(0).

We de�ne these mappings as the solution to the following ellipti problems:

∆φ+2 = 0 in D+,δ(0) , (2.3a)

φ+2 = (x1, x2) + [h0(x1)−Jδh0(x1)]e2 on Γδ(0) , (2.3b)

φ+2 = (x1, x2) + [f(x1)− Jδf(x1)]e2 on Γδperm , (2.3)

∆φ−2 = 0 in D−,δ , (2.4a)

φ−2 = (x1, x2) + [f(x1)− Jδf(x1)]e2 on Γδperm (2.4b)

φ−2 = (x1, x2) on Γbot . (2.4)

Using standard ellipti regularity theory, we have that

‖φ2 − e‖H2.5(D±,δ) ≤ C(|h0 −Jδh0|2 + |f − Jδf |2),

where e = (x1, x2) denotes the identity mapping. Using the Sobolev embedding theorem,

and taking δ > 0 su�iently small, we have that

‖φ2 − e‖C1(D±,δ) ≪ 1,

so, due to the inverse funtion theorem, we obtain that φ±2 is an H2.5
-lass di�eomorphism.

As in [12℄, we de�ne

ψ+(0) = φ+2 ◦ φ+1 : D+ → Ω+(0), ψ− = φ−2 ◦ φ−1 : D− → Ω−. (2.5)

Then, this mapping is also an H2.5
-lass di�eomorphism.

2.1.3 Construting the time-dependent family of regularizing di�eomorphisms

ψ(·, t)

We de�ne the time-dependent family of di�eomorphisms ψ(t) = ψ(·, t) as solutions to Poisson
equations with foring depending on ψ(0). The main point of this onstrution is that due to

the ontinuity in time of the interfae h and standard ellipti estimates, the time-dependent

family of di�eomorphisms ψ(t) = ψ(·, t) is going to remain lose to the initial di�eomorphism

ψ(0).
In partiular, we onsider the following ellipti system:

∆ψ+(t) = ∆ψ+(0) in D+ × [0, T ] , (2.6a)

ψ+(t) = (x1, x2) + h(x1, t)e2 on Γ× [0, T ] , (2.6b)

ψ+(t) = (x1, x2) + f(x1)e2 on Γperm × [0, T ] . (2.6)

12
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and ψ−(t) = ψ−
. Beause of the foring term present in (2.6a), we have that ψ+(t)−ψ+(0)

solves

∆(ψ+(t)− ψ+(0)) = 0 in D+ × [0, T ] ,

ψ+(t)− ψ+(0) = (h(x1, t)− h(x1, 0))e2 on Γ× [0, T ] ,

ψ+(t)− ψ+(0) = 0 on Γperm × [0, T ] .

Due to ellipti estimates, we have the bound

‖ψ(t) − ψ(0)‖2.25,± ≤ C|h(t)− h0|1.75. (2.8)

By taking su�iently small time t and realling that h ∈ C(0, T ;H2), we have that

‖ψ(t)‖2.25,± ≤ C|h(t)− h0|1.75 + C(|h0|1.75 + |f |1.75 + 1) ≤ 2C(|h0|1.75 + |f |1.75 + 1).

Writing

J(t) = det(∇ψ(t)) = ψ1,1 ψ
2,2 −ψ2,1 ψ

1,2 ,

we have the bound

‖J(t) − J(0)‖1.25,± ≤ C|h(t)− h0|1.75. (2.9)

Consequently, using h ∈ C(0, T ;H2), for su�iently small time t, we have that

min
x∈D±

J(0)

2
< J(t) < 2 max

x∈D±
J(0),

and, thanks to (2.8), we have that

‖ψ(t) − ψ(0)‖C1 ≤ C|h(t)− h0|1.75 ≪ 1.

Due to the inverse funtion theorem and using the fat that ψ(0) is a di�eomorphism, we

see that

ψ±(t) : D± → Ω±(t)

is a di�eomorphism. From the ellipti estimate

‖ψ(t)‖2.5,± ≤ C(|h(t)|2 + |f |2 + 1),

we have that ψ(t) is an H2.5
-lass di�eomorphism.

2.1.4 The matrix A(·, t)

We write A = (∇ψ)−1
. Thus,

Airψ
r,j = δij

and we obtain the useful identities

(At)
i
k = −Air(ψt)r,j Ajk, A′′ = −2A′∇ψ′A−A∇ψ′′A. (2.10)

We will also make use of the Piola's identity: (JAki ),k = 0.
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2.2 The Muskat problem in the referene domains D±

With ψ(t) = ψ(·, t) de�ned in Setion 2.1, we de�ne our new variables in the referene

domains D±
: v = u ◦ ψ, q = p ◦ ψ.

We let

τ̃ = ψ′, ñ = (ψ′)⊥, g = |ψ′|2

denote the (non-normalized) tangent and normal vetors and the indued metri, respe-

tively, on Γ(t). We also de�ne the unit tangent vetor τ = τ̃ /
√
g and the unit normal vetor

n = ñ/
√
g. In the same way, we de�ne τ̃perm, ñperm, gperm, τperm, nperm as the analogous

quantities on Γperm. Reall that

JAkiN
k = ñi on Γ, JAkiN

k = ñiperm on Γperm.

Hene, the ALE representation of the one-phase inhomogeneous Muskat problem is given

by

(v±)i

β±
+ (A±)ki (q

± + ψ± · e2),k = 0 in D± × [0, T ] , (2.11a)

(A±)ki (v
±)i,k = 0 in D± × [0, T ] , (2.11b)

ht(t) = (v+)iJ+(A+)jiN
j

on Γ× [0, T ] , (2.11)

q+ = 0 on Γ× [0, T ] , (2.11d)

[[q]] = 0 on Γperm × [0, T ] , (2.11e)

[[q,k A
k
i JA

j
iN

j]] = −
[[ 1
β

]]
viJAjiN

j
on Γperm × [0, T ] (2.11f)

v−2 = 0 on Γbot × [0, T ] . (2.11g)

3 A priori estimates

In this setion we establish the a priori estimates for the one-phase Muskat problem with

disontinuous permeability (1.4).

We de�ne the higher-order energy funtion

E(t) = max
0≤s≤t

|h(s)|22 +
∫ t

0
‖v(s)‖22,± + |h(s)|22.5ds.

Remark 6. Another possible de�nition for a higher-order energy funtion is (see [12℄)

E(t) = max
0≤s≤t

|h(s)|22 +
∫ t

0
‖v(s)‖22,±.

In fat, as will be shown,

E(t) ≤ CE(t).
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As in [12℄, our goal is to obtain the polynomial inequality

E(t) ≤ M0 +Q(E(t))tα,

for ertain α > 0, a generi polynomial Q, and a onstant M0 depending on h0 and f . When

E(t) is ontinuous, the previous inequality implies the existene of T ∗(h0, f) suh that

E(t) ≤ 2M0. (3.1)

We assume that we have a smooth solution de�ned for t ∈ [0, T ]. We take 0 < T ≤ 1
small enough suh that the following onditions hold: for a �xed onstant 0 < ǫ ≪ 1
(possibly depending on h0 and f ) and for t ∈ [0, T ],

‖ψ(t) − ψ(0)‖L∞ + ‖A(t)−A(0)‖L∞ + ‖J(t) − J(0)‖L∞ ≤ ǫ ; (3.2a)

‖h(t) − h0‖L∞ + ‖∇q(t)−∇q(0)‖L∞ ≤ ǫ ; (3.2b)

E(t) ≤ 3M0 ; (3.2)

min
0≤t≤T

min
x1∈S1

q,2 (t) ≥ min
x1∈S1

q,2 (0)/4. (3.2d)

We will show that onditions even striter than (3.2,d) atually holds. Let us emphasize

that, due to the RT ondition, we have that

min
x1∈S1

q,2 (0) > 0.

Again, we let C = C(h0, f, δ) denote a onstant that may hange from line to line. We

let P(x) denote a polynomial with oe�ients that may depend on h0(·) := h(·, 0), f, δ. This
polynomial may hange from line to line.

3.1 Estimates for some lower-order norms

In the following, we ollet some estimates of lower-order norms. The proofs are similar to

those in [12℄, so, we omit them.

Lemma 3 (Estimates for some lower-order norms of h, [12℄, Setion 8.4.1). Given a smooth

solution to the Muskat problem (2.11a-g),

∫ t

0
|ht|21ds ≤ C E(t). (3.3a)

|h(t)− h0|1 ≤ C
√
E(t)t1/2. (3.3b)

Lemma 4 (Estimates for some lower-order norms of the ALE mapping ψ, [12℄, Setion
8.4.2). Given a smooth solution to the Muskat problem (2.11a-g),

‖ψ(t)‖2.5,± ≤ C(1 + |h(t)|2), ‖ψ(t)‖3,± ≤ C(1 + |h(t)|2.5) (3.4a)

‖ψ(t) − ψ(0)‖2.25,± + ‖A(t) −A(0)‖1.25,± + ‖J(t)− J(0)‖1.25,± ≤ 4
√
tC

√
E(t). (3.4b)

Notie that (3.4b) implies a striter version of (3.2a). As a onsequene we obtain that

|h(t)|1.75, ‖ψ(t)‖2.25,±, ‖J(t)‖1.25,± and ‖A(t)‖1.25,± are bounded by C(h0, f) uniformly for

all t ∈ [0, T ]. Furthermore, we also have that

0 <
1

2
min

x∈D+∪D−
J(0) ≤ J(t) ≤ 1.5 max

x∈D+∪D−
J(0). (3.5)
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3.2 Basi L2
energy law

Lemma 5 (Estimates for some lower-order norms of v). For a smooth solution to the Muskat

problem (2.11a-g),

|h(t)|20 + 2

∫ t

0

∥∥∥∥∥

√
J

β
v

∥∥∥∥∥

2

0,±
ds = |h0|20 . (3.6)

Proof. We test the equation (2.11a) against Jv and integrate. Using Piola's identity, inte-

grating by parts and using the divergene free ondition (2.11b), we obtain that

∥∥∥∥∥

√
J

β
v

∥∥∥∥∥

2

0,±
+

∫

Γ
viJAki (q + ψ · e2)Nkdx1

−
∫

Γperm

[[viJAki (q + ψ · e2)Nk]]dx1 −
∫

Γbot

viJAki (q + ψ · e2)Nkdx1 = 0.

Then, using the jump and boundary onditions on Γperm and Γbot,

∥∥∥∥∥

√
J

β
v

∥∥∥∥∥

2

0,±
+

1

2

d

dt
|h|20 = 0.

3.3 Estimates for h ∈ L2(0, T ;H2.5(Γ)) and ht ∈ L2(0, T ;H1.5(Γ))

From (2.11a)

(vi + β+δ2i )τi = 0 on Γ, and v′iτi = −β+JA2
iA

2
i q,2

h′′

g3/2
on Γ . (3.7)

Lemma 6 (Paraboli smoothing, [12℄, Setion 8.4.6). Given a smooth solution to the Muskat

problem (2.11a-g),

h ∈ C([0, T ],H2(S1)).

In partiular,

∫ t

0
|ht(s)|21.5ds+

∫ t

0
|h(s)|22.5ds ≤ C

(
max
0≤s≤t

|h(s)|22 +
∫ t

0
‖v(s)‖22,±ds

)
. (3.8)

Note that Lemma 6 implies that the energy funtion E(t) is ontinuous.
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3.4 Pressure estimates

Using (2.11a) and (2.11b), q± solves

−(β±J±(A±)ji (A
±)ki q

±,k ),j = 0 in D± , (3.9)

q+ = 0 on Γ , (3.10)

[[q]] = 0 on Γperm , (3.11)

[[βq,k A
k
i JA

r
iN

r]] = −[[β]]δ2i JA
r
iN

r
on Γperm , (3.12)

β−q−,k (A
−)ki J

−(A−)riN
r = −β− on Γbot . (3.13)

We have that A(0)A(0)T is symmetri and positive de�nite:

[A(0)A(0)T ]ijξiξj ≥ L|ξ|2;

onsequently, due to (3.4b),

‖A0A
T
0 −A(t)AT (t)‖L∞ ≤ C

√
t
√
E(t) ,

and we see that for t su�iently small,

L
2
|ξ|2 ≤ [A(·, t)AT (·, t)]ijξiξj ≤ 2L|ξ|2.

Thus, A(t)AT (t) form a uniformly ellipti operator for t on [0, T ], and ellipti estimates

(following the same approah as in [12℄ and [13℄) lead to

‖q‖2.5,± ≤ C
√
E(t) , ‖v(t)‖1.5,± ≤ C

√
E(t). (3.14)

Furthermore, using the same argument as in [12, Setion 8.4.5℄, we obtain that

‖q(t)− q(0)‖2.25,± ≤ t1/8P(E(t)), (3.15)

and,

‖q,2 (t)− q,2 (0)‖L∞(Γ) ≤ C|q,2 (t)− q,2 (0)|0.75 ≤ t1/8P(E(t)).

As a onsequene of the latter inequality, the Rayleigh-Taylor sign ondition holds in [0, T ]
for small enough T . Furthermore, using the Sobolev embedding theorem,

‖∇q(t)−∇q(0)‖L∞ ≤ t1/8P(E(t)),

and a stronger version of the bootstrap assumption (3.2d) also holds.

3.5 The energy estimates

In this setion we will perform the basi energy estimates. Integrals of lower-order terms

will be denoted by R(t), meaning that

∫ t

0
R(s)ds ≤ M0 +

√
tP(E(t)).
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We take two horizontal derivatives of (2.11a), test against Jv′′, and integrate by parts

to �nd that

∫ t

0

∫

D+∪D−

J

β
|v′′|2dxds+

∫ t

0

∫

D+∪D−

J
[
Aki (q + ψ2)′′,k +(Aki )

′′(q + ψ2),k

]
v′′i dxds+

∫ t

0
R(s)ds = 0.

Due to the divergene free ondition (2.11b) we obtain that

Aki (v
i)′′,k = −(A′′)ki v

i,k +R(t). (3.16)

Thus, integrating by parts and using (3.16) and the identities JAkiN
k = ñi, JAkiN

k = ñiperm
and JAkiN

k = N i
on Γ, Γperm and Γbot, respetively, we �nd that

I1 =

∫ t

0

∫

D+∪D−

JAki (q + ψ2)′′,k v
′′
i dxds

=

∫ t

0

∫

Γ
ñi(q + ψ2)′′v′′i dx1ds −

∫ t

0

∫

Γperm

[[v′′i (q + ψ2)′′ñiperm]]dx1ds

−
∫ t

0

∫

Γbot

N i(q + ψ2)′′v′′i dx1ds−
∫ t

0

∫

D+∪D−

JAki (q + ψ2)′′(vi),′′k dxds

=

∫ t

0

∫

D+∪D−

J(A′′)ki (q + ψ2)′′(vi),k dxds+
∫ t

0

∫

Γ
ñih′′v′′i dx1ds

−
∫ t

0

∫

Γperm

(q+ + f)′′[[v′′i ñ
i
perm]]dx1ds+

∫ t

0
R(s)ds.

The 2-D integral is now a lower-order term that an be estimated with a L2−L4−L4−L∞

Hölder argument together with the Sobolev embedding theorem. Thus, we are left with the

integrals on the boundaries Γ and Γperm. Due to the inompressibility ondition, we have

that [[viñ
i
perm]] = 0, so that

I1 =

∫ t

0

∫

Γ
h′′h′′t dx1ds−

∫ t

0

∫

Γ
(
√
gni)

′′h′′vidx1ds

+

∫ t

0

∫

Γperm

(q+ + f)′′[[v1]]f
′′′dx1ds +

∫ t

0
R(s)ds

=
1

2
|h′′|20 −

1

2
|h′′0 |20 −

1

2

∫ t

0

∫

Γ
(h′′)2v′1dx1ds+

∫ t

0
|q′′[[v1]]|0.5|f |2.5ds

− 1

2

∫

Γperm

(f ′′)2[[v′1]]dx1ds+
∫ t

0
R(s)ds

≥ 1

2
|h′′|20 −

1

2
|h′′0 |20 −

√
tP(E(t)),

where we have used Hölder inequality, the trae theorem, (3.14) and the inequality

|fg|0.5 ≤ Cλ|f |0.5|g|0.5+λ. (3.17)
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The remaining high order term an be handled as follows: using (2.10) and integrating

by parts,

I2 =

∫ t

0

∫

D+∪D−

J(Aki )
′′(q + ψ2),k v

′′
i dxds

= −
∫ t

0

∫

D+∪D−

JAkrψ
r,11j A

j
i (q + ψ2),k v

′′
i dxds+

∫ t

0
R(s)ds

=

∫ t

0

∫

D+∪D−

ψr,11 JA
j
i (A

k
r (q + ψ2),k v

′′
i ),j dxds −

∫ t

0

∫

Γ
ψr,11 JA

j
i (A

k
r (q + ψ2),k v

′′
i )N

jdx1ds

+

∫ t

0

∫

Γperm

[[ψr,11 JA
j
i (A

k
r (q + ψ2),k v

′′
i )]]N

jdx1ds

−
∫ t

0

∫

Γbot

ψr,11 JA
j
i (A

k
r (q + ψ2),k v

′′
i )N

jdx1ds+

∫ t

0
R(s)ds

=

∫ t

0

∫

D+∪D−

ψr,11 JA
j
i (A

k
r (q + ψ2),k v

′′
i ),j dxds −

∫ t

0

∫

Γ
h′′ñiA

k
2(q + ψ2),k v

′′
i dx1ds

+

∫ t

0

∫

Γperm

f ′′[[ñipermA
k
2(q + ψ2),k v

′′
i ]]dx1ds+

∫ t

0
R(s)ds.

The integral in the bulk of the �uid an be estimated using (3.16) so that

∫ t

0

∫

D+∪D−

ψr,11 JA
j
i (A

k
r (q + ψ2),k v

′′
i ),j dxds ≥ −

√
tP(E(t)).

The integral over Γperm an be estimated using the H0.5−H−0.5
duality and (3.17) as follows:

∫ t

0

∫

Γperm

f ′′[[ñipermA
k
2(q + ψ2),k v

′′
i ]]dx1ds ≥ −

∫ t

0
C|f |2.5(1 + |f |1.75)|A∇(q + ψ2)|0.75|v|1.5ds

≥ −
∫ t

0
C‖A∇(q + ψ2)‖1.25,±‖v‖2,±ds

≥ −
√
tP(E(t)).

Using that Ak2ψ
2,k = δ22 = 1,

I2 ≥ −
√
tP(E(t)) −

∫ t

0

∫

Γ
h′′ñiv

′′
i (A

1
2(q + ψ2),1 +A

2
2(q + ψ2),2 )dx1ds

≥ −
√
tP(E(t)) −

∫ t

0

∫

Γ
h′′ñiv

′′
i (A

2
2q,2+1)dx1ds

≥ −
√
tP(E(t)) −

∫ t

0

∫

Γ
h′′(h′′t − h′′′v1)(J

−1q,2 +1)dx1ds

≥ −
√
tP(E(t)) −

∫ t

0

∫

Γ
h′′h′′t

(
q,2 (t)

J(t)
− q,2 (0)

J(0)
+
q,2 (0)

J(0)
+ 1

)
dx1ds.

From (3.15),

I2 ≥ −
√
tP(E(t)) −

∫ t

0

∫

Γ
h′′h′′t

(
q,2 (0)

J(0)
+ 1

)
dx1ds.
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Thus,

∫ t

0

∥∥∥∥∥

√
J

β
v′′
∥∥∥∥∥

2

0,±
ds +

1

2

∣∣∣∣∣

√
−q,2 (0)
J(0)

h′′(t)

∣∣∣∣∣

2

0

≤ 1

2

∣∣∣∣∣

√
−q,2 (0)
J(0)

h′′0

∣∣∣∣∣

2

0

+
√
tP(E(t)). (3.18)

3.6 Ellipti estimates via the Hodge deomposition

In this setion, we use the following

Lemma 7 ([13℄). Let Ω be a domain with boundary ∂Ω of Sobolev lass Hk+0.5
, k ≥ 2.

Let ψ0 be a given smooth mapping and de�ne curlψ0
v and divψ0

v as in (1.10) and (1.11),

respetively. Then for v ∈ Hk(Ω),

‖v‖Hk(Ω) ≤ C
[
‖v‖L2(Ω) + ‖curlψ0

v‖Hk−1(Ω) + ‖divψ0
v‖Hk−1(Ω) + ‖v′ · n‖Hk−1.5(∂Ω)

]
,

where n = (ψ′
0)

⊥/|ψ′
0|.

Sine in eah phase, curlu = 0 and div u = 0, it follows (see [12℄, Setion 8.4.8) that

∫ t

0
‖urlψ0

v‖21,±dy ≤
√
tP(E(t)), (3.19)

∫ t

0
‖divψ0

v‖21,±dy ≤
√
tP(E(t)). (3.20)

First, we want to use Lemma 7 to obtain an estimate for ‖v′‖1,±. The only term that is

deliate is the boundary term |v′′ · n|−0.5. For that term we have the following

Lemma 8 (Estimates for the normal trae of v). Given a smooth solution to the Muskat

problem (2.11a-g),

∫ t

0
|v′′ · n|2H−0.5(∂D−∪∂D+)ds ≤ C

∫ t

0
‖v′′‖20,±ds+

√
tP(E(t)) , (3.21)

where n = (ψ′
0)

⊥/|ψ′
0|.

Proof. In order to estimate |v′′ ·n|−0.5 using the H
1/2−H−1/2

duality, we onsider a funtion

φ ∈ H1(D+ ∪D−). Due to the trae theorem, we have that φ ∈ H0.5(Γ ∪ Γperm ∪ Γbot). We

de�ne the following integrals:

I1 =

∫

Γperm

g−1/2(v−)′′i JA
k
iN

kφdx1,

I2 =

∫

Γperm

g−1/2(v+)′′i JA
k
iN

kφdx1,

and

I3 =

∫

Γ
g−1/2v′′i JA

k
iN

kφdx1.
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Using the fat that

(ψ′
i)
⊥ = JAkiN

k

together with v2 = 0 on Γbot, we see that in order we have the appropriate estimate for

|v′′ · n|−0.5, it is enough to obtain good bounds for |I1|, |I2| and |I3|. To do that we use the

divergene theorem and Dary's law (2.11a). We ompute

I1 =

∫

Γperm

g−1/2(v−)′′i JA
k
iN

kφdx1

=

∫

Γperm

g−1/2(v−)′′i JA
k
iN

kφdx1 +

∫

Γbot

g−1/2(v−)′′i JA
k
iN

kφdx1

=

∫

D−

(g−1/2v′′i JA
k
i φ),k dx

=

∫

D−

g−1/2v′′i JA
k
i φ,k dx+

∫

D−

g−1/2,k v
′′
i JA

k
i φdx+

∫

D−

(vi,k )
′′g−1/2JAki φdx .

Integrating by parts, we obtain that

∫

D−

(vi,k )
′′g−1/2JAki φdx = −

∫

D−

divψv
′(Jg−1/2φ)′dx−

∫

D−

(vi,k )
′Jg−1/2(Aki )

′φdx .

So, we �nd that

I1 =

∫

D−

g−1/2v′′i JA
k
i φ,k dx+

∫

D−

g−1/2,k v
′′
i JA

k
i φdx

−
∫

D−

divψv
′(Jg−1/2φ)′dx−

∫

D−

(vi,k )
′Jg−1/2(Aki )

′φdx . (3.22)

Integrating by parts and using Piola's identity, we have that

−
∫

D−

(vi,k )
′Jg−1/2(Aki )

′φdx =

∫

D−

(vi)′J(Aki )
′(g−1/2φ),k dx

−
∫

Γperm

(vi)′Jg−1/2(Aki )
′φNkdx1

+

∫

Γbot

(vi)′Jg−1/2(Aki )
′φNkdx1. (3.23)

Substituting (3.23) into equation (3.22) and using the boundary ondition (2.11g) we obtain

that

I1 =

∫

D−

g−1/2v′′i JA
k
i φ,k dx+

∫

D−

g−1/2,k v
′′
i JA

k
i φdx

−
∫

D−

divψv
′(Jg−1/2φ)′dx+

∫

D−

(vi)′J(Aki )
′(g−1/2φ),k dx

−
∫

Γperm

(vi)′Jg−1/2(Aki )
′φNkdx1 . (3.24)

21



R. Granero-Belinhón and S. Shkoller Inhomogeneous Muskat problem

Thus, using Hölder inequality, the Sobolev embedding theorem and the trae theorem to-

gether with Lemma 4, we obtain that

|I1| ≤ C
(
‖v′′‖0,− + ‖divψv′‖0,−

)
‖φ‖1,−

+ C‖v‖1.5,−‖ψ‖2.5,− (1 + ‖ψ‖2.5,−) ‖φ‖1,−
+ C‖v‖1.75,−‖ψ‖2.5,−‖φ‖1,− . (3.25)

We an use the ontinuity of the normal omponent of the veloity through Γperm

[[viJA
k
iN

k]] = 0 on Γperm × [0, T ] ,

to write

[[v′′i JA
k
iN

k]] = −[[vi(JA
k
iN

k)′′]]− 2[[v′i(JA
k
iN

k)′]] on Γperm × [0, T ] .

Thus, one that we have an estimate for I1, we have that

I2 = I1 −
∫

Γperm

[[g−1/2v′i(JA
k
i )

′Nk]]φdx1 −
∫

Γperm

[[g−1/2vi(JA
k
i )

′′Nk]]φdx1

= I1 −
∫

Γperm

[[g−1/2v′i(JA
k
i )

′Nk]]φdx1 −
∫

Γperm

[[v1]]
f ′′′√

1 + (f ′)2
φdx1.

Then, we an obtain an estimate for I2 using our previous estimate for I1. Thus, using (3.17)
for the last term, we have that

|I2| ≤ C
(
‖v′′‖0,− + ‖divψv′‖0,−

)
‖φ‖1,−

+ C‖v‖1.5,−‖ψ‖2.5,− (1 + ‖ψ‖2.5,−) ‖φ‖1,−
+ C‖v‖1.75,−‖ψ‖2.5,−‖φ‖1,−
+ C‖v‖1.25,±|f |2.5‖φ‖1,± . (3.26)

Similarly, we ompute

I+ =

∫

Γ
g−1/2v′′i JA

k
iN

kφdx1 +

∫

Γperm

g−1/2v′′i JA
k
iN

kφdx1

=

∫

D+

(g−1/2v′′i JA
k
i φ),k dx1,

so, following the same steps as in the estimate (3.25), we have that

∣∣I+
∣∣ ≤ C

(
‖v′′‖0,± + ‖divψv′‖0,±

)
‖φ‖1,±

+ C‖v‖1.5,±‖ψ‖2.5,± (1 + ‖ψ‖2.5,±) ‖φ‖1,±
+ C‖v‖1.75,±‖ψ‖2.5,±‖φ‖1,±.

Then,

|I3| ≤ C
(
‖v′′‖0,± + ‖divψv′‖0,±

)
‖φ‖1,±

+ C‖v‖1.5,±‖ψ‖2.5,± (1 + ‖ψ‖2.5,±) ‖φ‖1,±
+ C‖v‖1.75,±‖ψ‖2.5,±‖φ‖1,±
+ C‖v‖1.25,±|f |2.5‖φ‖1,± . (3.27)
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Using duality, (3.25), and that ψ−(t) = ψ−(0),

|v′′ · n|H−0.5(∂D−) = sup
|φ|0.5≤1

∣∣∣∣∣

∫

Γperm

g−1/2(v−)′′i JA
k
iN

kφdx1

∣∣∣∣∣
≤ C

(
‖v′′‖0,− + ‖divψv′‖0,−

)
‖φ‖1,−

+ C‖v‖1.5,−‖ψ‖2.5,− (1 + ‖ψ‖2.5,−) ‖φ‖1,−
+ C‖v‖1.75,−‖ψ‖2.5,−‖φ‖1,− .

Integrating in time and using (3.8), (3.14) and (3.20), we have that

∫ t

0
|v′′ · n|2H−0.5(∂D−)ds ≤ C

∫ t

0
‖v′′‖20,±ds+

√
tP(E(t)).

Similarly, using (3.26) and (3.27), we obtain that

|v′′ · n(t)|H−0.5(∂D+) = sup
|φ|0.5≤1

∣∣∣∣
∫

Γ
g−1/2v′′i JA

k
iN

kφdx1

∣∣∣∣

+ sup
|φ|0.5≤1

∣∣∣∣∣

∫

Γperm

g−1/2(v+)′′i JA
k
iN

kφdx1

∣∣∣∣∣
≤ C

(
‖v′′‖0,± + ‖divψv′‖0,±

)
‖φ‖1,±

+ C‖v‖1.5,±‖ψ‖2.5,± (1 + ‖ψ‖2.5,±) ‖φ‖1,±
+ C‖v‖1.75,±‖ψ‖2.5,±‖φ‖1,±
+ C‖v‖1.25,±|f |2.5‖φ‖1,± .

Using Lemma 4, (3.20) and taking the lifespan T small enough, we have that

‖divψv′‖0,± = ‖divψ0
v′‖0,− + c‖A(t) −A(0)‖L∞‖v′‖1,± ≤ 4

√
tP(E(t)) + 5

√
t‖v′‖1,±.

Consequently, we have that

∫ t

0
|v′′ · n(s)|2H−0.5(∂D+)ds ≤ c

∫ t

0
‖v′′‖20,±ds+

√
tP(E(t)) .

Finally, using (3.14), (3.17), the Sobolev embedding theorem and trae theorem, we have

that

∣∣∣v′′ ·
(
(ψ′(t))⊥/|ψ′(t)| − (ψ′

0)
⊥/|ψ′

0|
)∣∣∣
H−0.5(∂D+)

≤ c‖v‖2,±‖J(t)A(t) − J(0)A(0)‖1.25

≤
√
tP(E(t)) .

Colleting these estimates, we onlude that

∫ t

0
|v′′ · n|2H−0.5(∂D+)ds ≤ c

∫ t

0
‖v′′‖20,±ds +

√
tP(E(t)).
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Making use of Lemma 7 (for v′) and (3.18), we obtain that

∫ t

0
‖v′(s)‖21,±ds ≤ C

∫ t

0
‖v′′‖20,± + ‖curlψ0

v′‖20,± + ‖divψ0
v′‖20,±ds

+ C

∫ t

0
|v′′ · n|2H−0.5(∂D+∪∂D−)ds

≤ C

∫ t

0
‖v′′‖20,±ds +

√
tP(E(t))

≤ M0 +
√
tP(E(t)) ,

where M0 is a onstant depending on the initial data. Equipped with this last estimate and

using Lemma 7 and trae theorem, we obtain that

∫ t

0
‖v(s)‖22,±ds ≤ C

∫ t

0
‖v‖20,± + ‖curlψ0

v‖21,± + ‖divψ0
v‖21,±ds

+ C

∫ t

0
|v′ · n|2H0.5(∂D+)∪∂D−)ds

≤ C

∫ t

0
‖v‖20,± + ‖curlψ0

v‖21,± + ‖divψ0
v‖21,± + ‖v′ · n‖21,±ds

≤ M0 +
√
tP(E(t)) . (3.28)

3.7 Conlusion

Colleting the estimates (3.6), (3.18), (3.28) and using the lower bound for J(t) and the

Rayleigh-Taylor sign ondition, we �nd that

E(t) ≤ M0 +
√
tQ(E(t)). (3.29)

From

h ∈ L2(0, T ;H2.5(Γ)), ht ∈ L2(0, T ;H1.5(Γ)),

the energy E(t) is ontinuous and this inequality implies the existene of a uniform time

T (h0, f) suh that

E(t) ≤ 2M0.

Estimates showing the uniqueness of the solution follows from standard energy methods and

the detailed analysis shown in [12℄.

4 Proof of Theorem 1: Loal well-posedness

Based on the smoothing argument in [24, 25℄ and following [12℄, for 0 < κ, ǫ ≪ 1 small

enough, we de�ne

Ω+
κ,ǫ(0) = {(x1, x2) ∈ S

1 × R, −1 + f(x1) < x2 < JκJκJǫh(x1, 0)}.
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Now, following Setion 2, we an onstrut an H2.5−lass di�eomorphism

ψ+
κ,ǫ(0) : D+ → Ω+

κ,ǫ(0), ψ
− : D− → Ω−.

We onsider the so alled ǫκ−problem:

(v±κ,ǫ)
i

β±
+ (A±

κ,ǫ)
k
i (q

±
κ,ǫ + ψ±

κ,ǫ · e2),k = 0 in D± × [0, T ] ,

(A±
κ,ǫ)

k
i (v

±
κ,ǫ)

i,k = 0 in D± × [0, T ] ,

(hκ,ǫ)t(t) = (v+κ,ǫ)
iJ+
κ,ǫ(A

+
κ,ǫ)

2
i on Γ× [0, T ] ,

hκ,ǫ = Jǫh0 on Γ× {0} ,
q+κ,ǫ = 0 on Γ× [0, T ] ,

[[qκ,ǫ]] = 0 on Γperm × [0, T ] ,

[[qκ,ǫ,k (Aκ,ǫ)
k
i Jκ,ǫ(Aκ,ǫ)

2
i ]] = −

[[ 1
β

]]
viκ,ǫJκ,ǫ(Aκ,ǫ)

2
i on Γperm × [0, T ]

v−κ,ǫ · e2 = 0 on Γbot × [0, T ] ,

∆ψ+
κ,ǫ(t) = ∆ψ+

κ,ǫ(0) in D+ × [0, T ] ,

ψ+
κ,ǫ(t) = (x1, x2) + JκJκhκ,ǫ(x1, t)e2 on Γ× [0, T ] ,

ψ+
κ,ǫ(t) = (x1, x2) + f(x1)e2 on Γperm × [0, T ] .

Note that the ǫ-regularization a�ets only the initial interfae h0, while the κ regulariza-

tion appears also in the PDE system.

The onstrution of smooth approximate solutions an be ahieved with a �xed point

sheme. The detailed onstrution of solutions to this problem is given in [12℄. See also

[40℄ for a very di�erent approah to the onstrution of solutions using the integral kernel

method.

One we are equipped with a smooth approximate solution hκ,ǫ(x1, t), we have to obtain
uniform estimates in ǫ and κ. These uniform estimates in ǫ and κ will allow us to pass to

the limit. However, we need to take the limits in the appropriate order; to be able to take

the limit as κ → 0 we need to have a smooth initial data (Hs
, s > 2.5 is enough), so, we

need ǫ > 0. However, the term requiring ǫ > 0 is not present when κ = 0. Thus, we have

to take �rst the limit as κ → 0 and then the limit as ǫ → 0 (see [12℄ for more details). We

de�ne

Eκ,ǫ(t) = max
0≤s≤t

|Jκhκ,ǫ(s)|22 +
∫ t

0
‖vκ,ǫ(s)‖22,± + |JκJκhκ,ǫ(s)|22.5ds

and follow the estimates in in Setion 3. We obtain the κ-uniform bound

Eκ,ǫ(t) ≤ 2M0,ǫ ∀ 0 ≤ t ≤ Tǫ.

Passing to the limit in κ we obtain an approximate solution hǫ(x1, t). Now we de�ne

Eǫ(t) = max
0≤s≤t

|hǫ(s)|22 +
∫ t

0
‖vǫ(s)‖22,± + |hǫ(s)|22.5ds
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and follow the estimates in in Setion 3. Realling that the ǫ-regularization only a�ets the

initial interfae h0, we obtain the ǫ-uniform bound

Eǫ(t) ≤ 2M0 ∀ 0 ≤ t ≤ T.

Passing to the limit in ǫ we obtain a loal strong solution to the one-phase Muskat problem

with disontinuous permeability (1.4).

5 The Muskat problem in the semi-ALE formulation

We again use (2.1) and (2.2), respetively, for our referene domains and boundaries. We

let N = e2 denote the unit normal vetor on Γ, Γperm and Γbot. Due to Theorem 1, there

exists a loal solution (h, u, p) to the Muskat problem (1.4).

We de�ne δψ±
as the solution to

∆δψ+ = 0 in D+ × [0, T ] , (5.1a)

δψ+ = h on Γ× [0, T ] , (5.1b)

δψ+ = f on Γperm × [0, T ] , (5.1)

∆δψ− = 0 in D− × [0, T ] , (5.2a)

δψ− = f on Γperm × [0, T ] , (5.2b)

δψ− = 0 on Γbot × [0, T ] , (5.2)

and

ψ±(x1, x2) = (x1, x2) + (0, δψ±) in D± × [0, T ], (5.3)

For all s ∈ R, ellipti estimates show that

‖ψ − e‖s+1/2,± = ‖δψ‖s+1/5,± ≤ c(|h|s + |f |s) ≪ 1, (5.4)

due to the smallness of the initial data h0 and the funtion f . Thus, for s = 2, due to the

Sobolev embedding and inverse funtion theorems, ψ±
is a H2.5−lass di�eomorphism. We

de�ne J± = det(∇ψ±) and A± = (∇ψ±)−1
. In partiular,

J± = 1 + δψ±
,2 ,

A± = (J±)−1

[
(ψ±)2,2 −(ψ±)1,2
−(ψ±)2,1 (ψ±)1,1

]
=

1

1 + δψ±,2

[
1 + δψ±,2 0
−δψ±,1 1

]
.

We de�ne our ALE variables v = u ◦ψ, q = p ◦ψ as in setion 2. The new variables v, q
solve the system (2.11). We de�ne our new semi-ALE variables

wi = JAijv
j , Q = q + x2.
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In partiular, using Piola's identity and the equality JAijN
i =

√
gnj valid on Γbot, Γperm

and Γ, we have that
wi,i= JAijv

j,i= 0,

and

w−
2 = JA2

jv
−
j = δj2v

−
j = v−2 on Γbot.

We also have that

wjN j = JAjkv
kN j =

√
gnkvk,

so, due to the inompressibility of the �uid,

[[wjN j ]] = 0 on Γperm

Thus, these new variables solve

(w±)j

β±
+ J±(A±)ji (A

±)ki (Q
± + δψ±),k = 0 in D± × [0, T ] , (5.5a)

divw± = 0 in D± × [0, T ] , (5.5b)

ht = w+
2 on Γ× [0, T ] , (5.5)

h = h0 on Γ× {0} , (5.5d)

Q+ = 0 on Γ× [0, T ] , (5.5e)

[[Q]] = 0 on Γperm × [0, T ] , (5.5f)

[[(Q + δψ),k A
k
i JA

j
iN

j]] = −
[[ 1
β

]]
w+
j N

j
on Γperm × [0, T ] (5.5g)

w−
2 = 0 on Γbot × [0, T ] . (5.5h)

Equivalently,

w±

β±
+∇(Q± + δψ±) =

(
Id− (∇ψ±)T∇ψ±

J±

)
w±

β±
in D± × [0, T ] , (5.6a)

divw± = 0 in D± × [0, T ] , (5.6b)

ht = w+
2 on Γ× [0, T ] , (5.6)

h = h0 on Γ× {0} , (5.6d)

Q+ = 0 on Γ× [0, T ] , (5.6e)

[[Q]] = 0 on Γperm × [0, T ] , (5.6f)

[[(Q+ δψ),k A
k
i JA

j
iN

j]] = −
[[ 1
β

]]
w+
j N

j
on Γperm × [0, T ] (5.6g)

w−
2 = 0 on Γbot × [0, T ] . (5.6h)

Using the partiular form of ∇ψ± = ∇(x1, x2 + δψ±) , we have that
(
Id− (∇ψ)T∇ψ±

J±

)
w±

β±
=

(
δψ±,2 −(δψ±,1 )2 −δψ±,1 (1 + δψ±,2 )

−δψ±,1 (1 + δψ±,2 ) −δψ±,2 (1 + δψ±,2 )

)
w±

β±J± , (5.7)

and we see that the right hand side of (5.6a) ontains all the non-linear terms.
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6 Proof of Theorem 2: Global well-posedness when f = 0

We de�ne the energy E (t) and energy dissipation D(t) as follows

E (t) = |h′′(t)|20, D(t) = ‖w′′(t)‖20,±. (6.1)

As h(·, t) has zero mean, the Poinaré inequality shows that

|h|n ≡ |hn)|0, n ∈ Z
+.

By hypothesis, the initial data h0 satis�es the smallness ondition

|h0|2 < C , (6.2)

for C a small enough onstant.

Note that due to Theorem 1, there exists a time T suh that

E (t) < 2E (0) < 2C 2 ≪ 1.

Let us sketh the proof of the theorem. Our goal is to prove that, for initial data

satisfying the smallness ondition (6.2), the system remains in the Rayleigh-Taylor stable

regime and veri�es the following estimates

sup
0≤t

|h(t)|2 ≤ |h0|2 < C ,

∫ t

0
‖w(s)‖22,±ds ≤ C1C

2,

where C1 is a time independent onstant. Then, a standard ontinuation argument for

ODE in Banah spaes implies that the loal solution provided by Theorem 1 is, in fat, a

global-in-time solution.

This goal is ahieved in several steps. First we prove that, for C small enough, the

system remains in the Rayleigh-Taylor stable ase and veri�es the estimate

d

dt
E + D ≤ D

√
EP(E ) ∀0 ≤ t ≤ T. (6.3)

This inequality implies the deay of E for small enough initial data; however, to obtain the

rate of deay, we need to relate the energy E with the energy dissipation D . To do that we

establish the estimate

|h′′|0.5 ≤ C
(
‖w‖2,±|h|1.75 + ‖w′′‖0,±

)
.

This estimate relies on Dary's law. Using the smallness ondition (6.2) and the Hodge

deomposition ellipti estimate (see Lemma 7), we prove that tangential derivatives of the

veloity are enough to ontrol the full H2
norm of the veloity �eld:

‖w‖2,± ≤ C
[
‖w‖1.5,± + ‖w′′‖0,±

]
.

Finally, using the smallness of C , we an relate the energy E with the energy dissipation D

as follows

E ≤ |h′′|0.5 ≤ C‖w′′‖0,± = CD .
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Thus, using the smallness of C , the previous energy estimate (6.3) is equivalent to

γE +
d

dt
E ≤ 0. (6.4)

for a ertain γ > 0. Note that due to the de�nition of E , we have that (6.4) implies

|h′′(t)|0 ≤ |h′′0 |0e−γt/2.

We also obtain that ∫ t

0
‖w(s)‖22,±ds ≤ C(E (0), β±).

6.1 Pressure estimates

Reall that, as δψ− = 0 on Γbot, we have that A veri�es

(A−)2i ((A
−)1i = 0, J(A−)2i ((A

−)2i = (A−)22 =
1

J− =
1

1 + δψ−,2
on Γbot.

Note also that (5.6f) is equivalent to

[[β(Q + δψ),k A
k
i JA

j
iN

j]] = 0 on Γperm × [0, T ],

thus, multiplying (5.6a) by β± and using the divergene free ondition (5.6b), the modi�ed

pressure Q solves

β±J±(A±)ji ((A
±)ki (Q

± + δψ±),k ),j = 0 in D± × [0, T ] , (6.5a)

Q+ = 0 on Γ× [0, T ] , (6.5b)

[[Q]] = 0 on Γperm × [0, T ] , (6.5)

[[β(Q + δψ),k A
k
i JA

j
iN

j ]] = 0 on Γperm × [0, T ] (6.5d)

β−(A−)22(Q
− + δψ−),2 = 0 on Γbot × [0, T ] . (6.5e)

Equivalently, using (5.1) and (5.2), (6.5) an be written as

β∆Q = βdiv
[
(Id− JAAT )∇(Q+ δψ)

]
in D± × [0, T ] , (6.6a)

Q+ = 0 on Γ× [0, T ] , (6.6b)

[[Q]] = 0 on Γperm × [0, T ] , (6.6)

[[βQ,2 ]] = [[βQ,k (δ
k
2 −Aki JA

2
i )]] − [[βδψ,k A

k
i JA

2
i ]]on Γperm × [0, T ] (6.6d)

β−Q−,2 = β−(Q−,2 −1)
δψ−,2

1 + δψ−,2
on Γbot × [0, T ] , (6.6e)

where

Id− JAAT =

[
−δψ±,2 δψ±,1
δψ±,1

δψ±,2−(δψ± ,1)2

1+δψ,±
2

]
,
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and, using (5.1) and (5.2b),

A1
iJA

2
i = 0, A2

i JA
2
i =

1

1 + δψ,2
on Γperm.

Ellipti estimates and trae theorem then show that

‖∇Q‖1.5,± ≤ C

(
‖(Id− JAAT )∇(Q+ δψ)‖1.5,± +

∣∣∣[[βQ,k (δk2 −Aki JA
2
i )]]

∣∣∣
1

+
∣∣∣[[βδψ,k Aki JA2

i ]]
∣∣∣
1
+

∣∣∣∣β
−(Q−,2 −1)

δψ−,2
1 + δψ−,2

∣∣∣∣
1

)

≤ C

(
‖Id− JAAT ‖L∞‖∇Q‖1.5,± + ‖Id− JAAT ‖1.5,±‖∇Q‖L∞

+ ‖Id− JAAT ‖L∞‖∇δψ‖1.5,± + ‖Id− JAAT ‖1.5,±‖∇δψ‖L∞

+

∥∥∥∥
δψ−,2

1 + δψ−,2

∥∥∥∥
L∞

‖∇Q‖1.5,± +

∥∥∥∥
δψ,2

1 + δψ,2

∥∥∥∥
1.5,±

‖∇Q‖L∞

+

∥∥∥∥
δψ,2

1 + δψ,2

∥∥∥∥
1.5,±

)
.

Thus, using (5.4), we have that

‖∇Q‖1.5,± ≤ C|h|22P(|h|22). (6.7)

Using (5.5a), we obtain that

‖w‖1.5,± ≤ C|h|22P(|h|22). (6.8)

6.2 The Rayleigh-Taylor stability ondition

In the previous ALE variables (v, q), the Rayleigh-Taylor stability ondition (1.8) reads

−Akj q,k JAijN i = −A2
jq,2 JA

2
j > 0 on Γ .

In our semi-ALE modi�ed pressure, we have that the Rayleigh-Taylor stability ondition is

equivalent to

−A2
j (Q,2 −1)JA2

j > 0 on Γ ,

or, using (5.5a,),

ht + JA2
iA

2
i (1 + δψ+,2 ) + JA2

iA
1
i h

′+ > 0 on Γ .

Thus, the Rayleigh-Taylor stability ondition is equivalent to

w+
2 + 1 > 0 on Γ .

Then, we see that when ‖w2‖L∞ ≪ 1, the Rayleigh-Taylor stability ondition holds. Thus,

using the Sobolev embedding theorem together with (6.8), we have that

‖w+
2 ‖L∞(Γ) ≤ C‖w‖1.5,± ≤ C|h|22P(|h|22) ≪ 1.
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6.3 The estimates in L2(0, T ;H2.5(Γ))

Realling (5.6a,d), we have that

w+
1 + β+h′ = (δψ+,2−(h′)2)

w+
1

1 + δψ+,2
− h′w+

2 on Γ.

Thus,

β+h′ = −(1 + (h′)2)
w+
1

1 + δψ+,2
− h′w+

2 on Γ,

and

−β+h′′ = (1 + (h′)2)
(w+

1 ),1
1 + δψ+,2

+ h′(w+
2 ),1 +

2h′h′′w+
1

1 + δψ+,2
+ h′′w+

2 − 1 + (h′)2w+
1

(1 + δψ+,2 )2
δψ,12

Using the smallness of |h|2, (3.17) and estimate (6.8), we then estimate

|h′′|0.5 ≤ C
(
|w′

1|0.5 + |w′
2|0.5

)

The following Lemma is an immediate onsequene of the standard normal trae theorem

(see Temam [42℄):

Lemma 9. Suppose that v′ ∈ L2(Ω) with divv ∈ L2(Ω). Then v′ ·N ∈ H− 1
2 (∂Ω) and

‖v′ ·N‖H−1/2(∂Ω) ≤ C
(
‖v′‖L2(Ω) + ‖div v‖L2(Ω)

)
.

Using Lemma 9 for v = w′
, we obtain that

|w′′
2 |−0.5 = |w′′ ·N |−0.5 ≤ C‖w′′‖0,±.

Using Lemma 9 for v = (w⊥)′,

|w′′
1 |−0.5 = |(w⊥)′′ ·N |−0.5 ≤ C

(
‖w′′‖0,± + ‖divw,⊥1 ‖0,±

)
= C

(
‖w′′‖0,± + ‖ curlw′‖0,±

)
.

Using that curlu = 0, we �nd that (see Cheng, Granero-Belinhón & Shkoller [12, Setion

5.1.7℄)

‖curlw‖1,± ≤ C‖w‖2,±|h|1.75 + C|h|2.5|h|1.75 + C|h|2‖w‖21.5,±. (6.9)

Thus, using the Poinaré inequality together with (6.8) and the smallness of |h|2, we �nd

that

|h′′|0.5 ≤ C
(
‖w‖2,±|h|1.75 + ‖w′′‖0,±

)
. (6.10)
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6.4 Hodge deomposition ellipti estimates

Using Lemma 7 (with ψ0 = (x1, x2)) we have that

‖w‖2,± ≤ C
[
‖w‖0,± + ‖curlw‖1,± + ‖divw‖1,± + |w2|1.5

]
.

As a onsequene of (6.9), (6.10), the Poinaré inequality and Lemma 9, we �nd that

‖w‖2,± ≤ C
[
‖w‖1.5,± + ‖curlw‖1,± + |w′′ ·N |−0.5

]

≤ C
[
‖w‖1.5,± + ‖w‖2,±|h|1.75 + |h|2.5|h|1.75 + |h|2‖w‖21.5,± + ‖w′′‖0,±

]

≤ C
[
‖w‖1.5,± + ‖w‖2,±|h|1.75 + |h|2‖w‖2,±‖w‖1.5,± + ‖w′′‖0,±

]
.

As a onsequene of the smallness of |h|2 and (6.8), we have that

‖w‖2,± ≤ C
[
‖w‖1.5,± + ‖w′′‖0,±

]
. (6.11)

Substituting this last inequality into (6.10) together with |h|2 ≪ 1 and (6.8), we obtain that

|h′′|0.5 ≤ C
(
‖w‖1.5,±|h|1.75 + ‖w′′‖0,±

)

≤ C‖w′′‖0,± (6.12)

6.5 The energy estimates

The goal in this setion is to prove that, the solution veri�es the following bound

D

max{β+, β−} +
1

2

d

dt
E ≤ DQ(E ),

where Q is a polynomial suh that Q(0) = 0. Then, for small enough initial data, we have

that

CD +
d

dt
E ≤ 0,

and we onlude the deay of E . To obtain the exponential rate of deay in Theorem 2, we

will invoke (6.12) and Poinaré inequality.

We take two tangential derivatives of (5.6a) and test against w′′
. We obtain that

∫

D+∪D−

|w′′|2
β

dx+

∫

D+∪D−

(Q+ δψ)′′,i w
′′
i dx =

∫

D+∪D−

[(
Id− (∇ψ)T∇ψ

J

)
w

β

]′′
w′′dx.

(6.13)

Integrating by parts and using (5.6), we have that

∫

D+∪D−

(Q+ δψ)′′,i w
′′
i dx =

∫

Γ
(Q+ δψ)′′w′′

iN
idx1 −

∫

Γperm

[[(Q+ δψ)′′w′′
iN

i]]dx1

−
∫

Γbot

(Q+ δψ)′′(w′′
i )N

idx1

=

∫

Γ
h′′h′′t dx1.
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Thus due to (5.7), (5.4), (6.8), (6.12), Hölder's inequality and the Sobolev embedding theo-

rem, (6.13) is equivalent to

D

max{β+, β−} +
1

2

d

dt
E ≤

∫

D+∪D−

[(
Id− (∇ψ)T∇ψ

J

)
w

β

]′′
w′′dx

≤ D
√

EP(E ) +

∣∣∣∣
∫

D+∪D−

(
Id− (∇ψ)T∇ψ

J

)′′
w

β
w′′dx

∣∣∣∣

≤ D
√

EP(E ) + ‖∇δψ‖2,±P(E )‖w‖L∞

√
D

≤ D
√

EP(E ) + |h|2.5
√

EP(E )
√

D

≤ D
√

EP(E ),

where we have used Young's inequality. We note that due to Theorem 1, we have that

E (t) ≤ 2E (0) for all 0 ≤ t ≤ T ∗,

thus

P(E (t)) ≤ C(h0) for all 0 ≤ t ≤ T ∗.

Taking C small enough, we obtain the inequality

ǫD +
1

2

d

dt
E ≤ 0,

for ertain ǫ = ǫ(h0, β). Thus, using Poinaré inequality and (6.12)

γE +
d

dt
E ≤ 0,

for ertain γ = γ(h0, β).

|h′′(t)|0 ≤ |h′′0 |0e−γt/2. (6.14)

We also obtain the bound

∫ t

0
D(s)ds ≤ C(h0, β). (6.15)

Aknowledgements

RGB is funded by the Labex MILYON and the Grant MTM2014-59488-P from the Ministerio

de Eonomía y Competitividad (MINECO, Spain). SS was supported by the National

Siene Foundation under grant DMS-1301380.

33



R. Granero-Belinhón and S. Shkoller Inhomogeneous Muskat problem

Referenes

[1℄ D. Ambrose. Well-posedness of two-phase Hele-Shaw �ow without surfae tension.

European Journal of Applied Mathematis, 15(5):597�607, 2004.

[2℄ D. Ambrose. The zero surfae tension limit of two-dimensional interfaial Dary �ow.

J. Math. Fluid Meh., 16:105�143, 2014.

[3℄ J. Bear. Dynamis of �uids in porous media. Dover Publiations, 1988.

[4℄ L. Berselli, D. Córdoba, and R. Granero-Belinhón. Loal solvability and turning for

the inhomogeneous Muskat problem. Interfaes and Free Boundaries, 16(2):175�213,

2014.

[5℄ A. Castro, C. Córdoba, and D. Farao. Mixing solutions for the Muskat problem. arXiv

preprint arXiv:1605.04822, 2016.

[6℄ A. Castro, D. Cordoba, C. Fe�erman, and F. Ganedo. Breakdown of smoothness for

the Muskat problem. Arhive for Rational Mehanis and Analysis, 208(3):805�909,

2013.

[7℄ A. Castro, D. Córdoba, C. Fe�erman, and F. Ganedo. Splash singularities for the one-

phase Muskat problem in stable regimes. Arhive for Rational Mehanis and Analysis,

222(1): 213�243, 2016.

[8℄ A. Castro, D. Cordoba, C. Fe�erman, F. Ganedo, and M. Lopez-Fernandez. Rayleigh-

Taylor breakdown for the Muskat problem with appliations to water waves. Annals of

Math, 175:909�948, 2012.

[9℄ M. Cerminara and A. Fasano. Modelling the dynamis of a geothermal reservoir fed by

gravity driven �ow through overstanding saturated roks. Journal of Volanology and

Geothermal Researh, 233:37�54, 2012.

[10℄ H. A. Chang-Lara and N. Guillen. From the free boundary ondition for Hele-Shaw to

a frational paraboli equation. arXiv preprint arXiv:1605.07591, 2016.

[11℄ C. H. A. Cheng, D. Coutand, and S. Shkoller. Global existene and deay for solutions

of the Hele�Shaw �ow with injetion. Interfaes Free Bound., 16(3):297�338, 2014.

[12℄ C.-H. A. Cheng, R. Granero-Belinhón, and S. Shkoller. Well-posedness of the Muskat

problem with H2
initial data. Advanes in Mathematis, 286:32�104, 2016.

[13℄ C. H. A. Cheng and S. Shkoller. Solvability and regularity for an ellipti system pre-

sribing the url, divergene, and partial trae of a vetor �eld on Sobolev-lass domains.

J. Math. Fluid Meh., DOI 10.1007/s00021-016-0289-y, 2016.

[14℄ P. Constantin, D. Cordoba, F. Ganedo, L. Rodríguez-Piazza, and R. Strain. On the

Muskat problem: global in time results in 2d and 3d. Amerian Journal of Mathematis,

138(6), 2016.

34



R. Granero-Belinhón and S. Shkoller Inhomogeneous Muskat problem

[15℄ P. Constantin, D. Cordoba, F. Ganedo, and R. Strain. On the global existene for the

Muskat problem. Journal of the European Mathematial Soiety, 15:201�227, 2013.

[16℄ P. Constantin, F. Ganedo, R. Shvydkoy, and V. Viol. Global regularity for 2d Muskat

equations with �nite slope. To appear in Annales de l'Institut Henri Poinare (C) Non

Linear Analysis, 2016.

[17℄ A. Cordoba, D. Córdoba, and F. Ganedo. Interfae evolution: the Hele-Shaw and

Muskat problems. Annals of Math, 173, no. 1:477�542, 2011.

[18℄ D. Córdoba and F. Ganedo. Contour dynamis of inompressible 3-D �uids in a porous

medium with di�erent densities. Communiations in Mathematial Physis, 273(2):445�

471, 2007.

[19℄ D. Córdoba and F. Ganedo. Absene of squirt singularities for the multi-phase Muskat

problem. Communiations in Mathematial Physis, pages 1�15, 2009.

[20℄ D. Córdoba, J. Gómez-Serrano, and A. Zlato�s. A note on stability shifting for the

Muskat problem. Phil. Trans. R. So, 373, 2015.

[21℄ D. Córdoba, J. Gómez-Serrano, and A. Zlato². A note on stability shifting for

the Muskat problem ii: Stable to unstable and bak to stable. arXiv preprint

arXiv:1512.02564, 2015.

[22℄ D. Córdoba, R. Granero-Belinhón, and R. Orive. On the on�ned Muskat problem:

di�erenes with the deep water regime. Communiations in Mathematial Sienes,

12(3):423�455, 2014.

[23℄ D. Cordoba and T. Pernas-Castaño. Non-splat singularity for the one-phase Muskat

problem. Transation of the Amerian Mathematial Soiety, 369(1): 711�754, 2017.

[24℄ D. Coutand and S. Shkoller. Well-posedness of the free-surfae inompressible Euler

equations with or without surfae tension. J. Amer. Math. So., 20(3):829�930, 2007.

[25℄ D. Coutand and S. Shkoller. A simple proof of well-posedness for the free-surfae

inompressible Euler equations. Disrete Contin. Dyn. Syst. Ser. S, 3(3):429�449, 2010.

[26℄ D. Coutand and S. Shkoller. On the �nite-time splash and splat singularities for the

3-D free-surfae Euler equations. Commun. Math. Phys., 325:143�183, 2014.

[27℄ D. Coutand and S. Shkoller. On the impossibility of �nite-time splash singularities for

vortex sheets. Arh. Rational Meh. Anal., 221:987�1033, 2016.

[28℄ Y. De Parseval, K. Pillai, and S. Advani. A simple model for the variation of perme-

ability due to partial saturation in dual sale porous media. Transport in porous media,

27(3):243�264, 1997.

[29℄ J. Esher, A.-V. Matio, and B.-V. Matio. A generalized Rayleigh-Taylor ondition

for the Muskat problem. Nonlinearity, 25(1):73�92, 2012.

35



R. Granero-Belinhón and S. Shkoller Inhomogeneous Muskat problem

[30℄ J. Esher and B.-V. Matio. On the paraboliity of the Muskat problem: Well-

posedness, �ngering, and stability results. Zeitshrift für Analysis und ihre Anwen-

dungen, 30(2):193�218, 2011.

[31℄ J. Esher, B.-V. Matio, and C. Walker. The domain of paraboliity for the Muskat

problem. arXiv preprint arXiv:1507.02601, 2015.

[32℄ C. Fe�erman, A.D. Ionesu, and V. Lie, On the absene of �splash� singularities in the

ase of two-�uid interfaes. Duke Math. J. 165:417?462, 2016.

[33℄ F. Ganedo and R. M. Strain. Absene of splash singularities for surfae quasi-

geostrophi sharp fronts and the Muskat problem. Proeedings of the National Aademy

of Sienes, 111(2):635�639, 2014.

[34℄ J. Gómez-Serrano and R. Granero-Belinhón. On turning waves for the inhomogeneous

Muskat problem: a omputer-assisted proof. Nonlinearity, 27(6):1471�1498., 2014.

[35℄ R. Granero-Belinhón. Global existene for the on�ned Muskat problem. SIAM Jour-

nal on Mathematial Analysis, 46(2):1651�1680, 2014.

[36℄ H. S. Hele-Shaw. On the motion of a visous �uid between two parallel plates. Trans.

Royal Inst. Nav. Arhit., 40:218, 1898.

[37℄ B.V. Matio, The Muskat problem in 2D: equivalene of formulations, well-posedness,

and regularity results arXiv preprint 1610.05546, 2016.

[38℄ M. Muskat. The �ow of homogeneous �uids through porous media. Soil Siene,

46(2):169, 1938.

[39℄ D. Nield and A. Bejan. Convetion in porous media. Springer Verlag, 2006.

[40℄ T. Pernas-Castaño. Loal-existene for the Inhomogeneous Muskat problem. Preprint.

arXiv:1604.01660 [math.AP℄, 2016.

[41℄ J. Pruess and G. Simonett. On the Muskat �ow. Evolution Equations and Control

Theory 5:631-645, 2016.

[42℄ R. Temam Navier-Stokes equations: theory and numerial analysis Amerian Mathe-

matial So. 2001.

36


	Introduction
	The Muskat problem in the ALE formulation
	A priori estimates
	Proof of Theorem 1: Local well-posedness
	The Muskat problem in the semi-ALE formulation
	Proof of Theorem 2: Global well-posedness when f=0

