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ABSTRACT

The present contribution aims at segmenting a scale-free tex-
ture into different regions, characterized by an a priori (un-
known) multifractal spectrum. The multifractal properties are
quantified using multiscale quantitiesC1,j andC2,j that quan-
tify the evolution along the analysis scales 2j of the empirical
mean and variance of a nonlinear transform of wavelet co-
efficients. The segmentation is performed jointly across all
the scales j on the concatenation of both C1,j and C2,j by
an efficient vectorial extension of a convex relaxation of the
piecewise constant Potts segmentation problem. We provide
comparisons with the scalar segmentation of the Hölder expo-
nent as well as independent vectorial segmentations over C1

and C2.

Index Terms— Local regularity, multifractal spectrum,
segmentation, convex optimization, wavelet leaders

1. INTRODUCTION

Recent contributions in image processing highlighted the
need of segmentation techniques for scale-free textures anal-
ysis [1, 2, 3]. The possible applications go from texture
medical images such as the bone study [4] to art investiga-
tions [5, 6].

Scale-free behavior is captured with local regularity, tech-
nically measured via the concept of Hölder exponent [7]. First
studies based on the estimation of this quantity can be traced
back to [8] where local regularity was assumed homogeneous
throughout the image (i.e., monofractal). Recent contribu-
tions have considered a more realistic model, where the local
regularity may be heterogeneous throughout the image (i.e,
piecewise monofractal). This further increases the complex-
ity of the estimation procedure since it additionnaly amounts
in segmenting the image into a priori unknown regions where
the local regularity can be considered homogeneous.. Among
numerous techniques for image segmentation, some efficient
variational approaches have recently been designed relying on
the use of the total variation [9, 1, 3, 10]. The good results of
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these estimation and segmentation techniques (on simulated
and real data) thus pave the way for considering more com-
plex piecewise scale-free models. This is the subject of the
present contribution.

We aim to go further by proposing a segmentation method
for piecewise multifractal processes analysis, thus allowing a
richer modeling of real-world textures. The multifractal for-
malism detailled Section 2 relies on the local estimation of
multiscale quantities in place of the local regularity. It is com-
bined with a joint vectorial segmentation procedure whose al-
gorithmic solution is briefly summarized in Section 3. Esti-
mation performance on synthetic results is reported in Sec-
tion 4. Comparisons with state-of-the-art methods are also
provided.

2. MULTIFRACTAL ANALYSIS

Piecewise mono/multi-fractal. We denoteX = (X`)1≤`≤N
the scale-free image to analyze, which has N pixels. Its local
regularity can be quantified by the Hölder exponent [7] de-
noted by h = (h`)1≤`≤N . While large h` points to a locally
smooth portion of the field, low h` indicates local high irreg-
ularity. Two examples of X are provided in Figure 1(b)-(c).

On the one hand, in Figure 1(b), X models a piecewise
monofractal process having two different values of h`, i.e.

(∀` ∈ ΩA) h` = hA, (1)
(∀` ∈ ΩB) h` = hB , (2)

with hA < hB and Ω = ΩA ∪ ΩB being separable in two
distinct areas, i.e., ΩA ∩ ΩB = ∅, according to the mask pre-
sented in Figure 1 (a). A smoother behavior is thus observed
for ` ∈ ΩA than for ` ∈ ΩB .

On the other hand, in Figure 1 (c), X models a piecewise
multifractal process where h` may locally vary both within
ΩA and ΩB . Therefore, the multifractal spectrum D(h),
which describes local regularity fluctuations, is not reduced
to a Dirac (cf. e.g., [7, 11, 12] for details), and

(∀` ∈ ΩA) h` can be described by DA(h) (3)
(∀` ∈ ΩB) h` can be described by DB(h). (4)



(a) Mask (b) X piecewise (c) X piecewise
ΩA: white area monofractal multifractal
ΩB : black area

Fig. 1. Examples of scale-free textures.

The aim of multifractal analysis is to estimateD(h). For prac-
tical purposes, the multifractal spectrum can often be approx-
imated as a parabola: D(h) = 2 + (h − c1)2/(2c2). Here,
we follow the efficient procedure proposed in [12] based on
wavelet-leader coefficients [7].

Wavelet-leader coefficients. We denote d(m)
j,k = 〈X,ψ(m)

j,k 〉
the (L1-normalized) 2D discrete wavelet coefficients of X at
location k = 2−j`, at scale 2j with j ∈ {1, . . . , J}, and
where m stands for the horizontal/vertical/diagonal subband.
For a detailed definition of the 2D-DWT, readers are referred
to e.g., [13]. The wavelet leader coefficient Lj,k, located
around position ` = 2jk, is defined as the local supremum of
all wavelet coefficients taken within a spatial neighborhood
across all finer scales 2j

′ ≤ 2j , that is,

Lj,k = sup
m=1,2,3,
λj′,k′⊂Λj,k

|d(m)
j′,k′ |, (5)

with λj,k = [k2j , (k+1)2j), and Λj,k =
⋃
p∈{−1,0,1}2 λj,k+p.

An illustration is provided in Figure 2 where Lj,k is indicated
with a black cross and the neighborhood Λj,k is displayed in
red.

Hölder exponent. The Hölder exponent can be obtained by
a linear regression of wavelet-leader coefficients as follows:

hk =
∑

j∈{1,...,J}

wj,k log2 Lj,k, (6)

where the wj,k model regression weights [11].

Multifractal spectrum. The multifractal spectrum can be
obtained by multiscale quantities C1,j ∈ RN and C2,j ∈ RN
defined as the sample estimates of the first and second cumu-
lant of log2 Lj at each given scale 2j . It has been shown that
C1,j and C2,j are related to the multifractal spectrum D(h)
via the coefficients c1 and c2 as follows [12]:

EC1,j = c01 + c1 ln 2j , (7)
EC2,j = c02 + c2 ln 2j . (8)

Fig. 2. waveleter-leader coefficients. The wavelet leader
coefficient (black cross) is defined as the local supremum of
all wavelet coefficients taken within a spatial neighborhood
across all finer scales (red)

To evaluate changes in multifractal spectrum, one could nat-
urally consider estimating C1,j and C2,j locally in a neigh-
borhood of each pixel `, estimate the corresponding local pa-
rameters c1 and c2, and then perform a vectorial segmentation
of (c1, c2). However, this relies on the strong assumption that
real-world textures follow precisely the scaling behaviors pre-
scribed in Eqs. (7) and (8) above. In the present contribution,
it has been chosen to relax this requirement and to directly
perform a vectorial segmentation over multiscale quantities
C1,j and C2,j , possibly smoothed.

3. VECTORIAL SEGMENTATION

We propose to follow segmentation procedure ideas that per-
form well for piecewise mono/multi-fractal estimation [2].
The vectorial segmentation procedure is based on a convex
relaxation of the piecewise constant Potts segmentation prob-
lem [9, 14]. Here we consider the extension to joint vectorial
segmentation proposed in [9] for image labelling. In what fol-
lows, Y = (Ym)1≤m≤M ∈ RN×M can either model h (i.e.,
M = 1), C1 or C2 (i.e., M = J), or their concatenation
(C1, C2) (i.e., M = 2J).

Problem formulation. The labeling procedure of Y into Q
level sets can be formalized as a minimization problem where
Q + 1 binary images Θ = (θq)1≤q≤(Q+1) ∈ RN×Q+1 are
estimated such that

min
Θ

Q∑
q=1

(θq−θq+1)>
M∑
m=1

(Ym−vq,m)2+λ

Q∑
q=1

TV(θq−θq+1)

subject to


θ1 = 1,

θQ+1 = 0,

1 ≥ θ2 ≥ . . . ≥ θQ ≥ 0,

(9)

with λ > 0 and where TV denotes the usual total-variation
penalization as defined in [15], i.e., for every θ ∈ RN ,



TV(θ) =

N∑
`=1

‖(Dθ)`‖2, (10)

where D ∈ R2N×N stands for the discrete horizontal/vertical
difference operator and thus (Dθ)` ∈ R2. The choice of
vq,m ∈ R will be discussed further.

TheQ resulting labelling areas (Ω1, . . . ,ΩQ) are obtained
from the binary images (θq − θq+1)1≤q≤Q as follows:

(∀` ∈ Ω) θq,` − θq+1,` =

{
1, if ` ∈ Ωq,

0, otherwise.
(11)

The first term in (9) is a data fidelity term allowing to
impose similar properties within each area Ωq . The second
term imposes the regularity for each labelling area Ωq . The
smaller is λ the higher is the granularity of Ωq .

Algorithmic solution. In order to efficiently estimate Θ we
use the algorithmic strategy proposed in [16] that consists in
using a proximal splitting method coupled with an efficient
strategy to compute the involved proximal operators. The
reader could refer to [9, 16] for details regarding the algo-
rithmic strategy for solving (9).

4. EXPERIMENTS

Experimental setting. Performance of the proposed seg-
mentation procedure are assessed on synthetic data, numeri-
cally produced by inclusion of a 2D MRW patch ΩA [17] into
a 2D-MRW background ΩB with different multifractal pa-
rameters. Patch and background (Figure 3 (b)) have been nor-
malized to ensure that the local variance does not depend on
the image location. An illustration is provided in Figure 3 (a)
where the background parameters (c1, c2) = (0.7, 0.1) and
the patch parameters (c1, c2) = (0.4, 0.005).

The wavelet leader coefficients are estimated using a stan-
dard 2D-DWT with orthonormal tensor product Daubechies
mother wavelets with 2 vanishing moments.

In our simulation, we have set Q = 2, λ = 1 and J = 3.
For every component m ∈ {1, . . .M}, (vq,m)1≤q≤Q are ini-
tially chosen to be equally distributed between the minimum
and maximum values of Ym. Then, an alternate minimization
of (9) and re-estimation of the (vq,m)1≤q≤Q is performed 5
times.

Scalar vs. vectorial segmentation. The scalar segmentation
of Y = h, originally envisaged for the analysis of piecewise
monofractal processes [3], is illustrated in Figure 3-(c)). We
observe that it yields poor results. Indeed, since the process
is multifractal, every h of the support of D(h) is present in
any open interval of the trajectory for finite resolution data.
The local estimation of h is hence not very meaningful. In
addition, sinceDA andDB overlap, the sole feature h can not
permit to discriminate between ΩA and ΩB . This limitation

thus shows the need of investigating multiscale quantities re-
lated to the multifractal spectrum, namely C1 and C2. Such
a strategy has been previously investigated in [2] with a dif-
ferent algorithmic solution involving a different segmentation
for each component m ∈ {1, . . . ,M}.

Segmentation performance. For the same patch displayed
in Figure 3 (b), we have considered eight configurations re-
ported in Figure 4 and defined as follow. The top (resp. bot-
tom) plots correspond to a large (resp. small) difference of c1
between ΩA and ΩB . The left (resp. right) plots model large
(resp. small) difference of c2 between ΩA and ΩB . In addi-
tion, we have further investigated the impact of c2: results in
orange correspond to two tight multifractal spectrum DA and
DB (i.e., small c2 on both ΩA and ΩB) whereas the blue one
models one tight DA (i.e., small c2 on ΩA) and a widespread
DB (i.e., large c2 on ΩB). Estimation performance are quan-
tified in terms of misclassified pixels percentage over 20 real-
izations for all the different inputs Y .

Unsurprisingly, using Y = h always leads to poor seg-
mentation performance. In addition, all these experiments
reproduce the expected behavior that the larger is the dif-
ference of c1 (resp. c2) between ΩA and ΩB , the better are
the segmentation performance associated to Y = C1 (resp.
Y = C2). However, a closer inspection shows that a larger
difference in c1 does not necessarily lead to better segmen-
tation results for Y = C2 (see the orange line in both left
plots). Overall, we observe that there is always an interest in
combining the information of both C1 and C2.

Finally, it is worth noticing that the scalar segmentation
of h is only 2 times faster than the vectorial ones either based
on C1, C2 or (C1, C2). Experimentally, it takes less than 1
minute per image of size N = 29 × 29.

5. CONCLUSIONS AND PERSPECTIVES

In this work, we have designed an analysis procedure for deal-
ing with piecewise multifractal processes. We have shown the
need of considering multiscale quantities C1 and C2 rather
than the sole Hölder exponent usually considered for piece-
wise monofractal processes. An efficient joint vectorial seg-
mentation procedure is proposed and yields satisfactory per-
formance when applied to (C1, C2).

However, the proposed segmentation procedure rely on
the strong assumption that θq,1 − θq+1,1 = . . . = θq,M −
θq+1,M . Therefore, the performance are very sensitive to the
arbitrary choice and order of the level sets vq,m. In order
to alleviate this limitation, different regularization terms are
under current investigation to provide a more flexible joint
vectorial segmentation strategy.



(a) Piecewise multifractal X (b) Mask (c) Segmentation based on h
Misclassified pixels: 18.0 %

(d) Segmentation based on C1 (e) Segmentation based on C2 (f) Segmentation based on (C1, C2)
Misclassified pixels: 9.12 % Misclassified pixels: 5.14 % Misclassified pixels: 3.84 %

Fig. 3. Illustration of the segmentation results. The piecewise multifractal imageX is presented in (a) and has been generated
from the mask (b). The scalar segmentation result obtained from h is displayed in (c). The vectorial segmentation results based
on C1, C2 and (C1, C2) are respectively presented in (d), (e) and (f).
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plot represent two configurations (blue and orange) of c1 and c2 on ΩA and ΩB .
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