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On-the-fly Approximation of Multivariate Total

Variation Minimization
Jordan Frecon, Student Member, IEEE, Nelly Pustelnik, Member, IEEE, Patrice Abry, Fellow, IEEE,

and Laurent Condat, Member, IEEE

Abstract—In the context of change-point detection, addressed
by Total Variation minimization strategies, an efficient on-the-
fly algorithm has been designed leading to exact solutions for
univariate data. In this contribution, an extension of such an on-
the-fly strategy to multivariate data is investigated. The proposed
algorithm relies on the local validation of the Karush-Kuhn-
Tucker conditions on the dual problem. Showing that the non-
local nature of the multivariate setting precludes to obtain

an exact on-the-fly solution, we devise an on-the-fly algorithm
delivering an approximate solution, whose quality is controlled
by a practitioner-tunable parameter, acting as a trade-off between
quality and computational cost. Performance assessment shows
that high quality solutions are obtained on-the-fly while benefiting
of computational costs several orders of magnitude lower than
standard iterative procedures. The proposed algorithm thus
provides practitioners with an efficient multivariate change-point
detection on-the-fly procedure.

Index Terms—Constrained optimization; Multivariate; Total
Variation, On-the-fly algorithm.

I. INTRODUCTION

T otal Variation (TV) has been involved in a variety

of signal processing problems, such as nonparametric

function estimation [1], [2] or signal denoising [3]–[5]. The

first contributions on this subject were formulated within the

framework of taut string theory [1], [2] while the term TV had

first been introduced in image restoration [6], [7]. The equiv-

alence between both formalisms has been clarified in [8].

Formally, the univariate TV framework aims at finding a

piece-wise constant estimate x̂ ∈ R
N of a noisy univariate

signal y ∈ R
N by solving the following non-smooth convex

optimization problem,

x̂ = argmin
x=(xk)1≤k≤N

1

2
‖x− y‖2 + λ

N−1∑

k=1

|xk+1 − xk|, (1)

where λ > 0 denotes a regularization parameter balancing

data fidelity versus the piece-wise nature of the solution.

Related works: recent developments and issues. It is well

known and documented that the unique solution of the opti-

mization problem (1) can be reached by iterative fixed-point
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algorithms. On the one hand, solving this problem in the

primal space requires to deal with the non-differentiability

of the ℓ1-norm that is either handled by adding a small

additional smoothing parameter [9] or by considering proximal

algorithms [5], [10]–[19]. On the other hand, one can make

use of the Fenchel-Rockafellar dual formulation [10], [20]

or Lagrangian duality [21], [22] that can be solved with

quadratic programming techniques [10], [23]. Both primal and

dual solutions suffer from high computational loads, stemming

from their iterative nature. To address the computational load

issue, alternative procedures were investigated, such as the

taut string algorithm of common use in the statistics literature

[1]. Very recently, elaborating on the dual formulation and

thoroughly analysing the related Karush-Kuhn-Tucker (KKT)

conditions, a fast algorithm has been proposed by one of the

authors in [5] to solve the univariate optimization problem (1).

Compared to the taut string strategy, it permits to avoid

running sum potentially leading to overflow values and thus

numerical errors. Another specificity concerns its on-the-fly

behavior that does not require the observation of the whole

time sequence before a solution can be obtained. On-the-fly

algorithms might be of critical interest for real-time monitoring

such as in medical applications [24], [25].

Along another line, extension of the univariate optimiza-

tion problem (1) to multivariate purposes has been recently

investigated in [4], [26], [27]. The multivariate extension

arises very naturally in numerous contexts, such as biomedical

applications, for which the purpose is to extract simultaneous

change points from multivariate data, e.g., EEG data [28]. It

also encompasses denoising of complex-valued data, which

can naturally be interpreted as bivariate data. Multivariate

optimization is known as the group fused Lasso in the statistics

literature [29], [30]. From a Bayesian point of view, elegant

solutions have been proposed in [31], [32] and efficient

iterative strategies have recently been proposed in [26], [33].

Mutivariate on-the-fly TV. In this context, the present

contribution elaborates on [5] to propose an on-the-fly

algorithm solving the multivariate extension of (1). In

Section II, the group fused Lasso problem is first detailed.

It is then illustrated that the multivariate procedure has

a non-local behavior as opposed to the local nature of

the univariate problem (1). Consequently, any on-the-fly

algorithm solving the multivariate minimization problem will

only lead to an approximate solution. The KKT conditions

resulting from the dual formulation of the multivariate

problem are specified in Section III. From such conditions, a
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fast and on-the-fly, yet approximate, algorithm is derived in

Section IV. The performance in terms of achieved solution

and computational gain are presented in Section V. A video

demonstrating the on-the-fly behavior of the algorithm is

available at http://perso.ens-lyon.fr/jordan.frecon1.

Notations. Let u = (um,k)1≤m≤M,1≤k≤N ∈ R
M×N denote a

multivariate signal, where for every m ∈ {1, . . . ,M}, um =
(um,k)1≤k≤N ∈ R

N stands for the m-th component while

the k-th values will be shortened as uk = (um,k)1≤m≤M ∈
R
M . For every k ∈ {1, . . . , N}, use will also be made of the

following functions: abs(uk) = (|um,k|)1≤m≤M ∈ R
M and

sgn(uk) =
(
sgn(um,k)

)
1≤m≤M

∈ R
M .

II. LOCAL VS NON-LOCAL NATURE

We denote y the multivariate signal of interest. A multivari-

ate extension of (1) reads:

x̂ = argmin
x=(x1,...,xM )

1

2

M∑

m=1

‖xm − ym‖2 + λ

N−1∑

k=1

√√√√
M∑

m=1

|(Lxm)k|2,

(2)

where λ > 0 denotes the regularization parameter and L ∈
R
(N−1)×N denotes the first order difference operator, that is,

for m ∈ {1, . . . ,M} and k ∈ {1, . . . , N − 1},

(Lxm)k = xm,k+1 − xm,k. (3)

Despite formal similarity, there is however a fundamental

difference in nature between the univariate (M = 1) and mul-

tivariate (M > 1) cases: The former is intrinsically local [5],

[34] while the latter is non-local2. To make explicit such a

notion, we have designed the following experiment, whose

results are illustrated in Fig. 1. The results associated to the

univariate (resp. bivariate) case are presented on the right plots

(resp. left plots). A univariate signal y ∈ R
N with N = 180,

consisting of the additive sum of a piece-wise constant signal

and white Gaussian noise (in gray, in Fig. 1, right top plot), is

considered first. The solution of the minimization problem (1)

is displayed in solid red lines in Fig.1. Also, we search

for the solution of the minimization problem (1) applied to

two partitions of y , obtained by splitting it in half, i.e.,

y− = (yk)1≤k≤N/2 and y+ = (yk)N/2+1≤k≤N . The solutions

x− and x+ of (1) respectively associated to y− and y+ are

concatenated and displayed with dashed blue lines in Fig. 1.

There is strictly no difference between x and the concatenation

of x− and x+, as reported in Fig.1 (bottom right plot), except

for the segment that contains the concatenation point. The

difference around the concatenation point is expected as x

makes use of an information (the continuity between y− and

y+) that is not available to compute x− and x+. The fact that

there is no difference elsewhere shows the local nature of the

univariate solution to Problem (1).

This experiment is now repeated for M = 2 (as the simplest

representative of M > 1). A bivariate signal y = (y1,y2) ∈

1A toolbox will be provided at the time of publication.
2In this article, we denote a problem as local if the solution at a given

location does not depend on the signal located earlier (later) than the previous
(next) change-point.
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Fig. 1: Non-local vs. local nature. Left: bivariate TV (upper plots:
first component, lower plots: second component). Right: uni-
variate TV. Observations y (gray), solution x̂ (red), concate-
nation of solutions x̂− and x̂+ (dashed blue).

R
2×N with N = 180, consisting of the additive sum of piece-

wise constant signals and white Gaussian noises (in gray, in

Fig. 1, left plots, 1st and 3rd lines), is considered. Two parti-

tions, obtained by splitting in half, y− = (y1,k, y2,k)1≤k≤N/2

and y+ = (y1,k, y2,k)N/2+1≤k≤N are also considered. The

corresponding solutions of (2), applied to y,y−,y+, labeled

x̂, x̂− and x̂+ are obtained by means of the primal-dual

algorithm proposed in [14] with λ = 20. Solutions x̂− and x̂+

of (2) respectively associated to y− and y+ are concatenated

and displayed with dashed blue lines in Fig. 1, while x̂ is

shown in red. Contrary to the case M = 1, differences between

x̂ and concatenated x̂− and x̂+, shown in black in bottom

plots, differ unambiguously from 0 over the entire support of

y, clearly showing the non-local nature of x̂ when M > 1.

In the univariate case (Eq. (1)), the local nature of the

solution permits to design an efficient taut string algorithm,

that consists in finding the string of minimal length (i.e.,

taut string) that holds in the tube of radius λ around the

antiderivative of y. The solution x̂ of (1) is then obtained

by computing the derivative of the taut string. An efficient

strategy has been proposed in [2] in order to straightforwardly

compute x̂ by determining the points of contact between the

taut string and the tube. Even though this approach can be

generalized to multivariate signals, the detection of points of

contact additionally requires the angle of contact between the

taut string and the tube. However, this information is non-

local and thus the on-the-fly minimization problem results in

a challenging contact problem which can not be solved locally.

This interpretation will be further discussed in Section III.

The non-local nature of the multivariate (M > 1) Prob-

lem (2) implies that one cannot expect to find an exact

multivariate on-the-fly algorithm. Therefore, in the present

work, we will derive an approximate on-the-fly algorithm

that provides us a good-quality approximation of the exact

solution to Problem (2). A control parameter |Q|, defined in

Section 3, will control the trade-off between the quality of the

approximation and the computational cost.

http://perso.ens-lyon.fr/jordan.frecon
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III. MULTIVARIATE TOTAL VARIATION MINIMIZATION

A. Dual formulation

Fenchel-Rockafellar dual formulation3 of (2) reads :

minimize
u∈RM×(N−1)

1

2

M∑

m=1

‖ym + L∗um‖2 subject to

(∀k = {1, . . . , N − 1}) ‖uk‖ ≤ λ, (4)

where, for every m ∈ {1, . . . ,M} and k = {2, . . . , N − 2},

(L∗ûm)k = ûm,k−1 − ûm,k (5)

and {
(L∗ûm)1 = −ûm,1,

(L∗ûm)N = ûm,N−1.
(6)

The optimal solutions û ∈ R
M×(N−1) and x̂ ∈ R

M×N of

the dual problem and of the primal problem respectively are

related by
{
(∀m ∈ {1, . . . ,M}) x̂m = ym + L∗ûm,

(∀k ∈ {1, . . . , N − 1}) ûk ∈ −λ∂‖ · ‖(x̂k+1 − x̂k).
(7)

From (7), we directly obtain the following necessary and

sufficient conditions.

Proposition III.1 The solutions of the primal problem (2) and

the dual problem (4) satisfy, for every m ∈ {1, . . . ,M},

x̂m = ym + L∗ûm, (8)

and, for every k = {1, . . . , N − 1},
{

if x̂k = x̂k+1 then ‖ûk‖ ≤ λ,

if x̂k 6= x̂k+1 then ûk = −λ
x̂k+1−x̂k

‖x̂k+1−x̂k‖
.

(9)

The first condition corresponds to the configuration where

every component keeps the same value from location k to

k + 1. This configuration is illustrated in the bivariate case

(M = 2) in Fig. 2 (left plot). The second condition models

situations where some components of x̂ admit change points

between locations k and k+1. An interesting configuration is

that of non-simultaneous change points as illustrated in Fig. 2

(right plot). In the presence of noise, this second situation is

rarely encountered. Thus, in the sequel, we will only consider

simultaneous change points.

Remark III.2 Proposition III.1 for M = 1 leads to the usual

KKT conditions associated to the minimization problem (1):




if x̂k > x̂k+1 then ûk = +λ,

if x̂k < x̂k+1 then ûk = −λ,

if x̂k = x̂k+1 then ûk ∈ [−λ,+λ].

(10)

The on-the-fly univariate TV algorithm proposed in [5] is

derived from Conditions (10).

3Note that, the usual dual formulation and the resulting stationarity condi-
tions would involve u rather than −u. The choice made in this article enables
us to be consistent with the results obtained in [5] for the univariate case.

û1,k > 0

ûk

λ

û2,k > 0

ûk = (0, λ)

λ

Fig. 2: Comparing joint vs disjoint changes in the dual space.
Left: location k is suitable for a joint negative amplitude
change on both components. Right: configuration suitable for
introducing a negative amplitude change at k on the second
component only.

B. Rewriting the KKT conditions

Contrary to Conditions (10), the multivariate conditions

derived in Proposition III.1 are not directly usable in practice

to devise an on-the-fly algorithm because x̂k+1 − x̂k is a

priori unknown at instant k. Therefore, we propose to rewrite

the second condition in (9) by means of auxiliary variables

(ẑk)1≤k≤N−1 such that
{

if x̂k = x̂k+1 then ‖ûk‖ ≤ λ,

if x̂k 6= x̂k+1 then ûk = −sign(x̂k+1 − x̂k) ◦ ẑk,
(11)

with ẑk = λ
abs(x̂k+1−x̂k)
‖x̂k+1−x̂k‖

and where ◦ denotes the

Hadamard product. Then, Proposition III.1, can be reformu-

lated component-wise as follows.

Proposition III.3 The solutions of the primal problem (2)

and of the dual problem (4) satisfy the following necessary

and sufficient conditions. There exist nonnegative auxiliary

variables (ẑk)1≤k≤N−1 such that, for every m = {1, . . . ,M}
and k = {1, . . . , N − 1},




if x̂m,k > x̂m,k+1 then ûm,k = +ẑm,k,

if x̂m,k < x̂m,k+1 then ûm,k = −ẑm,k,

if x̂m,k = x̂m,k+1 then ûm,k ∈ [−ẑm,k,+ẑm,k],
(12)

with ‖ẑk‖ = λ and x̂m = ym + L∗ûm.

Comparing Eqs. (10) and (12) highlights the similarity

between the necessary conditions of the univariate and mul-

tivariate minimization problems: Conditions involving λ in

the univariate case involve the auxiliary vector ẑ in the

multivariate one. The fact that ẑ differs for each pair (m, k)
can be interpreted in taut string procedures as the fact that the

point of contact with the taut string may vary on the tube of

radius λ. This significantly increases the difficulty of deriving

an on-the-fly algorithm.

C. Approximate solution

If we first assume that ẑ is known and such that, for every

k ∈ {1, . . . , N − 1}, ‖ẑk‖ = λ, the primal problem associated

to Conditions (12) reads

min
x

M∑

m=1

(
1

2
‖ym − xm‖2 +

N−1∑

k=1

ẑm,k|(Lxm)k|

)
(13)



4

and can be interpreted as M univariate minimization problems

having time-varying regularization parameters (ẑm)1≤m≤M .

The proposed approximation consists in restricting the esti-

mation of ẑ to a predefined set Q = {ζ(1), . . . , ζ(|Q|)} chosen

such as for every q ∈ {1, . . . , |Q|}, ζq = (ζ
(q)
m )1≤m≤M ∈ R

M

satisfies ‖ζ(q)‖ = λ.

The most naive strategy would consist in solving M
univariate minimization problems for every |Q| candidate

values of ẑ, i.e., find for every m = {1, . . . ,M} and

q = {1, . . . , |Q|},

x̂
(q)
m = argmin

xm

1

2
‖ym − xm‖2 + ζ(q)m ‖Lxm‖1 (14)

and to devise a method to pick the solution amongst the |Q|
candidates. For instance, the one that maximizes some quality

criterion f , i.e.,

x̂ = x̂
(q∗) with q∗ = arg max

1≤q≤|Q|
f(x̂(q)). (15)

Although it benefits from parallel on-the-fly implementations,

this situation would correspond to a constant estimate z̃ =
ζ(q

∗)
1N . Therefore, changes in the mean would be processed

independently on all components and group-sparsity would not

be enforced.

In order to benefit from an on-the-fly implementation and

to enforce group-sparsity, we propose an algorithmic solution

based on a piece-wise constant estimator of ẑ detailed in the

next section.

IV. ALGORITHMIC SOLUTION

In the following, we first extend the on-the-fly algorithm

proposed in [5] to the multivariate case, with ẑ assumed to be

known a priori. This strong assumption, unrealistic in pratice,

permits to describe clearly the behaviour of the multivariate

on-the-fly algorithm. Then, we will focus on the question

of the automated and on-the-fly estimation of ẑ taking its

values in Q, which consequently introduce a parameter |Q|
controlling the quality of the approximation. The main steps

of the on-the-fly algorithm are summarized in Algorithm 1.

It is based on the range control of both unknown primal and

dual solutions x̂ and û by lower and upper bounds updated

with the incoming data stream.

The design of Algorithm 1 results in specifying Rule 1

and Rule 2 allowing respectively to detect a change point and

to find suitable change-point locations according to Proposi-

tion III.3.

A. Ideal case with ẑ known

1) Lower and upper bounds: According to Proposi-

tion III.3, the solution of the primal problem, the solution of

the dual problem and the auxiliary variable have to satisfy, for

every k ∈ {0, . . . , N − 1},





ûk+1 = yk+1 + ûk − x̂k+1,

abs(ûk+1) ≤ ẑk+1,

‖ẑk+1‖ = λ.

(16)

Algorithm 1: On-the-fly scheme for multivariate TV

Data: Multivariate signal y = (y1, . . . ,yM ) ∈ RM×N .
Regularization parameter λ > 0.
Starting location k0 = 1.

while k0 < N do
Set k ← k0
Initialize primal/dual bounds
while Rule 1 is satisfied do

Set k ← k + 1
for m← 1 to M do

Update primal/dual bounds
if Rule 2 is not satisfied then

Revise the update of primal/dual bounds

Estimate the change point krupt
Estimate (x̂j)k0≤j≤krupt

Set k0 ← krupt + 1

Result: Solution x̂approx

with û0 = ûN = 0. Considering the two first conditions, the

prolongation condition x̂k+1 = x̂k leads to
{
yk+1 ≥ x̂k − ẑk+1 − ûk,

yk+1 ≤ x̂k + ẑk+1 − ûk.
(17)

Following the solution proposed for the univariate case derived

in [5], one can check that (17) is satisfied by reasoning

on lower and upper bounds of ûk and x̂k. For every k ∈
{1, . . . , N − 1}, we define the lower and upper bounds of x̂k,

labeled xk and xk respectively, as:

xk ≤ x̂k ≤ xk, (18)

and we set uk and uk as follows

(∀m ∈ {1, . . . ,M})

{
ûm,k = um,k if x̂m,k = xm,k,

ûm,k = um,k if x̂m,k = xm,k,
(19)

where uk and uk appear to be the upper and lower bounds of

x̂k respectively, i.e.

uk ≤ ûk ≤ uk, (20)

as detailed in Appendix VII-A.

2) Updating rules & Rule 1: The prolongation condition

x̂k+1 = x̂k, which has led to (17), becomes
{
yk+1 ≥ xk − ẑk+1 − uk,

yk+1 ≤ xk + ẑk+1 − uk.
(21)

If the latter condition, labeled as Rule 1, holds, then according

to the primal-dual relation, we perform the update of the lower

and upper bounds at location k + 1 as follows:
{
uk+1 = yk+1 + uk − xk,

uk+1 = yk+1 + uk − xk,
(22)

and {
xk+1 = xk,

xk+1 = xk.
(23)
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Remark IV.1 Equivalently, one can systematically update

primal (resp. dual) bounds according to (22) (resp. (23))

and verify that the following rewriting of the prolongation

condition (21) holds:
{
uk+1 ≥ −ẑk+1,

uk+1 ≤ +ẑk+1.
(24)

3) Signal prolongation & Rule 2: If Rule 1 (i.e. Con-

dition (21) or equivalently (24)) holds, then the assumption

x̂k+1 = x̂k is valid. However, the upper and lower bounds

may have to be updated in order to be consistent with

ûk+1 ∈ [−ẑk+1,+ẑk+1]. According to (20), this condition

requires to verify that the following Rule 2 holds:
{
uk+1 ≤ +ẑk+1,

uk+1 ≥ −ẑk+1.
(25)

For every m ∈ {1, . . . ,M}, three configurations can be

encountered:

• When both Conditions (25) are satisfied, the bounds are

left unchanged.

• When um,k+1 = um,k+ym,k+1−xm,k > +ẑm,k+1, then

the updating rules specified in (23) have under-evaluated

the bound νm ≡ xm,j (∀j ∈ {k0, . . . , k + 1}) where k0
denotes the last starting location of a new segment. Since

um,k+1 is upper-bounded by +ẑm,k+1 and, that for such

a value it can be shown (see Appendix VII-B) that

νm = xm,k +
um,k+1 − ẑm,k+1

k − k0 + 1
, (26)

we propose the following updates
{
(∀j ∈ {k0, . . . , k + 1}) xm,j = νm,

um,k+1 = +ẑm,k+1.
(27)

• When um,k+1 < −ẑm,k+1, then it results that the upper

bound νm ≡ xm,j (∀j ∈ {k0, . . . , k + 1}) has been over-

evaluated. Similarly, since um,k+1 is lower bounded by

−ẑm,k+1, we can show that the upper bound

νm = xm,k +
um,k+1 + ẑm,k+1

k − k0 + 1
, (28)

permits to ensure the consistency of the following updates
{
(∀j ∈ {k0, . . . , k + 1}) xm,j = νm,

um,k+1 = −ẑm,k+1.
(29)

4) Estimate of the change point krupt: When Rule 1 does

not hold, a change point has to be created. For every m ∈
{1, . . . ,M}, we can distinguish three cases:

• When um,k+1 = um,k + ym,k+1 − xm,k < −ẑm,k+1,

then, since um,k is bounded, it means that xm,k is over-

evaluated and therefore a negative amplitude change has

to be introduced on the m-th component in the time index

set {k0, . . . , k} in order to decrease its value. Following

Proposition III.3 and Eq. (20), the set of locations κm

suitable for a change-point on the m-th component reads:

κm = {j ∈ {k0, . . . , k} | um,j = +ẑm,j}. (30)

Such locations correspond to the indexes where the value

of the bound um,j has been updated in order to be

consistent with the condition ûm,j ∈ [−ẑm,j, ẑm,j] (see

the previous paragraph)

• When um,k+1 > +ẑm,k+1, then a positive amplitude

change has to be introduced in the m-th component

within the time index {k0, . . . , k}. The set of locations

suitable for a change-point on the m-th component reads:

κm = {j ∈ {k0, . . . , k} | um,j = −ẑm,j}. (31)

This set of locations corresponds to indexes where the

value of the bound um,j was updated in order to be

consistent with ûm,j ∈ [−ẑm,j, ẑm,j].
• Else, when component m does satisfy (17), then we set

κm = {k0, . . . , k}.

The change-point location krupt corresponds to the last lo-

cation suitable for introducing the adequate amplitude change

on each component, i.e.,

krupt = max
j∈∩M

m=1κm

j. (32)

Once the change point location has been specified, we are

able to assign a value to (x̂j)k0≤j≤krupt
. When a negative

amplitude change is detected on the m-th component, we set

(∀j ∈ {k0, . . . , krupt}) x̂m,j = xm,k+1, (33)

in consistence with (19). Similarly, when a positive amplitude

change is detected, we set

(∀j ∈ {k0, . . . , krupt}) x̂m,j = xm,k+1. (34)

5) Starting a new segment: When a segment has been

created, we start the detection of a new segment considering

k0 = krupt + 1 as long as k0 < N .

According to (7) and by definition of the bounds, for every

k ∈ {1, . . . , N}
{
xk = yk − uk + ûk−1,

xk = yk − uk + ûk−1.
(35)

In particular, for k = k0, combining (12), (18), (19) and (22)

allows us to find the following initialization procedure
{
uk0

= +ẑk0 ,

uk0 = −ẑk0 ,{
xk0

= yk0 − ẑk0 + ûk0−1,

xk0 = yk0 + ẑk0 + ûk0−1,

(36)

where the value of ûk0−1 is given according to Proposi-

tion III.3. In addition, according to the writing of (16), û0 = 0.

B. Estimation of the auxiliary multivariate vector ẑ

In order to describe the generic behavior of the multivariate

on-the-fly algorithm, we have so far assumed ẑ to be known

a priori. We now focus on the simultaneous estimation of the

multivariate vector ẑ and of the multivariate signal x̂.

To provide an on-the-fly approximate solution, we propose:

• to build a piece-wise constant estimator z̃ of ẑ,
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• to only consider amplitude changes jointly on all compo-

nents m ∈ {1, . . . ,M}.

1) Piece-wise constant estimator of ẑ: The proposed

estimate is assumed to be constant between each change-

point with values belonging to the predefined set Q defined

in Section III-C. For each candidate value ζ(q) with q ∈
{1, . . . , |Q|}, we create upper and lower bounds labeled u

(q)
k ,

u
(q)
k , x

(q)
k , and x

(q)
k . They are initialized at each new segment

location k0 and are updated independently according to (22)

and (23) until the prolongation condition
{
u
(q)
k+1 ≥ −ζ(q),

u
(q)
k+1 ≤ +ζ(q),

(37)

based on (24), does not hold anymore. In the following,

we investigate how to modify the algorithm described in

Section IV-A, to account for the automated selection of z̃ in

Q. The resulting algorithm is reported in Algorithm 2.

2) Estimate of the change point k
(q)
rupt: For every q ∈

{1, . . . , |Q|}, we create change points as described in Sec-

tion IV-A4. The main difference consists in the restriction to

simultaneous change points. As detailed after Proposition III.1,

non-simultaneous changes have a zero probability to occur.

The restriction to simultaneous change-points will thus not

impact the solution. It results that if there exists at least one

component m ∈ {1, . . . ,M} such that u
(q)
m,k+1 < −ζ

(q)
m (resp.

u
(q)
m,k+1 > ζ

(q)
m ), then

κ(q)
m = {j ∈ {k0, . . . , k} | u

(q)
m,j = +ζ(q)m } (38)

(resp. κ(q)
m = {j ∈ {k0, . . . , k} | u

(q)
m,j = −ζ(q)m }), (39)

and, ∀m− 6= m such that u
(q)
m−,k+1 + u

(q)
m−,k+1 < 0, then

κ(q)
m−

= {j ∈ {k0, . . . , k} | u
(q)
m−,j = +ζ(q)m } (40)

or, ∀m+ 6= m such that u
(q)
m+,k+1 + u

(q)
m+,k+1 ≥ 0, then

κ(q)
m+

= {j ∈ {k0, . . . , k} | u
(q)
m+,j = +ζ(q)m }. (41)

A bivariate example of these configurations where the second

component breaks Condition (37) is provided in Fig. 3. The

change-point location k
(q)
rupt and the assignment of x̂(q) on the

current segment follow (32), (33) and (34).

3) Estimate of the change point krupt: According to the

previous paragraph, the piece-wise estimation procedure leads

to several possible change-point locations (at most |Q|). Here

we select the solution indexed by q∗ with tightest bounds x(q∗)

and x
(q∗), i.e.,

q∗ ∈ Argmin
1≤q≤|Q|

∥∥∥∥
(
x
(q)

k
(q)
rupt

− x
(q)

k
(q)
rupt

)
σ−1

∥∥∥∥
2

, (42)

with

σ = diag(σ1, . . . , σM ), (43)

where, for every m ∈ {1, . . . ,M}, σm stands for the standard

deviation of ym. The factor σ−1 permits to ensure that every

component contributes equally to the criterion (42). When the

u
(q)
2,k+1

▽
△

u
(q)
2,k+1

⊲
u
(q)
1,k+1

u
(q)
1,k+1

⊳

u
(q)
2,k+1

▽
△

⊳⊲

u
(q)
2,k+1

u
(q)
1,k+1

u
(q)
1,k+1

Fig. 3: Example of configurations leading to the detection of a

change-point. In this example M = 2, ζ
(q)
1 = ζ

(q)
2 = λ/

√
2.

Since u
(q)
2,k+1 > ζ

(q)
2 , condition (37) is violated. The left (resp.

right) plot displays the configuration u
(q)
1,k+1 + u

(q)
1,k+1 < 0

(resp. u
(q)
1,k+1 + u

(q)
1,k+1 ≥ 0) described in Section IV-B2.

minimizer of (42) is not unique, we select the index q∗ yielding

the largest k
(q∗)
rupt. In other words, we choose the set of auxiliary

variables which permits to hold the prolongation condition (37)

as long as possible.

Therefore, it finally leads to an index q∗ which permits to

estimate krupt = k
(q∗)
rupt and,

(∀j ∈ {k0, . . . , krupt}) z̃j = ζ(q
∗), x̂j = x̂

(q∗)
j . (44)

The starting location for the next segment is then, k0 =
krupt + 1, and the algorithm iterates as long as k0 < N .

4) Starting a new segment: Let us consider the location

k0 of a new segment. For every q ∈ {1, . . . , |Q|}, the

initialization step can be recast into
{
u
(q)
k0

= +ζ(q), u
(q)
k0

= −ζ(q),

x
(q)
k0

= yk0 − ζ(q) + ûk0−1, x
(q)
k0

= yk0 + ζ(q) + ûk0−1,
(45)

with û0 = 0.

Remark IV.2 The initialization step (45) implicitly depends

on the estimation of ẑ made on the last segment through

the term ûk0−1. Simulations have shown that (45) may lead

to an inconsistent solution x̂ as soon as ẑ has been poorly

estimated on a segment. Empirically, a better approximation

of the iterative solution is observed if each segment is treated

independently, i.e.,

{
u
(q)
k0

= +ζ(q), u
(q)
k0

= −ζ(q),

x
(q)
k0

= yk0 − ζ(q), x
(q)
k0

= yk0 + ζ(q).
(46)

V. PERFORMANCE ASSESSMENT

A. Experimental setting

Unless specified otherwise, we consider that data consist of

a M -multivariate piece-wise constant signal x ∈ R
N (solid

black), to which a centered Gaussian noise ǫ is additively

superimposed: y = x+ ǫ ∈ R
M×N .

Signal x is generated as follows. First the length of each

segment is drawn according to a folded Gaussian distribution

N (12.5, 16.25). Then, for each m ∈ {1, . . . ,M}, the ampli-

tudes of the corresponding changes are drawn independently

from a Gaussian distribution N (2, 0.4).
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Algorithm 2: On-the-fly Multivariate TV

Data: Multivariate signal y = (y1, . . . , yM ) ∈ RM×N .
Regularization parameter λ > 0.

Predefined set Q = {ζ(1), . . . , ζ(|Q|)}.
Starting location k0 = 1.

while k0 < N do
for q ← 1 to |Q| do

Set k ← k0
Initialize primal/dual bounds according to (46)
while (37) is satisfied do

Set k ← k + 1
for m← 1 to M do

Update primal/dual bounds

if u
(q)
m,k+1 > +ζ

(q)
m or u

(q)
m,k+1 < −ζ(q)m then

Revise the update of primal/dual bounds

Estimate k
(q)
rupt and (x̂

(q)
j )

k0≤j≤k
(q)
rupt

according to

Section (IV-B2)

Estimate krupt ∈ (k
(q)
rupt)1≤q≤|Q| according to

Section IV-B3
Estimate (x̂j)k0≤j≤krupt and (z̃j)k0≤j≤krupt according to
(44)
Set k0 ← krupt + 1

Result: Solution x̂

The exact minimizer of (2), labeled x̂, is computed by

means of the ADMM algorithm proposed in [22]. Iterations are

stopped when the relative criterion error is lower than 10−10.

The proposed solution computed with the predefined set Q is

denoted x̂approx,Q.

In a second set of experiments (see V-D), the proposed on-

the-fly algorithmic solution will be compared to an on-the-fly

ADMM solution.

B. Design of Q

We propose to compare solutions x̂approx,Q obtained with

two different sets Q = {ζ(1), . . . , ζ(|Q|)} in the bivariate case

(i.e., M = 2) for N = 104. For both configurations, we choose

(∀q ∈ {1, . . . , |Q|}) ζ(q) = (λ cos(θq), λ sin(θq)) (47)

with θq ∈ [0, π/2]. The first solution consists to homoge-

neously cover the ℓ2 ball such that, for some some parameter

R ∈ N∗, θq = qπ/2R+1 and |Q| =
∑R−1

q′=0 2
q′ . The second

solution draws a set of the same size whose values (θq)1≤q≤|Q|

follow a uniform distribution on [0, π/2].
Two experimental settings are investigated. In the first one,

y1 is one order of magnitude larger than y2 (Fig. 4, left plots)

whereas in the second one, both are of the same order of

magnitude (Fig. 4, right plots).

Estimation performances in terms of mean squared error

MSE(x̂approx,Q, x̂) = Ê[ 1N ‖x̂approx,Q − x̂‖2] (where Ê stands

for the sample mean estimator computed over 100 realizations)

are reported on the first line. It shows that a random covering

of the ℓ2-ball provides solutions as good as the homogeneous

covering up to the limit of |Q| small.

On the 2nd and 3rd lines, the distributions of θq∗ , where q∗

has been selected by criterion (42), are reported for |Q| = 127.

These histograms show the impact of the relative amplitude

0 100 200 300 400 500

0.2

0.4

0.6

0.8

|Q|
0 100 200 300 400 500

0.29

0.3

0.31

0.32

0.33

|Q|

0

0.05

0.1

0 0.5 1 1.5
0

0.05

0.1

θ

0

0.01

0.02

0 0.5 1 1.5
0

0.01

0.02

θ

Fig. 4: Influence of the design of Q. Comparison over 100 realiza-
tions of an homogeneous covering of the ℓ2-ball (blue) against
a random covering (red). Two experimental settings are con-
sidered depending on whether if y1 is one order of magnitude
larger than y2 (left) or not (right). Top: MSE(x̂approx,Q, x̂)
for different set sizes |Q|. Bottom (2nd and 3rd lines):
distributions of θq∗ where q∗ has been selected by criterion
(42) for |Q| = 127.

of the components on the distribution θq∗ : components with

same order of magnitude yield a symmetric distribution while

unbalanced components yield an asymmetric distribution. For

instance, in Fig. 4 (right plots), it appears more meaningful

to draw θq according to a Gaussian distribution than to a

uniform distribution. Therefore, if one has some knowledge

of components amplitudes, this can be incorporated to better

design the set Q. This will also decrease the computational

cost discussed in section V-D.

In the following, we restrict ourselves to a random covering

of the ℓ2 ball.

C. Offline performance

In this section, we focus on the comparison of offline

performance, extended for M = 10, for two different

signal-to-noise ratios (SNRs), namely 4dB and 10dB.

Qualitative impact of |Q| on x̂approx,Q. For a single

realization of noise, x̂approx,Q and x̂ are plotted Fig. 5 for

λ = 29, adjusted to provide the best visual (qualitative)

performance. Solution x̂approx,Q for |Q| = 5 × 104 (light

orange) provides a visually better approximation of x̂ (dashed

blue) than for |Q| = 103 (mixed red).

Estimation performance x̂approx,Q vs. x̂. The quality of

the approximation is further quantified Fig. 6 in terms of

MSE(x̂approx,Q, x̂) as a function of λ for different |Q|.
It shows that the MSE systematically decreases when

|Q| increases. Further, on the examples considered here

and depending on λ, using |Q| ≥ 104 no longer yields

significantly improved solutions, thus showing that the

selection of |Q| does not require a complicated tuning

procedure.

Estimation performance x̂ vs. x and x̂approx,Q vs. x. Let us

now compare the absolute quality of the solutions against x.
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Fig. 5: Qualitative impact of |Q| on x̂approx,Q. For visibility, only
3 components out of M = 10 are displayed. SNR = 4dB.
x̂approx,Q for |Q| = 5×104 is more satisfying than for |Q| =
103 since it has more discontinuities in common with x̂.

MSE(x̂,x) and MSE(x̂approx,Q,x) for different |Q|, are

reported in Fig. 7. MSEs are consistent with the previous

paragraph: it shows that increasing |Q| up to a certain value

permits to significantly lower the MSE. However, x̂ has a

lower estimation error than x̂approx,Q.

D. Online performance

In this section we focus on the comparison between two

online solutions. The first one is derived from the proposed

on-the-fly algorithm whereas the second one is based on an

iterative algorithm.

Comparison is made for different values of λ on a

signal x ∈ R
M×N (N = 400) to which a Gaussian noise

is superimposed such that SNR = 3dB. Performance are

provided for M = 2 and M = 5 components.

Proposed online solution x̂online,Q. As the time step k
increases, x̂approx,Q is only computed up to the last k0 and the

algorithm has not yet output a solution on {k0+1, . . . , k}. In

that sense, the solution is said to be ”on-the-fly”. However, a

solution x̂online,Q, providing an online approximation of x,

can be output up to k by imposing limit conditions at k.

Windowed iterative solution x̂win,K . We consider a naive

online ADMM version, where at each time step k a solution

x̂win,K is computed by optimizing over the previous K
points. The choice of K is of critical importance. On the

one hand, if this value is too small, the observer may miss

amplitude changes in the multivariate data stream. On the

other hand, if the window size is too large, the computational

cost may be too high to handle any online observation. Three

window sizes have been investigated, respectively K = 20,

50 and 80.

Computational cost. Comparisons of median computational

costs per incoming sample (in seconds), over 10 realizations

of noise, are reported Fig. 8 (left plots) as functions of λ.

As expected, we observe that the computational cost does

increase along with the size of Q. Therefore, |Q| acts as

a trade-off between the computational cost and the MSE.

However, the computational cost of x̂online,Q is still several

orders of magnitude lower than the one associated to the online

ADMM. Interestingly, computational costs are comparable for

M = 2 (top left plot) and M = 5 (bottom left plot). Note that

a warm-up starting strategy for online ADMM only reduces

by a factor two the computational cost with respect to the

implementation displayed in Fig. 8.

The computational cost of x̂online,Q could still be reduced

in two ways. First, one could design the set Q according

to a priori knowledge of components amplitudes (see V-B).

Second, one could also benefit from the separable form of

the algorithm and compute solutions x̂(q) in parallel for every

q ∈ {1, . . . , |Q|}.

Change-point detection accuracy. The Jaccard index

J(α,β) ∈ [0, 1] between any α and β ∈ [0, 1]N is defined as

[35], [36]

J(α,β) =

∑N
i=1 min(αi, βi)∑N

1≤i≤N
αi>0,βi>0

αi+βi

2 +
∑

1≤i≤N
βi=0

αi +
∑

1≤i≤N
αi=0

βi

.

(48)

It varies from 0, when α ∩ β = ∅, up to 1 when α = β.

The Jaccard index is a demanding measure: As an example,

if β ∈ {0, 1}N is the truth and if α ∈ {0, 1}N has correctly

identified half non-zero values of β but has misidentified the

other half, then J(α,β) = 1/3.

The Jaccard index is used to measure the similarity between

change-point locations of x and those obtained during the

computation of x̂win,K and x̂online,Q. To this end, we consider

the change-point indicator vector r = (ri)1≤i≤N of x (as well

as r̂win,K and r̂online,Q respectively associated to x̂win,K and

x̂online,Q), defined as

ri =

{
1, if x has a change-point at location i,
0, otherwise.

(49)

In order to incorporate a tolerance level on change-point

locations, r, r̂win,K and r̂online,Q are first convolved with a

Gaussian kernel of size 10 with a standard deviation of 3.

J(r̂win,K , r) and J(r̂online,Q, r) are averaged over 10 re-

alizations of noise and reported in Fig. 8 (right plots) as

functions of λ for different set size |Q| and window size K .

Performance show that J(r̂online,Q, r) ≥ J(r̂win,K , r) for

almost all λ and |Q|. Therefore, x̂online,Q provides a better

online detection of change-points of x. It also show that

J(r̂online,Q, r) does not vary significantly with |Q| but slightly

decreases with M . Indeed, as M increases, the prolongation

condition (37) is more likely to be violated, thus leading to

more change-points.

VI. CONCLUSION

In this contribution, we have developed an algorithm which

provides an on-the-fly approximate solution to the multivariate

total variation minimization problem. Besides a thorough

examination of the KKT conditions, the key-step of the
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Fig. 6: Estimation performance x̂approx,Q vs x̂. MSE(x̂approx,Q, x̂)
for different |Q|. SNR is set to 4dB (resp. 10dB) on left plot
(resp. right plot).
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Fig. 7: Estimation performance x̂ vs. x and x̂approx,Q vs. x.
MSE(x̂,x) and MSE(x̂approx,Q,x) for different |Q|. SNR is
set to 4dB (resp. 10dB) on left plot (resp. right plot).

algorithm lies in updating and controlling the range of the

upper and lower bounds of the dual solution within a tube

of radius λ. An on-the-fly derivation is achieved by means of

an auxiliary vector ẑ, which needs to be estimated, providing

information on the angle of contact with the tube. The latter

estimation strongly affects the quality of the solution and the

proposed on-the-fly estimation of ẑ is currently achieved by

assigning a value chosen within a predefined set Q. It has

been shown that the size of Q permits to achieve a desired

trade-off between the targeted quality of the solution and

the application-dependent affordable computational cost. In

addition, the proposed method could also be extended to other

ℓ1,p penalization norms in the right-hand side of (2), for p > 1.

However one would still face the issue of estimating ẑ which

would have to lie within a ℓp ball of radius λ. Under current

interest is the investigation of how to estimate ẑ in the case

where the assumption of piece-wise constant behavior is a

priori relaxed.

VII. APPENDIX

A. Proof of Equation (20)

According to the primal-dual relation (7), for every m ∈
{1, . . . ,M} and k ∈ {1, . . . , N − 1},

ûm,k = ym,k + um,k−1 − x̂m,k, (50)

and by definition of the lower and upper bounds of x̂m,k and

ûm,k, we have

um,k = ym,k + ûm,k−1 − xm,k, (51)

um,k = ym,k + ûm,k−1 − xm,k. (52)

By subtracting (51) from (50) we obtain

ûm,k − um,k = xm,k − x̂m,k (53)

and, according to (18), ûm,k − um,k ≤ 0. The arguments are

similar for proving that ûm,k > um,k.
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Fig. 8: Online Performance. The proposed solution x̂online,Q is
displayed in solid line while the online ADMM solution
x̂win,K is displayed in dashed line. Performance for M = 2
(resp. M = 5) are illustrated top (resp. bottom). Left: median
computational cost per incoming sample (in seconds). Right:
J(r̂win,K , r) and J(r̂online,Q, r) for different values of |Q|
and K.

B. Proof of Equation (26)

For every m ∈ {1, . . . ,M} and k ∈ {k0, . . . , N − 2}, if

um,k+1 = um,k + ym,k+1 − xm,k > +ẑm,k+1, (54)

then updating rules of xm,k, specified in (23), have under-

evaluated its value νm. To modify the lower bounds

(xm,j)k0≤j≤k+1, on the one hand, we consider the cumulative

sum of the observations which, according to (7), leads to

k+1∑

j=k0+1

ym,j = um,k+1 − um,k0 + (k − k0 + 1)xm,k+1, (55)

and thus, if um,k+1 = +ẑm,k+1, would lead to

k+1∑

j=k0+1

ym,j = ẑm,k+1 − um,k0 + (k − k0 + 1)νm, (56)

by definition of xm,k+1 = νm. On the other hand, the updating

rules (22) and (23) have led to

um,k+1 = um,k0
+

k+1∑

j=k0+1

ym,j − (k − k0 + 1)xm,k. (57)

The combinaison of (56) and (57) leads to

νm = xm,k +
−um,k0

+ um,k+1 − ẑm,k+1 + ûm,k0

k − k0 + 1
. (58)

Because xm,k have been under-evaluated and by definition

ûm,k0 ≤ um,k0
, we can propose the following value

νm = xm,k +
um,k+1 − ẑm,k+1

k − k0 + 1
, (59)

in order to adjust the lower bounds, i.e.,

(∀j ∈ {k0, . . . , k + 1}) xm,j = νm. (60)
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In addition, as a result of ûm,k+1 ∈ [−ẑm,k+1,+ẑm,k+1] and

according to the inequality (20), we set

um,k+1 = +ẑm,k+1. (61)
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