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Abstract. The detection of brain alterations is crucial for understand-
ing pathophysiological or neurodegenerative processes. The Voxel-Based
Morphometry (VBM) is one of the most popular methods to achieve this
task. Based on the comparison of local averages of tissue densities, VBM
has been used in a large number of studies. Despite its numerous advan-
tages, VBM is based on a highly reduced representation of the local brain
anatomy since complex anatomical patterns are reduced to local aver-
ages of tissue probabilities. In this paper, we propose a new framework
called Sparse-Based Morphometry (SBM) to better represent local brain
anatomies. The presented patch-based approach uses dictionary learn-
ing to detect anatomical pattern modifications based on their shape and
geometry. In our validation, the impact of the patch and group sizes is
evaluated. Moreover, the sensitivity of SBM along Alzheimer’s Disease
(AD) progression is compared to VBM. Our results indicate that SBM is
more sensitive than VBM on small groups and to detect early anatomical
modifications caused by AD.

Keywords: voxel-based morphometry, Alzheimer’s Disease, dictionary
learning, abnormality detection, patch-based processing.

1 Introduction

In neurological diseases such as Alzheimer’s Disease (AD), numerous studies
suggest that some structures are affected by atrophy whereas others are rela-
tively preserved. These brain abnormalities reflect pathophysiological processes,
and are correlated with cognitive impairments and clinical symptoms. Thus, the
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analysis of the anatomical brain integrity in patients is an important challenge of
current research in neurology. Automatic detection of such brain abnormalities
enables us to link anatomical substratum to cognitive performance or clinical
symptoms. One of the classical methods used for automatic analysis of brain
structures is voxel-based morphometry (VBM) [1]. VBM is an image processing
framework enabling the identification of differences in the tissue density over the
whole brain without a priori definition of a region of interest. Since its intro-
duction, VBM has been successfully used in studies dedicated to a large variety
of disorders. Despite its numerous advantages, VBM is based on a highly re-
duced representation of the local brain anatomy. Indeed, the complex local gray
matter (GM) pattern is reduced to a local weighted average of GM probabil-
ities through a Gaussian smoothing. While the importance of this smoothing
step is well-known from a practical point of view [2], the use of a local av-
erage to represent complex anatomical patterns should be questioned. In this
paper, we investigate the possibility of using a patch-based strategy to better
represent the local brain anatomy. Recently, patch-based methods have demon-
strated high performance in many neuroimaging applications such as anatomical
structure segmentation [3,4] or automatic diagnosis [5,6]. As recently proposed
for segmentation purposes [4], we use a dictionary learning process to construct
a sparse representation of anatomical patterns. Unlike [4], this sparse modeling
of the brain anatomy is used to detect abnormalities through a new framework
called Sparse-Based Morphometry (SBM). As shown later, SBM is especially
well-suited to detect local modifications in terms of their shape and geometry.
However, the inherent patch normalization involved in sparse-coding approaches
makes SBM insensitive to modifications of the mean GM density within a patch.
Therefore, we propose to combine the capability of VBM to detect modifications
of local average GM density with the high ability of SBM to capture subtle alter-
ations of the local shape of GM patterns. As discussed in the following, VBM can
be viewed as the comparison of the patch mean while SBM compares the patch
geometry. The contribution of this paper is threefold: (i) we present the new con-
cept of SBM susceptible to better represent the complexity of local anatomical
patterns, (ii) we propose to combine VBM and SBM in order to simultaneously
analyze modifications of the local mean GM density and alterations of the shape
and geometry of local GM patterns, and (iii) we evaluate the proposed framework
on the ADNI dataset.

2 Methods and Materials

Subjects selection and Preprocessing In this study we used a sample of
the standardized ADNI1 collection [7]. By using the 818 baseline MRI scan at
1.5T, we created three groups of cognitively normal subjects (CN), one group of
patients with AD, one group of subjects with Mild Cognitive Impairment (MCI)
who progressed to AD (progressive MCI or pMCI) and one group of subjects with
MCI who remained stable during the follow-up period (sMCI). All the groups
have the same number of subjects (N = 70). In addition, to remove potential
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Table 1: Demographic information about the considered groups

Group Size Gender (% Female) Age (SD) MMSE (SD)

CN training 70 53% 76.3 (5.1) 29.0 (0.9)
CN testing 70 47% 76.1 (4.8) 29.0 (0.9)
sMCI 70 41% 76.3 (7.2) 27.2 (3.5)
pMCI 70 42% 75.8 (6.6) 26.1 (2.1)
AD 70 55% 76.6 (7.7) 23.0 (3.3)

bias during our experiments, we randomly selected subjects from each group with
the constraint of similar age and similar gender proportion between groups. See
Table 1 for details. As explained later, the CN (training) group is used to learn
dictionaries (i.e., to create a sparse representation of the normal brain anatomy)
while the testing CN group is used to model the inter-subject variability. All
the data were preprocessed with the Statistical Parametric Mapping 8 software
(SPM8; http://www.fil.ion.ucl.ac.uk/spm) and the VBM8-toolbox (http:
//dbm.neuro.uni-jena.de/vbm.html) using default settings.

2.1 Sparse-based modeling of the brain anatomy

The proposed method estimates at each voxel the distribution of a scoring func-
tion measuring the degree of abnormality of a population at this location. The
choice of the scoring function is the key to success for such an approach and
thus it should be designed to be invariant to inter-subject variabilities inside the
reference group while being discriminant to intra-group variabilities. In order to
capture the local morphological structure of the brain, for each location in the
MNI space, we use a 3D patch (i.e., a small rectangular windows) centered in
a voxel v. The proposed scoring function measures the ability of this patch to
be decomposed in a sparse way, i.e., as a linear combination of a small number
of predefined patches. This family of predefined patches, called dictionary, is
learned offline from the set of patches located at v in the training group. In this
study, we then distinguish three groups G1, G2 and G3. The first group G1 com-
posed of CN subjects is used to learn the dictionary (CN training). Distributions
of the scoring functions are next computed independently on two other groups,
a reference group G2 composed of CN subjects (CN testing) and the group of
interest G3 (e.g., composed of AD patients). Since G1 and G2 are two groups
composed of CN, the scoring function is expected to be statistically different for
groups G2 and G3 where G3 is abnormal compared to the control.

2.2 Sparse brain anatomy representation using dictionary learning

For each subject i of group G1 and at each voxel v in the MNI space, a 3D
patch is extracted, centered (subtraction of its mean), normalized (divided by
its norm) and vectorized into a vector xi. The dictionary D, that is a matrix
whose columns are p patches, is next selected as the one minimizing the following

http://www.fil.ion.ucl.ac.uk/spm
http://dbm.neuro.uni-jena.de/vbm.html
http://dbm.neuro.uni-jena.de/vbm.html
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quantity:

min
D,αi

|G1|∑
i=1

1

2
‖xi −Dαi‖22 + λ‖αi‖1 (1)

where λ is a positive parameter. The first term 1
2‖x

i −Dαi‖22 ensures that each
extracted patch xi is not too far from its approximation Dαi, while the sec-
ond term ‖αi‖1 promotes that each extracted patch xi can be indeed efficiently
decomposed in a sparse way into the resulting dictionary D (i.e., such that αi
contains a large number of zero coefficients). At the end of the procedure, each
column of D is a vectorization of a patch encoding one of the possible local
morphological configurations of the brain in the training group G1.

2.3 Group comparison using sparse-based morphometry

As for the dictionary learning step, a patch is extracted at voxel v for each sub-
jects of groupsG2 andG3. This patch is also centered, normalized and vectorized.
The following scoring function

f(x) = min
α∈Rp

1

2
‖x−Dα‖22 + λ‖α‖1

is then applied on each patch where D is the learned dictionary associated to
voxel v. The empirical distribution of the scoring function f(x) is next computed
independently on each group. Thanks to the learning of an adapted dictionary
on the CN training subjects of G1, the dictionary D is expected to be flexible
enough to reconstruct sparsely most of the patches of the CN testing group G2

used as reference, hence leading to statistically low scoring values f(x). On the
contrary, at locations where the group of interestG3 presents some abnormalities,
a low approximation error 1

2‖x−Dα‖
2
2 might not be reachable with low sparsity

level, hence leading to statistically large values of ‖α‖1 and f(x). After applying
a T-test on the distributions of f(x) estimated at each voxel, our sparse-based
morphological technique provides a map of degree of difference between the
groups G2 and G3. Low values in this map can next be used to determine the
voxels where G3 seems to present some abnormalities.

Fusion of SBM and VBM As usually done in sparse-based approaches, the
patches are centered and normalized during the proposed SBM procedure. There-
fore, the mean of the patches (i.e., the local GM density used for VBM) is not
taken into account in SBM. We propose to fuse the SBM and VBM features in
order to capture jointly the local anatomical geometry and the local tissue den-
sity. To this end, we propose to fuse the T-maps produced by SBM and VBM.
The simple approach that takes the minimal p-value at each voxel is known
to not produce p-values [8]. We use Bonferroni’s method that is guaranteed to
produce p-values from K p-values pk using the fusion function F defined as:

F (p1, ..., pK) := K min(p1, ..., pK) . (2)
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Table 2: Abnormality ratios in % and merged p-values (p̃) in parentheses for each
considered patch size. The presented results were obtained on 70 CN vs. 70
AD. The used threshold on the T-maps was set to 0.01.

VBM SBM Fused

HPS = 9mm 49.2% (0.0032) 53.1% (0.0027) 58.0% (0.0027)
HPS = 12mm 54.4% (0.0028) 62.2% (0.0022) 64.8% (0.0021)
HPS = 15mm 57.3% (0.0025) 69.4% (0.0019) 69.6% (0.0018)

Table 3: Same as above but for each considered group size. The presented results were
obtained on CN vs. AD using HPS = 15mm.

VBM SBM Fused

30 CN vs. 30 AD 29.8% (0.0048) 47.5% (0.0033) 46.4% (0.0035)
50 CN vs. 50 AD 57.9% (0.0028) 65.4% (0.0023) 67.3% (0.0021)
70 CN vs. 70 AD 57.3% (0.0025) 69.4% (0.0019) 69.6% (0.0018)

Table 4: Same as above but for each considered testing group. The presented results
were obtained with HPS = 15mm and 70 subjects per group.

VBM SBM Fused

sMCI 0.1% (0.0170) 1.3% (0.0132) 0.3% (0.0147)
pMCI 34.5% (0.0045) 53.7% (0.0046) 51.2% (0.0043)
AD 57.3% (0.0025) 69.4% (0.0019) 69.6% (0.0018)

Implementation details and Quality metric In our experiments the value
of λ is not crucial and set to 0.15. The optimization of Eq. (1) is computed
by alternating minimization on the dictionary D and the sequence (αi) using
SPAMS’ toolbox (http://spams-devel.gforge.inria.fr/index.htm) [9]. In
the following, the half patch sizes (HPS) are reported in mm. The number of
atoms in the dictionary is set to 8. This number does not have a drastic impact
on results according to our experiments. All images are displayed using the same
p-value range from 10−2 to 10−8 and at the same coordinates in the MNI space.
The methods are evaluated with two metrics. First, the abnormality ratio metric
estimates the percentage of GM detected as abnormal (i.e., with p-value inferior
to 0.01). Second, a merged p-value (p̃) metric reflects the level of significance in
the area detected as abnormal. The p-values inferior to 0.01 are aggregated using
the merging function [8] that produces a p-value (unlike the standard average):

M(p1, ..., pK) :=
2

K
(p1 + ...+ pK) (3)

3 Results

3.1 Impact of the patch size and number of subjects

Table 2 presents the abnormality ratio and the merged p-value p̃ obtained for the
considered patch sizes. The abnormality ratio increases when using bigger patch
sizes and the fusion of SBM and VBM lead to similar or higher ratios. In terms
of significance, SBM and the fusion provides lower p̃ than VBM. In addition, the

http://spams-devel.gforge.inria.fr/index.htm
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fusion of VBM and SBM produces lower p̃ than SBM alone. We can note that a
plateau is reached at HPS = 15mm for VBM and that the p̃ values are stable
for SBM and the fusion. We therefore use this patch size in the following. Table
3 presents the abnormality ratio and the p̃ obtained for the considered group
sizes. As expected, more significant differences are found between both groups
when using a larger number of samples. Moreover, VBM is more affected by the
reduction of the group size than SBM.

3.2 Early detection of AD signature

In this last experiment, we investigate the results provided by the methods on
sMCI and pMCI groups. The pMCI group is expected to produce abnormalities
close to the abnormalities detected in the AD group since the pMCI group is
composed by patients converting to AD during the follow-up. The sMCI is ex-
pected to be closer to the CN group and can be viewed as an earlier stage of the
AD compared to pMCI. Figure 1 shows the results of our abnormality detection
approach on the considered groups (i.e., AD, pMCI, and sMCI). Table 4 presents
the abnormality ratio and the p̃ obtained for each group. As expected, for all the
methods, more abnormalities were detected in the AD group, followed by pMCI
and sMCI. In all cases, SBM produces a higher abnormality ratio than VBM.
Moreover, VBM produces a very low abnormality ratio for the sMCI group.
These results seem to indicate that VBM is not sensitive enough to detect to
subtle anatomical alterations present in the sMCI group. Consequently, the low
abnormality ratio produced by VBM for the sMCI group impacts the fusion. For
pMCI and AD groups similar results are obtained for SBM and fusion in terms
of the abnormality ratio. However, fusion provides lower p̃ than SBM. In terms of
anatomical difference, SBM finds significant differences for pMCI group in areas
only detected for the AD group using VBM (e.g., medial frontal cortex and tha-
lamus). VBM and SBM detect abnormalities in the posteriori cingulate cortex,
while only SBM detects abnormality in the anterior cingulate cortex. Moreover,
SBM found differences in the precuneus and the posterior cingulate cortex. Both
structures have been shown to be impacted by AD in terms of anatomical atro-
phy [10], metabolism reduction [11] and functional alteration [12]. In addition,
SBM and VBM detect abnormalities in the left entorhinal and parahippocampal
cortex for the sMCI group with a larger extentfor SBM. It is interesting to note
that these structures are known to be affected at the first stage of the pathology
[13]. Finally, SBM is able to find subtle abnormalities in the medial frontal cor-
tex in the sMCI group while such alterations are detected only in the AD group
using VBM (see Fig. 1). This last result highlights the high sensitivity of SBM
compared to VBM.

4 Conclusion

In this paper, we proposed a new method to detect anatomical abnormali-
ties called sparse-based morphometry. Based on local modeling of the normal
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anatomy using dictionary learning, SBM enables us to efficiently capture brain
alterations in terms of their geometry and shape. In our experiments, SBM was
shown to be more sensitive than VBM when using small groups or when studying
early anatomical modifications caused by AD at the first stage of the pathol-
ogy. We also presented a fusion strategy to combine VBM and SBM in order to
take into account modifications of the local average GM density and to capture
alterations of the local shape of GM patterns.
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Fig. 1: Detection of abnormality in AD, sMCI and pMCI groups using HPS = 15mm
and 70 subjects per group. The p-values of the T-maps are thresholded at 0.01.
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