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Minimization of the rate of change in torques during contact transitions for humanoids

Humanoid robots are commonly required to make contacts with the environment in order to perform various tasks. For tasks such as walking, sudden establishment and breaking of contacts are unavoidable. Such behaviours may result in large changes in actuator torques ( lashing), leading to potential control instability and damage to the actuators. In this paper, an approach to minimise sudden changes in actuation torques is proposed. This is achieved using Model Predictive Control (MPC) to modify the maximum and minimum allowable forces for a reactive whole-body controller. The MPC previews the evolution of contacts in time and generates smoother maximum and minimum allowable forces. The effect of the proposed approach is simulated for different scenarios on the iCub robot, such as standing up from a sitting posture and the lifting and lowering of a foot while standing. The results show that the proposed approach significantly decreases the changes in joint torques at the instances when contacts are broken or established.

I. INTRODUCTION

Free-floating robots, such as humanoids, are required to make contacts with the environment. For example, when the robot stands on the ground, contacts are intrinsically required for balance (see Figure 1). Contacts are usually treated as constraints in the control problem [START_REF] Abe | Multiobjective control with frictional contacts[END_REF]- [START_REF] Herzog | Balancing experiments on a torque-controlled humanoid with hierarchical inverse dynamics[END_REF] and are expressed in two parts: one is the friction cone constraint [START_REF] Klein | Optimal force distribution for the legs of a walking machine with friction cone constraints[END_REF][START_REF] Muico | Contact-aware nonlinear control of dynamic characters[END_REF]; and the other is the linear complementary condition [START_REF] Pang | Complementarity formulations and existence of solutions of dynamic multi-rigid-body contact problems with coulomb friction[END_REF]. During the walking motion, contacts between the feet and the ground must be established and broken in order to move around in the environment. At the instance when a contact is broken, the contact force decreases to zero. On the contrary, when a contact is established, a contact force may suddenly increase from zero. The sudden addition and removal of contact constraints can result in a discontinuous control signal with potentially dangerous effects: 1) damage to the actuators; 2) bad control performances; and 3) damage to the environment. Despite these consequences, the problem of sudden changes of contacts has not been well considered in the literature.

To prevent large sudden changes in actuation torques, one possible approach is to prevent the large changes of contact forces in the controller. The approach proposed in [START_REF] Salini | Synthesis of complex humanoid whole-body behavior: a focus on sequencing and tasks transitions[END_REF] aims at gradually decreasing the normal contact force to zero before the contact is broken. This is achieved by explicitly regulating the contact force as a desired task of the controller. While this approach provides interesting results, it is strongly related to the method chosen to describe and solve task hierarchies. In that respect, it does not provide a generic way of dealing with torque discontinuities 
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Fig. 1: Humanoid robot maintaining balance through single support contact. related to changes in the contact state. Moreover, these transition tasks are parametrizable but provide a stereotypical reaction, the dynamics of which is pre-planned and that is thus not well suited to deal with very dynamic situations. Similarly to the work in [START_REF] Salini | Synthesis of complex humanoid whole-body behavior: a focus on sequencing and tasks transitions[END_REF], one can take advantage of task and sensor information that is available to the robot. For example, when a humanoid walks towards a target, the desired walking pattern can be computed in advance [START_REF] Vukobratović | Zero-moment pointthirty five years of its life[END_REF][START_REF] Kajita | Biped walking pattern generation by using preview control of zero-moment point[END_REF]. Moreover, sensor data can be used to estimate when the contact may be established. In these scenarios, task and sensor information may allow the robot to act in advance to avoid large sudden changes in control signals. However, instead of using pre-planned strategies to manage contact transitions in a reactive controller, these information can be accounted for in a predictive way thus endowing the controller with both robustness and reactivity.

The goal of paper is to minimise the rate of change in torques during the addition and removal of the contact constraints using Model Predictive Control (MPC). Using a finite receding horizon, the MPC can preview sudden changes in contacts in advance and have time to react to smooth them. In practice, the MPC produces a time-varying maximum and minimum allowable contact force constraint that is added into the QP control scheme. This MPC generated constraint is computed such that its rate of change is minimised. This extra constraint in the QP control scheme reduces abrupt changes of the actual contact forces, resulting in less sudden changes in actuation torques. To demonstrate the effectiveness of the proposed approach, simulations for different scenarios are shown on the iCub humanoid robot. The results show that the proposed approach is able to reduce the sudden changes in torque significantly.

The remainder of the paper is organized as follows. Section II presents the reactive whole-body motion control framework. Section III proposes a smooth contact force generation approach using MPC. Section IV presents and discusses the simulation results. Finally, Section V concludes the paper and presents future research directions.

II. REACTIVE CONTROL FRAMEWORK

The equation of motion of a free-floating system with n degrees of freedom (DoF) of joints and 6 DoF of free-floating base can be derived from the Euler-Lagrange formalism and expressed as:

M (q) νb qj ν +n(q, ν) = Sτ + Jc(q) T F c , (1) 
where q ∈ R n+6 parametrizes the configuration of the freefloating system. q j ∈ R n parametrizes the joint configuration in the joint space. ν ∈ R n+6 represents the system velocities, concatenating the floating-base twist ν b and the joint velocities qj . ν = νb qj T is the system accelerations. The matrix

M (q) ∈ R (n+6)×(n+6)
is the generalized inertia matrix, and n(q, ν) ∈ R n+6 is the vector of Coriolis, centrifugal and gravity terms. The term S is the actuation matrix for the joint torque vector τ ∈ R n [START_REF] Salini | Dynamic control for the task/posture coordination of humanoids: toward synthesis of complex activities[END_REF]. The matrix Jc(q) is the Jacobian matrix at the contact point, and F c is the external contact force. The tangential and normal components of F c are denoted by F t and F n, respectively, with F n = Fnn and n being the normal vector to the contact surface. The action variable is defined as

χ = νT τ T F T c T .

A. Contact Constraints

Contact constraints require two conditions to be satisfied in order to maintain contact between two objects. One is the contact existing constraint, and the other is the friction cone constraint.

1) Contact Existing Constraint:

Assuming that the environment is static and rigid, when a contact is established, the contact existing constraint can be expressed as follows:

ẍc = Jc(q) ν + Jc(q, ν)ν = 0 , (2) 
Fn ≥ 0 .

(3)

2) Friction Cone Constraint: For a non-sliding contact, the contact force for each contact point is constrained within the Coulomb friction cone:

F t ≤ µ F n , (4) 
where µ is the friction coefficient. The friction cone can be approximated by a polygonal cone expressed as a set of linear inequality constraints [START_REF] Kao | Springer Handbook of Robotics[END_REF]:

CF c ≤ 0 . (5) 

B. Allowable Force Limits

Contact forces can be constrained by various contact constraints according to different scenarios. For example, when there is no contact, the contact force must be 0; when a robot stands on one foot, the contact force must be at least the force of gravity; and this contact force is required to be limited in order to avoid damage to the environment, or to be larger than a certain value to be able to manipulate an object. In this case, constraint (3) can be modified by adding a maximum allowable force Fmax ≥ 0 and a minimum allowable force F min ≥ 0:

F min ≤ Fn ≤ Fmax , (6) 
where Fmax and F min are both related to the scenario.

C. Quadratic Program Control Scheme

A Quadratic Program (QP) [START_REF] Salini | Synthesis of complex humanoid whole-body behavior: a focus on sequencing and tasks transitions[END_REF] can be applied to resolve the action variable χ by optimizing a cost function associated with a set of tasks T (χ) while satisfying the whole-body dynamics equation (1) as well as the contact constraints (2), ( 5) and ( 6):

χ * = arg min χ T (χ) 2 Q + χ 2 R s.t M (q) ν + n(q, ν) = Sτ + Jc(q) T F c Jc(q) ν + Jc(q, ν)ν = 0 CF c ≤ 0 F min ≤ Fn ≤ Fmax , (7) 
where Q and R are diagonal weighting matrices that govern the priority between the task and the control effect [START_REF] Salini | Synthesis of complex humanoid whole-body behavior: a focus on sequencing and tasks transitions[END_REF]. The reactive QP control scheme [START_REF] Salini | Synthesis of complex humanoid whole-body behavior: a focus on sequencing and tasks transitions[END_REF] has to instantaneously adapt action variables to variations of Fmax and F min . But such variations of force limits could be abrupt. For example, when a contact is established or broken suddenly, large sudden changes in actuation torques can be generated. Therefore, this control scheme is improved in Section III to minimise the rate of changes in actuation torques. In this paper, Model Predictive Control (MPC) [START_REF] Bellingham | Stable receding horizon trajectory control for complex environments[END_REF][START_REF] Camacho | Model predictive control[END_REF] is used to reduce the large sudden changes of Fmax and F min online with the goal to produce less sudden changes in actuations torques. The proposed MPC scheme is shown in Figure 2. Given the evolution of Fmax for example, its changes can be known in advance and accounted for by the MPC through a preview window of N steps with a sampling time T . The aim of the MPC is to generate smooth maximum allowable force F and smooth minimum allowable force F with less changes. Then, it can replace Fmax and F min in constraint [START_REF] Pang | Complementarity formulations and existence of solutions of dynamic multi-rigid-body contact problems with coulomb friction[END_REF]:

III. MPC CONTACT FORCE CONSTRAINT GENERATION

A. General Concept

F ≤ Fn ≤ F . (8) 
The following part of this section explains the computation of F and F .

B. MPC Smooth Allowable Force Generation

A discrete-time linear model of the force can be expressed as:

F k+1 = F k + Ḟ k T , (9) 
F k+1 = F k + Ḟ k T , (10) 
where F k and F k are the maximum allowable force and the minimum allowable force at time step k, respectively. Ḟ k and

(1) Figure 11 shows the resulting evolutions of the knee joint torque and its derivative for both approaches.

(2) (3) (4) (5) 
Using the baseline approach, Figure 10(a) shows that the normal contact force changes abruptly at t = 2.0s and t = 5.0s when the right foot contact is broken and established, respectively. Once the right foot lifts off the ground, the whole-body weight shifts from the double feet support to one foot support. The sudden decrease of the normal contact force on the right foot directly leads to the increase of the normal contact force on the left foot. These sudden changes of contact forces result in the discontinuities in actuation torques. The hip joint exhibits the largest changes in torques among all of the joints and its torque derivative is up to 920N m/s (shown in Figure 11(a) and(c)).

Using the proposed approach with time horizon N T = 0.5s, the normal contact force of the right foot gradually decreases to zero before the contact is broken and smoothly increases after the contact is added (see Figure 10(b)). As a result, large changes in the contact force are avoided, and as shown in Figures 11(b) and (d), no large changes in hip torques occur. The torque derivative is significantly reduced from 920N m/s using the baseline approach to 85N m/s using the proposed approach.

In Figure 10, it is observed that a spike appears around t = 5.0s. This spike is the impact force due to the collision between two rigid objects. Reducing this impact force peak would require to locally adapt the apparent impedance of the foot making contact [START_REF] Walker | The use of kinematic redundancy in reducing impact and contact effect in manipulation[END_REF][START_REF] Pagilla | A stable transition controller for constrained robots[END_REF]. This problem is not addressed by the proposed approach.

C. Limitations

In order to verify the effectiveness of the proposed approach in a more dynamic situation, the proposed approach is extended to the scenario of walking. In this scenario, the desired walking pattern can be computed by ZMP planning [START_REF] Kajita | Biped walking pattern generation by using preview control of zero-moment point[END_REF]. The robot spends one second to move one step and it has 0.3s for double support. The maximum allowable force is 300N .

Figures 12(a) and (b) show the evolutions of the normal contact force on both feet using the baseline approach and the proposed approach, respectively. Figures 12(c) and (d) show the hip joint torque and its derivative for both approaches, respectively.

Figure 12 shows that the changes of the normal contact forces and joint torques by using the proposed approach (12(b) and (d)) are only slightly reduced compared to those using the baseline approach (12(a) and (c)). This is because in dynamic walking, the whole-body weight shifts quickly between double feet support and one foot support. A large maximum allowable contact force Fmax is required to support the heavy robot with one foot. Moreover, dynamic walking requires fast contact modifications. Each foot has a short time in contact with the ground between lifting and lowering phases. Indeed, the proposed scheme must decrease a large maximum force to zero in a short time, resulting in a large change of the contact force at the moment when the contact is broken. Therefore, the effects of the proposed approach are limited in very dynamic situations requiring a large variation of the force in a short time.

Nevertheless, the proposed approach has three main advantages. First, prediction allows smooth actuation torques to be generated in situations where purely reactive approaches would fail to do so. Although global planning provides such a smoothing feature, prediction over a finite receding horizon can be seen as "short term reactive" and is thus better suited for dynamically changing situations. Second, the concept can be generalized to any constraint, the evolution of which can be known a priori (e.g. obstacle avoidance). Finally, the proposed method acts only on the constraints and can be directly used within any control scheme that handles constraints as inequalities.

(a) Evolution of feet forces using the baseline approach.

(b) Evolution of feet forces using the proposed approach.

(c) Evolution of the hip joint torque (top) and its derivative (bottom) using the baseline approach.

(d) Evolution of the hip joint torque (top) and its derivative (bottom) using the proposed approach. Fig. 12: Evolution of hip joint torque and its torque derivative with the baseline approach (left) and the proposed approach (right).

V. CONCLUSION

In this paper, the proposed MPC approach is used to minimise the rate of change in actuation torques. The contribution here is to endow a reactive control scheme, which handles constraints as inequalities, with the ability to anticipate and adapt more robustly to changes of contacts.

The proposed MPC can preview sudden changes in contacts over a finite receding horizon and generate a smooth contact force constraint, the changes of which are minimised. The reactive QP control scheme uses this MPC generated constraint to reduce the sudden changes of the actual contact forces. As a result, the rate of change in actuation torques is minimised. Simulations involving breaking and establishing contacts show that the proposed approach can successfully minimise instantaneous changes in actuation torques. The results in walking situations also show that the proposed approach has limitations related to the dynamics of the motions to be performed.

Future work will focus on analysing the influence of the length of the preview window and the weight α in the MPC scheme on the performances of the proposed scheme. Implementation on the iCub robot is also envisioned.
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 2 Fig.2: Smoothing the evolution of the maximum allowable force using the MPC at time step k.
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 9 Fig. 9: Snapshots of lifting and putting down the right foot with 5 steps.
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 10 Fig. 10: Evolution of normal contact force on feet with the baseline approach (a) and the proposed approach (b).

  Contact broken Contact established(a) Torque peaks appear when the contact is broken and established.

  Contact broken Contact established (b) The joint torque evolves in a smooth way.-920 920 (c) The torque derivatives reaches a absolute value maximum of 920N m/s when the contact is broken and established.

  The torque derivative is only about 85N m/s and -85N m/s.
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 11 Fig.11: Evolution of hip joint torque and its torque derivative with the baseline approach (left) and the proposed approach (right).
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