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Abstract—

We consider a system modeled as a set of interacting
agents evolving along time according to explicit tim-
ing constraints. In this kind of system, the planning
task consists in selecting and organizing actions in
order to reach a goal state in a limited time and in
an optimal manner, assuming actions have a cost.
We propose to reformulate the planning problem
in terms of model-checking and controller synthesis
on interacting agents such that the state to reach
is expressed using temporal logic. We have chosen
to represent each agent using the formalism of
Priced Timed Game Automata (PTGA). PTGA is
an extension of Timed Automata that allows the
representation of cost on actions and uncontrol-
lable actions. Relying on this domain description,
we define a planning algorithm that computes the
best strategy to achieve the goal. This algorithm is
based on recognized model-checking and synthesis
tools from the UPPAAL suite. The expressivity of
this approach is evaluated on the classical Transport
Domain which is extended in order to include timing
constraints, cost values and uncontrollable actions.
This work has been implemented and performances
evaluated on benchmarks.

INTRODUCTION

Planning in multiagent domains, where multiple intelli-
gent entities (called agents) are interacting under temporal
constraints, is a challenging problem. This is particularly
true if the agents define some cost on their actions, and
have to cooperate in order to achieve a shared-goal. Studies
on temporal multiagent systems declined during these last
years. However, there is still a lack of a simple and expres-
sive formalism to model temporal multiagent systems. In
this paper, we propose an efficient framework to represent
non-deterministic systems, defined as a group of interacting
agents. The first issue is to model, for each agent, its proper
dynamics subject to explicit timing constraints and cost of
actions that can eventually be uncontrollable. The second
issue is to compute the best plan among a set of possible
plans that lead to a specific goal in limited time.

Temporal planning introduced with PDDL 2.1 [1] extends
classical planning schemes with the modeling of durative
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actions and the expression of concurrent plans. More re-
cently, the planner TFPOP [2] is a fully centralized approach
that combines temporal and forward-chaining planning. In
TFPOP minimum and maximum duration are specified on
actions. When the number of agents and interactions grows,
the resulting complexity makes difficult the planning task:
this is known as the state explosion problem. For the
exploration of large state spaces, symbolic model-checking
has been introduced and is now widely applied for the
verification of real-time systems. The connection between
planning and model-checking, first proposed by [3], [4]
is relatively recent and generated numerous papers on a
variety of planning domains. These works have emphasized
that this promising approach can tackle the problem of
generating plans on nondeterministic models for extended
goals. The planner MIPS [5] implements heuristic search
algorithms to solve a large number of problems includ-
ing temporal constraints on actions. More recently works
have proposed temporal models such as timed automata in
timeline-based planning [6], [7], [8], [9]. Combining net-
work of automata [10] or merging finite state machines [11]
are proposed approaches to come up with the scalability of
multiagent planning problems.

Following this idea, we propose to represent the system
as a network of interacting agents, each agent being de-
scribed as an extended timed automaton. To cope with the
complexity of large systems, we reformulate the planning
problem in terms of model-checking and controller syn-
thesis. To model the system we chose the formalism of
Priced Timed Game Automata (PTGA), an extension of
timed automata [12]. PTGA appears to be a simple and
expressive representation of planning multiagent systems
that define: non-determinism, timing constraints and costs
on actions. The interaction between agents can be performed
through synchronized actions. However, existing model-
checking tools rely on simple representation of extended
timed automata: Timed Game Automata (TGA) and Priced
Timed Automata (PTA). The idea is to reformulate the
PTGA description model into TGA and PTA and to combine
them to answer the planning problem. Whereas time and
costs are key issues, the goal is expressed using the temporal
logic TCTL (Timed Computational Tree Logic). Given this



representation framework, we propose a planning algorithm,
relying on the efficient and recognized tools for the model-
checking and the synthesis, to answer a temporal goal. The
following requirement is asked: "What is the best strategy to
guide the system to a specific goal at a specific time?”. In our
case, “best” means that a criterion should be minimized and
this criterion is the strategy cost. We introduce a classical
planning problem, the Transport Domain, distributed to the
interacting agents case and extended to include temporal
constraints, costs on actions and some uncontrollable ac-
tions. The idea here is not to automatically encode any
PDDL domain into PTGA but to illustrate our approach with
a classical well-known planning benchmark to highlight the
benefit of the formalism and to show experimental results.

The paper is structured as follows. Section 2 introduces
the formalism of PTGA. Section 3 presents some of the
background in model-checking and controller synthesis and
gives the definitions of decision rule and strategy. Section 4
describes our planning algorithm based on PTGA. Section 5
presents the Transport Domain and its adaptation to a
multiagent planning problem defined as a PTGA model.
Section 6 reports on experimental results while conclusion
and perspectives are given Section 7.

EXTENDED TIMED AUTOMATA FORMALISM

Timed Automata [13] are automata enriched with
a set of variables called clocks. Let X be a set of
clocks. A (clock) valuation v for a set X assigns a
real value to each clock. The set of clock constraints
over X, denoted ®(X) is defined by the grammar
pu=zs<clc<z|x<c|ec<z]|prAps where
©, p1 and @9 belong to ®(X); © € X is a clock and
¢ € N a constant. Clock constraints are evaluated over
clock valuations. A constraint ¢ can be viewed as the set
of valuations that satisfy it, hence, we say that v satisfies
@, denoted v F ¢, if v € .

In timed automata [13], the vertices of the graph are called
locations, the clock constraint associated to a location is
called an invariant, whereas the one associated to an edge
is called a guard. An edge is decorated with an action
label and allows the resetting of clocks. In a location, a
transition can be triggered if the guard of the outgoing edge
is satisfied. The triggering of a transition is instantaneous and
takes no time. Priced Timed Automata (PTA) [14] extend the
formalism of timed automata by adding cost to the behavior
of timed systems. In PTA, locations and edges are annotated
by cost. The cost label on a location represents the price per
time unit while staying in this location whereas the cost label
on an edge expresses the cost when the transition is trig-
gered. Timed Game Automaton (TGA) [15] is an extension
of timed automata where actions on edges are partitioned
into controllable and uncontrollable actions. A TGA can be
used to model a two-player game between an agent, that

can be called a controller, and the environnement. A TGA
can represent the controllable actions of the controller and
the uncontrollable actions of the environnement. Based on
these principles, Priced Timed Game Automata (PTGA) is
an extension of both PTA and TGA [12].

Definition 1 (Priced Timed Game Automata (PTGA)):
A Priced Timed Game Automaton A is a tuple
<S8,X,Act,E,T,P > where:

e S is a finite set of locations and s, € S is the initial
location.

e X is a finite set of clocks.

o Act = Act_cU Act_u is a finite set of actions divided
into Act_c, the controllable actions (played by the con-
troller), and Act_u, the uncontrollable actions (played
by the environment).

e £ C 8 x Act x ®(X) x2¥ x S is a finite set of
edges. Each edge e is a tuple (s,a,p,d,s’) such that
e connects the location s € S to the location s’ € S
on the action label a € Act. The enabling condition
(called the guard) is captured in ¢ € ®(X). 6§ C X
gives the set of clocks to be reset when the transition
is triggered.

e T :S8 — ®(X) maps each location s with a clock
constraint called an invariant.

e P:SUE — N assigns cost rates and costs to locations
and edges, respectively.

cost=8  cost'=3 .

x>=2:a3:
cost=6

S1 xX>=2 31;

x<3 cost=>5 \x\<y
cost'=2 ’\.__111___«"' cost'=3
cost=10
Figure 1. A PTGA example
Figure 1 shows a PTGA with four locations

S51,52,53,Goal where S1 is the initial location. Solid
arrows represent the transitions labeled with controllable
actions (al, a2, a3) and dashed arrows represent the
transitions labelled with uncontrollable actions (ul, u2).
The PTGA defines one clock z that allows the definitions
of invariants on locations, and guards on edges (in green).
For instance, x < 5 is the invariant of the location S2
and = > 2 is the guard of its outgoing edge towards the
location Goal. Each edge can be associated to a guard, the
name of the action (in red) and the cost cost of triggering
this transition. Another cost, called cost’, associated to
locations, defines the cost per time unit while staying in
this location.



The semantics of a PTGA is defined as a priced transition
system whose states ¢ € Q are the pairs ¢ = (s,v) such
that s € S, is a location, and v € N is a clock valuation
where v satisfies the invariant Z(s) of the location. We write
g . ¢ the transition between two states ¢ and ¢’ labeled
by the action a while c is the cost of this transition.

Definition 2 (Semantics of a PTGA): The semantics of
a PTGA A =< S, X, Act,E,Z,P > over clocks X and
actions Act is given by a priced transition system
T =< Q,qo, Act,—»> where Q = {(s,v) e SxN | v |=
Z(s)} is the set of sets satisfying the invariants, go = (s¢, vo)
is the initial states for vy evaluating to zero for all the clocks
in X, Act is the set of actions, and — consists of discrete
and delay transitions as defined below.

Definition 3 (Discrete transition): A transition
(s,v) %5, (s',0') is a discrete transition iff there is
an edge e = (s,a,¢,d,s’) from the location s € S to the
location s’ € S such that the enabling condition (called the
guard), captured in p € ®(X), is true. § C X gives the set
of clocks to be reset when the transition is triggered and
¢ = P(e) is the cost of the edge.

The cost value does not impact the triggering of the edge.
In a discrete transition, the cost of the transition is the cost
of the triggered edge.

A delay transition is performed during a passage of time
in a same location without any change of location. We call
A the time duration elapsed in the location. The cost of
a delay transition is computed as the product of the time
duration and the cost rate of the active location.

Definition 4 (Delay transition): A  delay
(s,v) = (s,v") is a delay transition iff ¢ = A x P(s) ,
v’ = v+ A and the invariant I(s) is satisfied by the source
state, the target state, and all the intermediary states such
that v + A’ = Z(s) with A’ < A

An execution of a PTGA is a path in the priced transition
system defined by the PTGA as defined previously.

Definition 5 (Run): A run of a PTGA is a sequence

Aq al Ao a2 .
Q0 —Fcy q1 —Fcy G2 —Fcs G3 —>c, Ga--- of alternating
delay and discrete transitions.

If o is a finite run, we denote last(p) the last state
of the run and duration(g) the total elapsed time during
the run. The cost of g, denoted cost(p) is the sum of all
the costs along the execution such that cost(o) = >, ¢;.
The minimum cost of reaching a location s from sq is the
minimum cost of all the finite runs from sq to s

Now consider the PTGA given Figure 1, we propose a
possible (not optimal) run o to reach the location Goal.
For the delay transitions, the duration spent in the location
is shown in brackets.

transition

01 (51,0) 22 (51,2) L (52,2) 22 (55, 4) < (Goal, 4)

The cost of g is cost(p) =2X2+5+2x3+6=21

MODEL-CHECKING, CONTROLLER SYNTHESIS AND
TooLs

When considering finite-states machines the planning
problem consists in finding a run (a sequence of actions)
to reach a goal state. When adding cost and game theory
in the model like in PTGA, the planning problem consists
in finding the best plan, whatever the actions played by the
environment (the uncontrollable actions). To face the large
combinatorial size of the state-space, symbolic efficient
data structures provide a very compact encoding for large
sets of states [16]. When a system is described as a network
of timed automata (extended or not), it can be treated
using two successful techniques: model-checking [17] and
controller synthesis [18], [19].

Timed Computation Tree Logic (TCTL)

Both these techniques require the expression of a property
to be satisfied and expressed in a temporal logic. The most
popular is the Timed Computation Tree Logic (TCTL) [20],
a convenient formalism to specify properties over timed
automata. The grammar of TCTL is the following:

fu=pleel|-p|lpiVp2|30rp|[YOrp|30rp | VO p

where p is a property, x € X is a clock and I is a time
interval. I is an interval with integer bounds of the form
[n,n'] with n,n’ € N. The diamond operator {p expresses
that a path (i.e. a sequence of states) leads to a state
satisfying the property p. The box operator [p means
that all the states along a path satisfy the property p.
These modal operators can be combined with the universal
quantifiers 3 or V over the paths. The formula 3o 3 p
expresses that there is at least one path leading to a state
satisfying p within 3 units of time.

Model-checking

Model-checking is performed using efficient algorithms
called model-checkers dedicated to answer whether or
not a property is satisfied by the system. The property is
expressed using specification languages such as temporal
logics. The problem of model-checking can be expressed
as follows: given a system model M and a property ¢ to
be checked, does the model M satisfy ¢?

Controller synthesis

Controller synthesis is the problem of finding a way
to control the system so that the behavior of the system
satisfies a given property. The objective is then to synthesize
a controller. This controller coupled with the system has to
respect the given specification. On a PTGA, we denote by
Y. the set of possible actions that could be proposed by the
controller so that ¥ = Act_c U X with Act_c the set of



controllable actions and A the action of letting time pass.
A strategy is winning if, when following these rules, the
controller always wins whatever the environment does (by
the way of non-controllable actions).

Control synthesis distinguishes the two kinds of actions:
controllable and uncontrollable actions. Only controllable
actions can be controlled by the controller. The interaction
between the system and the controller can be seen as a two-
players game. On such a game, a strategy is a set of decision
rules that indicates to the controller which action to choose
among the possible several ones.

Definition 6 (Decision Rule): A decision rule gives an
action to be performed on a specific system state at a
particular time. A decision rule is a tuple (s, o, o) such that
s € S is a location of the PTGA, ¢ € ®(X) is a clock
constraint and o € X is a controllable action.

A strategy depicts the behavior of the controller, the se-
quence of actions to be performed, in order to win the game.

Definition 7 (Strategy): In a PTGA called A, a strategy

f from the state (s,v) is a partial function from the set of
runs in A starting from (s,v) into the set of controllable
actions Y. A strategy f is a set of decision rules.
A strategy is winning if, when following the decision rules,
the controller always wins whatever the environnement does
(by the way of non-controllable actions). A strategy f is
state-based whenever Yo o' € all the runs o((s,v),.A),
last(p) = last(o') implies that f(g) = f(¢'). State-based
strategies are also called memory-less strategies in the game
theory [21].

A controller Cy on a PTGA called A is a system so
that coupled with A controls the behavior of A according
to a strategy f. We denote by Cy || A, the PTGA A
controlled by C. Controller synthesis distinguishes two
kinds of control objectives depending on the property ®
to satisfy: reachability and safety that can be expressed as
following:

e Reachability: Given a PTGA A and a property ¢ to
reach, the controller synthesis is to find a strategy f
such that (Cy || A) = V0.

o Safety: Given a PTGA A and a property ¢ to avoid,
the controller synthesis is to find a strategy f such that
(Cr |1 A) = V.

Several strategies can potentially fulfill the property ® to
satisfy. We call C* = {C | (Cf || A) = @} the set of
possible controllers. Two of them are of interest:

o Complete controller: The complete controller Cpqp €
C* corresponds to the complete strategy containing all
the possible decision rules. The controller Cfppae is
related to the complete strategy fimaqe such that VCy €
C*, f C fmaz- In a complete strategy, more than one
action can be potentially eligible for each location. The
controller C'¢y,q, needs to choose one action among all
the possible ones.

e Minimal controller: The minimal controller Clprpip
corresponds a the minimal strategy such that:
-3Cy € C* | f C fmin- A minimal strategy is a
minimal set of decision rules. In that case, there is only
one decision rule for a location. A minimal strategy is
not necessary unique.

The cost of a strategy f from (s, v) is defined by:
cost(f,(s,v)) = sup{cost(o | o € Outcome(f,(s,v))}.
The output of a strategy f, denoted Outcome((s,v), f),
from a state (s,v) is a subset of all the runs starting from
(s,v) and satisfying f (see complete definition in [12]).
Tools

UPPAAL [22] is a collection of tools dedicated to the
analysis of timed automata and its extended formalisms. In
all tools, properties are expressed using the logic TCTL.
UPPAAL TIGA [23] performs controller synthesis on timed
game automata (TGA) with respect to reachability and safety
properties. UPPAAL TIGA can provide a complete controller
or one of the minimal controllers, randomly chosen among
all the possible minimal controllers. When dealing with
priced timed automata (PTA), UPPAAL CORA [24] is a
model-checking tool that can be used to explore all runs
that answer a reachability property in order to retrieve the
optimal controller.

PLANNING WITH PTGA

The planning algorithm proposed in this section is
applied on a multi-agent system represented by a set of
interacting agents, each agent being described by a PTGA.
The planning algorithm is looking for the optimal strategy
associated to the complete controller as defined above.

Model. The model consists of a network of agents, each
agent being described as a PTGA. A model M is a set
of interacting agents A; with ¢ < n and n the number
of agents such that M = {A; :< PTGA; >}. The
interaction between the agents is realized by the PTGA
according to the CCS-style binary synchronization [25]
where exactly two processes synchronize on a matching pair
of actions. We assume that a controllable transition and an
uncontrollable transition never share the same action label.
This synchronization allows interleaving of actions and
hand-shake synchronization (on specified actions through
communication channels).

Our strategy search algorithm uses the efficient UPPAAL
tools that only rely, for computational reasons, on timed
game automata (TGA) and priced timed automata (PTA).
Given this constraint, we make an assumption in the design
of the PTGA: the non-determinism should be only restricted
to controllable actions. Given a PTGA as a model, PTA
and TGA can be easily derived according to the following
definitions.



Definition 8 (PTA derived from a PTGA): A  Priced
Timed Automaton (PTA) is derived from a PTGA if all
the actions a € Act, controllable and uncontrollable are
replaced by actions with any notion of controllability (or
uncontrollability).

We denote by & the operation that add discrete variables
to a classical TGA.

Definition 9 (TGA derived from a PTGA): A Timed
Game Automaton (TGA) is derived from a PTGA by
removing all the cost, both on locations and edges. A
variable called varCost can be added to a derived TGA,
A, such that A @ varCost enables the definition of the
costs on A from the original PTGA.

Planning Algorithm. The Algorithm BestStratSearch com-
putes on a model M the optimal strategy to reach a specific
goal expressed by the system state g. This strategy (called
Strategy in the algorithm) corresponds to the complete
controller. The algorithm relying on the PTGA part of each
agent A; of the model M follows two steps: 1) the search
for the optimal cost and 2) the computation of the strategy
corresponding to this cost. In a first part, the PTGA of each
agent is derived in a PTA and the synchronized product
is computed. The model-checker UPPAAL CORA is called
with the following arguments: the synchronized product of
the model and a TCTL formula meaning “Is there a path
leading to the state ¢?”. If this path exists, the model-
checker returns the optimal cost called OptCost. In a second
step, the algorithm derives the model in a set of TGA
extended with a variable of cost, varCost, and computes the
synchronized product of TGA. UPPAAL TIGA searches for
the strategy corresponding to the previously found optimal
cost. The strategy provided by UPPAAL TIGA as a result
of this algorithm is the complete strategy associated to the
complete controller, a strategy defined as a set of decision

rules: {(s,p,0)}.

CLASSICAL PLANNING PROBLEM: TRANSPORT DOMAIN

This section presents the translation and adaptation of a
classical planning problem: the Transport Domain to a multi-
agent planning problem defined using the PTGA formalism.
After the description of the standard benchmark, we present
the enriched version of the domain in order to incorporate
the features captured by PTGA.

Domain Description

The logistics domain has been a classical planning bench-
mark for several years at the IPC (International Planning
Competition). It models a problem where trucks deliver
packages to different locations. This benchmark has been
transformed to the transport-numeric domain when it be-
came possible to model truck capacities allowing trucks to
load multiple packages. The domain is then defined as a
set of n trucks, p packages and [ locations. The trucks are

Algorithm 1 BestStratSearch

Require:
- M ={A;, =< PTGA; >}, /I* i € [1,n] with n the
number of agents */
- g < state_to_reach

1- Search for the best cost
for all PTGA; do
PTA; < DerivedPTA(PTGA;)
end for
Prodl < SynchroProduct({PTA;})
Queryl «+ 730 g”
OptCost + UppaalCora(Prodl, Queryl)

2- Search for the controller related to the best cost
for all PTGA; do
TGA; < DerivedTGA(PTGA,;) ® varCost
end for
Prod2 < SynchroProduct({TGA,;})
@ < varCost = OptCost
Query2 < 730g A ” /* Is there a run leading to g such
that varCost equals the optimal cost OptCost previously
computed */
Strategy + UppaalTiga(Prod2, Query2)

specified by their capacity of storage, fuel level and current
location. Four actions are possible for a truck: loading
or unloading packages, driving between two locations and
refueling. The packages are characterized by their size and
their current location. A truck can move directly from a
location to another one if a road exists between these two
locations. The classical description of IPC benchmarks is
given using PDDL 2.1 [1]. The temporal aspect of this
domain is expressed by durative actions that describe the
truck behavior.

Transport Domain with PTGA

We translate the Transport Domain into a network of
agents where each truck and package is defined as an agent
formalized using a PTGA. We add a third kind of agent:
the mobile repair truck.

Transport Domain Extension. Compared to the PDDL
approach and in order to illustrate the benefit of the PTGA
formalism, we enriched the transport domain by adding:
explicit timed constraints, cost and uncontrollable actions
on agents. In this way, we add a time limit of delivery to
each package such that an overrun delay is associated to
an extra cost. Cost is updated with the fuel consumption
required between two locations. An uncontrollable action
has been added on the truck agent in order to simulate an
engine breakdown or a run out of gas. We then define a new
agent called Mobile Repair Truck to complete the model.



The planning problem is then defined as the following:
Given an initial state where the trucks and packages are
in their initial locations, what is the strategy to achieve a
goal state where the packages are at their final locations
and the cost of the trucks fuel consumption is optimal?.

PTGA Model. The model M is composed of ¢ truck PTGA,
n package PTGA and one mobile repair truck PTGA.
The synchronization between trucks and packages agents is
performed by the delivery action. The uncontrollable action
breakdown realizes a synchronization between the truck and
the mobile repair truck PTGA.

Expired
Deadline

x >time ,-°
. . "
I|m|t', expiration

5

I

Idle

i ?
cost=2 delivery 7?

delivery ?
—>| x<=time —>( (Delivered
limit
Figure 2. PTGA of a package agent.

o Package agent. The PTGA that defines each pack-
age is presented Figure 2. The synchronized actions
between the various agents of the model is expressed
using the UPPAAL formalism: a? for a received action
and a/ for an emitted action. The package agent is
composed of three locations: Idle, Delivered and
FExpiredDeadline. From the initial location Idle, the
system can move to the Delivered location, if a truck
has performed the delivery! action. However each
package is associated to a time limit to express the
maximum expected time of delivery. The time limit is
expressed using a global variable using the UPPAAL
formalism. Once in the ExpiredDeadline location, the
cost increases of two units per time unit until the system
receives the delivery? action from one of the trucks.

== Goal[package]

breakdown !, .- 4
. delivery !

repair ?

fuelLeft > fuelNeeded, @ y==d

y:=0 drive y<=d

load

Cost+=fuelNeeded iy 11, filling

Figure 3. PTGA of a truck agent.

o Truck agent. The truck agent is defined by a PTGA
shown Figure 3. The state space of the automaton

is a map of all the reachable locations of the truck.
The variable d expresses the travel duration which
depends on the distance between a location Loc_i and
a destination location Loc_j. Once a package is loaded
by the truck (load action), the agent moves to the
location T'ransit if it has enough fuel left to get to
the destination Loc_j. The clock y is set to zero when
entering to Transtt. When the local clock y is equal
to the travel duration d, the truck moves to the location
Loc_j. The cost is incremented by a value related to
the fuel consumption needed to join the two locations.
When the truck reaches the destination location, the
synchronized action delivery! is emitted (and received
by the corresponding package agent). In any location
Loc_1 of the domain, a breakdown or a run out of
gas can occur on the truck and the agent moves to
the state Fatlure with a emitted uncontrollable action
breakdown!.

« Mobile Repair Truck agent. The PTGA of the mobile
repair truck models the repair and refuel actions of the
deficient trucks after the emission of the uncontrollable
action breakdown. When the repair is performed on
the truck, a synchronized action repair! is emitted and
the truck can go back to the normal state Loc_i.

The predicates and functions defined in PDDL 2.1 can be
expressed using the global or local variables proposed by
the UPPAAL tools to complete the theoretical formalism of
PTGA. For instance, the fuel quantity between two locations
is defined by an array fuelNeeded[l][l] with [ the number
of locations. The distance between two goals is saved in
a variable used to compute the duration d between two
locations and exploited in the truck PTGA. The required
goals (final locations of the packages) are expressed using
a global array variable Goalli].

Planning Goal

Our planning algorithm expresses the goal using a TCTL
formula. Given n, the number of packages, we denote
each package agent Package(i) with ¢ < n. The loca-
tion Delivered of a package agent Package(i) is then
expressed by: Package(i).Delivered. For the first part of
the algorithm, Search of the best cost, the TCTL query is
the following:

Queryl = 30 Package(1).Delivered == Goal[1]

.-+ A Package(n).Delivered == Goal[n]

Given the optimal cost optCost, the second part of the
algorithm, Search for controller, is computed using the
TCTL formula:

Query2 = Queryl A cost == optCost.

A global clock can been added to express a time limit for the
delivery of all the packages. In that case, for a global clock
timer and a time limit £, it is possible to add A timer ==t
on Queryl (and Query2) to check whether or not the
packages are delivered in time.



EXPERIMENTAL RESULTS

We applied the planning algorithm BestStratSearch on
a series of experiments. The various configurations follow
the IPC benchmarks and depend on:

o the size of the states space: the number of trucks, the
number of packages and the number of locations;
« the goal: the final package locations.

Setup. The experiments were executed on a Linux 64bit,
Intel Xeon at 3.20GHz with 5.8GB RAM. The current
UPPAAL TIGA version used 8GB. A JAVA program builds
automatically the PTGA model presented in the section
from the PDDL of the IPC Benchmark.

Results. Table I presents the time response of the planning
algorithm based on PTGA. For each experiment we give
the number of locations, the number of packages and the
number of trucks. The size of the global PTGA (number of
locations) is presented and the last two columns give the
time response for the two parts of the algorithm: the cost
search using the model-checking tool UPPAAL CORA and
the complete strategy computation using UPPAAL TIGA.

nb nb nb PTGA Time Time
loc. | pack. | truks size Part 1 Part 2
(nb loc) | (Cora) (Tiga)
5 2 1 400 3s 1m47s
5 2 2 10000 2mb6s 5m38s
10 2 2 73984 5,25s 2m25s
10 3 1 4352 0,94s 4m51s
10 3 2 295936 Imls out of mem
10 4 2 1183744 | 2m33s | out of mem
Table T

RESULTS FOR THE TRANSPORT DOMAIN USING PTGA

The non linearity of the performance results can be
explained by the differences in input of the IPC benchmarks.
They differ in the mapping of the locations (the road
existence) and in the definition of initial and goal package
locations. The current version of UPPAAL TIGA uses very
limited memory size that explains the memory explosion
when the space state size is large.

Differences in goals of multiagent synthesis tools make
the direct comparison between studies difficult. However,
we compared our approach with MCMAS-SLK, the model-
checker dedicated to the synthesis of strategies for multia-
gent systems. MCMAS-SLK does not manage explicit time
and cost as PTGA. To compare the more similar models as
possible, we add local variables defining time and cost on
the MCMAS-SLK agents definition. Experimentations show
that we retrieve the strategy in similar time computation
for the first configuration presented Table 1: 2.9s for the
search of the cost and 64s for the search of the strategy.
However, for the other configurations MCMAS-SLK reaches
the memory explosion and no strategy can be provided for

a domain having more than five locations, two trucks and
two packages. Compared to our approach, MCMAS-SLK
provides as a result, one strategy for each agent while the
synthesis obtained by our method is a global controller.

CONCLUSION

When considering the planning problem of the growing
size and complexity systems, recent studies demonstrated
the advantages of using model-checking techniques. A brief
survey of work combining model-checking and planning can
be found in [26]. In most of these pioneered approaches,
temporal properties and temporally flexible plans have not
been addressed. More recently studies have proposed tem-
poral models such as timed automata in timeline-based
planning [6], [8], [9]. These approaches comes closest
to our method since they propose modeling the system
as TGA and exploiting the efficiency of an existing tool
for model-checking and synthesizing (UPPAAL). However,
when considering strategies, the stakeholders are interested
in getting the best plan assuming that a cost is associated
to each controllable action of the system. Compared to this
previous work we propose to use an expressive formalism
such as PTGA that allows both the representation of cost
and controllable/uncontrollable actions over a simple timed
automata. In the multi-agent systems community, the ver-
ification of systems against ATL specifications has been
widely and theoretically explored. Practical model-checkers,
the more popular being IMOCHA [27] and MCMAS [28],
have to face the state-space explosion problem. Other work
discussed applying epistemic goals [29] to planning but, to
our knowledge, they have not yet been applied to any real
world planning applications.

In this paper we propose to express interacting agents
in the convenient formalism of PTGA which gathers ex-
plicit timing constraints and cost on actions. PTGA allows
to model systems having non-determinism on controllable
actions and offers a manageable description to define the
interactions between the agents. If the main benefit of this
formalization is its expressiveness, these models are not
easy to tackle for realistic planning problems. Our method
proposes using recognized and efficient model-checking
tools to produce the optimal strategy. We propose a planning
algorithm that explains how to derive the unified scheme
of PTGA into PTA and TGA and use the recognized tools
of the UPPAAL suite. The multiagent temporal planning
problem is then solved by a combination of model-checker
and controller synthesis. To our knowledge, this is the first
approach relying on PTGA, model-checking and controller
synthesis, for solving temporal multiagent planning.

We translated the Transport Domain traditionally modeled
using PDD2L.1 into the PTGA formalism. We extended
the classical example, to become more realistic, by adding
timing constraints on delivery and costs to label the potential
source of delays. PTGA offer an easy scheme to formalize



the domain and to define a planning algorithm. We would
have expected better results when dealing with extended
state spaces. However, we can handle larger configurations
than MCMAS-SLK. To improve the algorithm’s perfor-
mance, an idea would be to consider the reduction of the
memory used by the planning algorithm. A first direction
would be to compute, as realized in MIPS[5], the global
product using a heuristic approach in order to reduce the
blow-up of locations.
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