
HAL Id: hal-01398660
https://hal.science/hal-01398660v1

Submitted on 17 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Searching for Cost-Optimized Strategies: An
Agricultural Application

Christine Largouët, Yulong Zhao, Marie-Odile Cordier

To cite this version:
Christine Largouët, Yulong Zhao, Marie-Odile Cordier. Searching for Cost-Optimized Strategies: An
Agricultural Application. 2nd International Conference, ICDSST 2016, May 2016, Plymouth, United
Kingdom. pp.31 - 43, �10.1007/978-3-319-32877-5_3�. �hal-01398660�

https://hal.science/hal-01398660v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Searching for Cost-Optimized Strategies:
An Agricultural Application

Christine Largouet1 and Yulong Zhao2 and Marie-Odile Cordier2

1 AGROCAMPUS / IRISA, F-35042 Rennes Cedex, FRANCE,
christine.largouet@irisa.fr,

2 Université de Rennes 1/ IRISA, F-35000 Rennes Cedex, France

Abstract. We consider a system modeled as a set of interacting compo-
nents evolving along time according to explicit timing constraints. The
decision making problem consists in selecting and organizing actions in
order to reach a goal state in a limited time and in an optimal manner,
assuming actions have a cost. We propose to reformulate the planning
problem in terms of model-checking and controller synthesis such that
the state to reach is expressed using a temporal logic. We have chosen
to represent each agent using the formalism of Priced Timed Game Au-
tomata (PTGA) and a set of knowledge. PTGA is an extension of Timed
Automata that allows the representation of cost on actions and the def-
inition of a goal (to reach or to avoid). This paper describes two algo-
rithms designed to answer the planning problem on a network of agents
and proposes practical implementation using model-checking tools that
shows promising results on an agricultural application: a grassland based
dairy production system.

Key words: Decision Support System, Temporal Planning, Optimized
Planning, Timed Automata, Model-checking

1 Introduction

When managing agro-ecosystems, one of the major decision-aid problems is to
find the best management strategy to ensure the health, resilience and diversity
of the ecosystem. In this paper we address the problem of finding a strategy
for a class of systems that encompasses the characteristics of agro-ecosystems.
We investigate the category of non-deterministic systems, defined as a group
of interacting agents, each one having its proper dynamics submitted to explicit
timing constraints. To improve agro-ecosystem management the model has to in-
clude the interactions between environmental, human and ecological subsystems.
Time is another fundamental characteristic to express the dynamical features of
these systems which are traditionally modeled as differential equations in quan-
titative approaches. Additionally to interaction and time, we are interested in
two novel issues: the representation of unexpected events such as climatic events
(hurricane, flooding, heat wave, etc.) and the expression of cost on actions to
handle the environmental impact produced by human activities. Searching for a

2 Christine Largouet et al.

strategy in these systems consists of choosing and organizing the actions through
time in order to achieve an optimal goal, assuming that the actions of the agents
have a cost.

To cope with the complexity of systems such as large ecosystems, we propose
to use symbolic methods applied with success in model-checking. The paradigm
of planning with model-checking first proposed by [1, 2] is relatively recent and
generated numerous papers on a variety of planning domains. These works have
emphasized that this promising approach can tackle the problem of generat-
ing plans on nondeterministic models for extended goals. Some other work on
timeline-based planning has introduced explicit time on models for space ap-
plications [3, 4]. At the same time, in the multi-agent systems community,
Alternating-Time Temporal Logic (ATL) has been used for reasoning about
agents and their strategies [5] and has been made available in model-checkers
such as mcmas [6]. Recent work has focused on the verification against epis-
temic logic, or logic for knowledge [7, 8] but one of the key issues remains the
state-space explosion problem.

In this paper, we propose to reformulate the planning problems in terms of
model-checking and controller synthesis associated to a temporal logic to express
the goal to reach or to avoid. Model-checking and controller synthesis have been
widely studied for discrete event systems and more particularly for timed au-
tomata [9]. In our approach we propose to represent the system as a network of
interacting agents, each agent being described as an extended timed automaton
and a set of knowledge. The formalism we chose is Priced Timed Game Au-
tomata (PTGA), an extension of timed automata that allows to express timing
constraints on states and transitions, costs on actions and the definition of goals
[10]. This representation is relevant for multi-agent systems since the interaction
can be performed through communicating and synchronizing actions.

On a network of PTGA, we propose an approach to formulate the plan-
ning strategies but also to compute the cost of each strategy. The requirement
expressed in a temporal logic asks the following question: ”What is the best
strategy to guide the system to a specific goal at a specific time?”. In our case,
”best” means that a criterion should be minimized and this criterion is the strat-
egy cost. We propose two strategy search algorithms relying on efficient and
recognized tools for the model-checking and the synthesis. The first algorithm
focuses on searching for the best strategy on a multi-agent system, whereas the
second combines controller synthesis and machine learning in order to generate
a meta-strategy for a class of similar multi-agent systems.

This approach is applied on grassland management where reasonable prac-
tices in farming systems are essential for sustainable agriculture. Land use
changes associated with intensive practices such as abusive use of fertilizer or
increased number of cutting and grazing activities could have severe impacts
on environmental systems. Most of the models, which are designed for agro-
ecosystem management, focus on the grassland simulation but can not calculate
explicit grassland management strategies. We propose a tool named PaturMata

Searching for Cost-Optimized Strategies 3

implementing our method and dedicated to the exploration of the cost-optimal
grassland management strategies in a dairy production system.

The paper is structured as follows. Section 2 introduces the formalism of
PTGA. Section 3 presents some of the background in model-checking and con-
troller synthesis. Section 4 describes the network of agents and describes the two
algorithms that lead to the strategies. Section 5 briefly describes the applica-
tion of this approach on ecological systems: grass-based dairy farming. Section 6
concludes and outlines directions for future research.

2 Priced Timed Game Automata (PTGA)

Clock constraints. Timed Automata [9] are automata enriched with a set of
variables called clocks. Let X be a set of clocks. A (clock) valuation v for a set X
assigns a real value to each clock. The set of clock constraints over X , denoted
Φ(X) is defined by the grammar : ϕ ::= x ≤ c | c ≤ x | x < c | c < x | ϕ1 ∧ ϕ2

where ϕ, ϕ1 and ϕ2 belong to Φ(X); x ∈ X is a clock and c ∈ R+ a constant.
Clock constraints are evaluated over clock valuations. A constraint ϕ can be
viewed as the set of valuations that satisfy it, hence, we say that v satisfies ϕ,
denoted v � ϕ, if v ∈ ϕ.

Timed automata and extended formalisms. In timed automata [9], the
vertices of the graph are called locations, the clock constraint associated to a
location is called an invariant, whereas the one associated to an edge is called
a guard. An edge is decorated with an event label and allows the resetting of
clocks. In a location, a transition can be triggered if the guard of the outgoing
edge is satisfied. The triggering of a transition is instantaneous and takes no time.
Priced Timed Automata (PTA) [11] extend the formalism of timed automata by
adding cost to the behavior of timed systems. In PTA, locations and edges are
annotated by cost. The cost label on a location represents the price per time
unit while staying in this location whereas the cost label on an edge expresses
the cost when the transition is triggered. Timed Game Automaton (TGA) [12]
is an extension of timed automata where actions on edges are partitioned into
controllable and uncontrollable actions. Based on these principles, Priced Timed
Game Automata (PTGA) is an extension of both PTA and TGA [10].

2.1 PTGA Definition.

A Priced Timed Game Automaton A is a tuple
< S,X ,Act, E , I,P > where:

– S is a finite set of locations and so ∈ S is the initial location.
– X is a finite set of clocks.
– Act = Act c ∪Act u is a finite set of actions divided into Act c, the control-

lable actions (played by the controller), and Act u, the uncontrollable actions
(played by the environment).

4 Christine Largouet et al.

– E ⊆ S × Act × Φ(X) ×2X × S is a finite set of edges. Each edge e is a tuple
(s, l, ϕ, δ, s′) such that e connects the location s ∈ S to the location s′ ∈ S on
the event label l ∈ Act. The enabling condition (called the guard) is captured
in ϕ ∈ Φ(X). δ ⊆ X gives the set of clocks to be reset when the transition is
triggered.

– I : S → Φ(X) maps each location s with a clock constraint called an invariant.
– P : S∪E → N assigns cost rates and costs to locations and edges, respectively.

Figure 1 presents a PTGA having one clock x that is used to define invariants
and guards, colored in green in the figure. The goal to reach is the state s4.
Cost-rates, cost′, expresses the cost per time unit while staying in the referred
location whereas the cost of triggering a transition is defined by cost. Two edges
are associated to uncontrollable actions: a3 and a5 (the edges are shown with a
dotted line).

S0
X<=2

S1
x<=5

S2
x<=3

S3

S4
goal

S5

cost+=5

a1

cost+=10a2

cost+=10

x==3 a3

cost+=8x>=4 a4

cost+=20

x>=1 a5

cost+=10
x>=2 a6

cost'=5

cost'=4

cost'=2

c
o
s
t+

=
4

x
>

=
4

 a
7

x<=3

cost'=1

Fig. 1. A PTGA having one clock x, two uncontrollable actions (a3, a5), costs on
locations and edges and a goal s4.

The semantics of a PTGA is a priced transition system whose states q ∈ Q
are the pairs q = (s, v) such that s ∈ S, is a location, and v ∈ Q is a clock

valuation where v satisfies the invariant I(s) of the location. We write q
l−→c q

′

the transition between two states q and q′ labeled by the action l while c is the
cost of this transition.

From a current state, a PTGA can evolve into a destination location through
one of the outgoing edges or remains in its current location while time passes.
Consequently, two kinds of transitions are distinguished: discrete and delay tran-
sitions. A discrete transition is enabled if the timing information of the edge is
satisfied (the guard). The cost value does not impact the triggering of the edge.
In a discrete transition, the cost of the transition is the cost of the triggered
edge. A delay transition can be performed if the invariant of the active transi-

Searching for Cost-Optimized Strategies 5

tion is satisfied. The cost of a delay transition is computed as the product of the
duration and the cost rate of the current location.

A finite run % of a PTGA called A is a finite sequence of transitions, starting
from the initial state: q0 →1 q1 →2 q2 →3 · · · →n qn. The cost of %, denoted
cost(%) is the sum of all the costs along the run.

cost(%) =
∑

1≤i≤n

{
δ .P(s) if→i is a delay transition
P(e) if→i is a discrete transition

The minimum cost of reaching a location s is the minimum cost of all the
finite runs from s0 to s

Let us consider the PTGA A given Figure 1, a possible run in A is:

% : (s0, 0)
δ(2)−→ (s0, 2)

a1−→ (s1, 2)
δ(1)−→ (s1, 3)

a4−→ (s4, 3)

The cost of % is cost(%) = 5× 2 + 5 + 8× 1 + 15 = 38

2.2 Best-Cost Strategy Problem for PTGA

Given a PTGA and a goal state, the best-cost strategy problem is to find a
run, with the optimal cost, starting from the inital state and leading to the
goal state. For the example of Figure 1, a key issue is for instance: ”Does the
controller activate the action a1 or a2 from the initial state S0 to reach in an
optimal way the goal S4?”. If the preferred run takes the edge labelled with a2,
another question could be: ”Is it possible to win whatever the behavior of the
environment?”.

3 Model-checking and Controller Synthesis

To face the large combinatorial size of the state-space, symbolic efficient data
structures provide a very compact encoding for large sets of states [13]. When
a system is described as a network of timed automata (extended or not), it can
be treated using two successful techniques: model-checking [14] and controller
synthesis [15]. These both techniques require the expression of a property to be
satisfied and expressed in a temporal logic. The most popular is TCTL [16], a
convenient formalism to specify properties over timed automata.

3.1 Timed Computation Tree Logic (TCTL)

The grammar of TCTL is the following:

f ::= p | x ∈ I | ¬p | p1 ∨ p2 | ∃♦I p | ∀♦I p | ∃�I p | ∀�I p

where p is a property, x ∈ X is a clock and I is a time interval. I is an interval
with integer bounds of the form [n, n′] with n, n′ ∈ N. The diamond operator

6 Christine Largouet et al.

♦p expresses that a path (i.e. a sequence of states) leads to a state satisfying
the property p. The box operator �p means that all the states along a path
satisfy the property p. These modal operators can be combined with the universal
quantifiers ∃ or ∀ over the paths. The formula ∃♦[0,3] p expresses that there is at
least one path leading to a state satisfying p within 3 units of time.

3.2 Model-Checking

Model-checking is performed using efficient tools called model-checkers dedicated
to answer whether or not a property is satisfied by the system. The property
is expressed using specification languages such as temporal logics. The problem
of model-checking can be expressed as follows: given a system model M and a
property ϕ to be checked, does the model M satisfy ϕ?

3.3 Controller Synthesis

Controller synthesis is the problem of finding a way to control the system so
that the behavior of the system satisfies a given property. The objective is then
to synthesize a controller. This controller coupled with the system has to respect
the given specification. On a PTGA, we denote by Σ the set of possible actions
that could be proposed by the controller so that Σ = Act c ∪ λ with Act c the
set of controllable actions and λ the action of letting time pass. A strategy is
winning if, when following these rules, the controller always wins whatever the
environment does (by the way of non-controllable actions).

Definition 1 (Decision Rule). A decision rule gives an action to be performed
on a specific system state at a particular time. A decision rule is a tuple (s, ϕ, σ)
such that s ∈ S is a location of the PTGA, ϕ ∈ Φ(X) is a clock constraint and
σ ∈ Σ is a controllable action.

A controller Cf on a PTGA called A is a system so that coupled with A
controls the behavior of A according to a strategy f . We denote by Cf || A,
the PTGA A controlled by Cf . Controller synthesis distinguishes two kinds of
control objectives depending on the property Φ to satisfy: reachability and safety
that can be expressed as following:

– Reachability: Given a PTGA A and a property ϕ to reach, the controller
synthesis is to find a strategy f such that (Cf || A) |= ∀♦ϕ.

– Safety: Given a PTGA A and a property ϕ to avoid, the controller synthesis
is to find a strategy f such that (Cf || A) |= ∀�¬ϕ.

Several strategies can potentially fulfill the property Φ to satisfy. We call C∗ =
{Cf | (Cf || A) |= Φ} the set of possible controllers. Two of them are of interest:

– Complete controller: The complete controller Cfmax ∈ C∗ corresponds to
the complete strategy containing all the possible decision rules. The controller
Cfmax is related to the complete strategy fmax such that ∀Cf ∈ C∗, f ⊆ fmax.

Searching for Cost-Optimized Strategies 7

In a complete strategy, more than one action can be potentially eligible for
each location. The controller Cfmax needs to choose one action among all the
possible ones.

– Minimal controller: The minimal controller Cfmin corresponds to the minimal
strategy such that: ¬∃Cf ∈ C∗ | f ⊂ fmin. A minimal strategy is a minimal
set of decision rules. In that case, there is only one decision rule for a location.
A minimal strategy is not necessary unique.

The cost of a strategy f from (s, v) is defined by:
cost(f, (s, v)) = sup {cost(% | % ∈ Outcome(f, (s, v))}. The output of a strategy
f , denoted Outcome((s, v), f), from a state (s, v) is a subset of all the runs
starting from (s, v) and satisfying f (see complete definition in [10]).

3.4 Tools

Uppaal [17] is a collection of tools dedicated to the analysis of timed automata
and its extended formalisms. In all tools, properties are expressed using the
logic TCTL. Uppaal Tiga [18] performs controller synthesis on timed game
automata (TGA) with respect to reachability and safety properties. Uppaal
Tiga can provide a complete controller or one of the minimal controllers, ran-
domly chosen among all the possible minimal controllers. When dealing with
priced timed automata (PTA), Uppaal Cora [19] is a model-checking tool
that can be used to explore all runs that answer a reachability property in order
to retrieve the optimal controller.

4 Strategy Search Methods

We propose two methods to compute the planning strategies. The first one called
Best Strategy Search is looking for the optimal strategy on a model, whereas the
second, Meta-Strategy Search, provides a meta-strategy for a class of models.

4.1 Network of Agents

The strategy search methods are applied on multi-agent systems represented by
a set of interacting agents, each agent being described by a PTGA and comple-
mentary knowledge.

Knowledge Descriptors: Agents are enriched with a set of variables called
knowledge descriptors. The knowledge descriptors define global information on
the agent and its behavior. Let KD be a set of knowledge descriptors. Each
agent Ai defines a valuation over KDi ⊆ KD by assigning an integer value to
each knowledge descriptor.

8 Christine Largouet et al.

Model: A model consists of a network of n interacting agents Ai. Each agent
is composed of two parts: a PTGA, PTGAi and a set of knowledge descriptors
KDi. A model M is defined as follows: M = {Ai :< PTGAi,KDi >} such
that:

– PTGAi is a PTGA defining one agent Ai.
– KDi define the set of valuations for each knowledge descriptor such that
KDi ⊆ KD.

The interaction between the agents is realized by the PTGA according to the CSS
parallel composition operator [20] that allows interleaving of actions and hand-
shake synchronization (on specified actions through communication channels).

4.2 Best Strategy Search Algorithm

Our strategy search algorithm uses the efficient Uppaal tools that only rely,
for computational reasons, on timed game automata (TGA) and priced timed
automata (PTA). Given this constraint, we make an assumption in the design
of the PTGA: the non-determinism should be only restricted to controllable ac-
tions. Given a PTGA as a model, PTA and TGA can be easily derived according
to the following definitions.

Definition 2 (PTA derived from a PTGA). A Priced Timed Automaton
(PTA) is derived from a PTGA if all the actions, controllable and uncontrollable,
that are labelling the edges are replaced by classical event labels e ∈ Act, with
Act now defined as a set of classical event labels. Events usually label the edges
of a timed automaton when any notion of controllability (or uncontrollability) is
required.

Definition 3 (TGA derived from a PTGA). A Timed Game Automaton
(TGA) is derived from a PTGA by removing all the cost, both on locations and
edges.
Nota: We denote by ⊕ the operation that add discrete variables, as authorized
in Uppaal, to a classical TGA. A variable called varCost can be added to a
derived TGA, A, such that A⊕ varCost enables the definition of the costs on A
from the original PTGA.

The Algorithm 1 BestStratSearch computes on a modelM the optimal strat-
egy to reach a specific goal expressed by the system state g. This strategy (called
Strategy in the algorithm) corresponds to the complete controller. The algorithm
is only based on the PTGA part of each agent Ai of the modelM. The principle
of the Algorithm 1 follows two steps: 1) the search for the optimal cost and
2) the computation of the strategy corresponding to this cost. In a first part,
the PTGA of each agent is derived in a PTA and the synchronized product is
computed. The model-checker Uppaal Cora is called with in input, the syn-
chronized product of the model and a TCTL formula meaning ”Is there is path
leading to the state g?”. If this path exists, the model-checker returns the optimal

Searching for Cost-Optimized Strategies 9

Algorithm 1 BestStratSearch

Require:
- M = {Ai =< PTGAi,KDi >}, /* i ∈ [1, n] with n the number of agents */
- g ← state to reach

1- Search for the best cost
for all PTGAi do

PTAi ← DerivedPTA(PTGAi)
end for
Prod1← SynchroProduct({PTAi})
Query1← ”∃♦ g”
OptCost← UppaalCora(Prod1, Query1)

2- Search for the controller related to the best cost
for all PTGAi do

TGAi ← DerivedTGA(PTGAi)⊕ varCost
end for
Prod2← SynchroProduct({TGAi})
ϕ← varCost = OptCost
Query2 ← ”∃♦g ∧ ϕ” /* Is there a run leading to g such that varCost equals the
optimal cost OptCost previously computed */
Strategy ← UppaalT iga(Prod2, Query2)

cost called OptCost. In a second step, the algorithm derives the model in a set
of TGA extended with a variable of cost, varCost, and computes the synchro-
nized product of TGA. Uppaal Tiga searches for the strategy corresponding
to the previously found optimal cost. The strategy provided by Uppaal Tiga
as a result of this algorithm is the complete strategy associated to the complete
controller, a strategy defined as a set of decision rules: {(s, ϕ, σ)}.

4.3 Meta-Strategy Search Algorithm

Similar Models: Two models M1 and M2 are similar if they only differ by
the values of their knowledge descriptors KDi of each agent Ai of the model.
It means that M1 and M2 are composed of the same PTGAi and their KDi

define the same variables, only their values differ.

The previous method provides the best and complete strategy for one model
M. However, the stakeholder is sometimes more interested by having general
rules that work on similar models. This is the case in agro-ecosystem manage-
ment where systems can not be defined very precisely because parameters are
unknown or data unavailable. In such situations, working on a class of similar
models is less restrictive and allows the computation of more general decision
rules. These generalized rules can be viewed as meta-strategies and are extracted
from a set of similar models. However, the generalization of the rules may lead
to a minor loss of the optimality. It means that the application of the general-

10 Christine Largouet et al.

ized rules do not always give the optimal cost. For agro-ecosystem management,
stakeholders are interested by more interpretable rules than too specific ones
that are difficult to apply.

Given a goal to achieve, Algorithm 2, MetaStratSearch, explains how to com-
pute the meta-strategy on a set of similar models Mj with j ≤ m and m the
number of models. Each model is composed of a set of interacting agents Ai
with i ≤ n and n the number of agents. We propose to compute the optimal
strategy for each model Mj using the previous algorithm BestStratSearch for
the goal to reach g. Each optimal strategy Stratj provided by this algorithm
is associated to the global set of knowledge descriptor values MKDj such that
MKDj = ∪i∈[1,n]KDi with n the number of agents of each model Mj . Each
couple (Stratj ,MKDj) is added in a strategy base called StrategyBase. Hence,
this base of strategies is exploited by a machine learning algorithm to provide
the meta-strategy. We chose to apply a classical rule learner algorithm, Rip-
per (Repeated Incremental Pruning to Produce Error Reduction), designed to
generate rule sets for datasets with many features [21].

Algorithm 2 MetaStratSearch

Require:
- {Mj} /* Similar models */
- g ← state to reach
for allMj do

Stratj ← BestStratSearch(Mj , g)
MKDj ← ∪i∈[1,n]KDi, /* n the number of agents of Mj */

StrategyBase
+←− (Stratj ,MKDj)

end for
MetaStrategy ← Learner(StrategyBase)

The meta-strategy provided by this algorithm is expressed as a set of generic
rules, valid for the models.

5 Agricultural Application

We applied our approach on a grassland based dairy production system using
a prototype software named PaturMata. PaturMata comes from the combina-
tion of the two words paturage (which is a french word meaning pasture) and
automata. In this context the main issues are to maintain the dairy production
at a desired level while limiting the nitrogen fertilization used to increase the
grass growth which is known for its environmental damages. PaturMata1 is a
decision support system that models the grass growth under different climate
condition, grass consumption by the herd and some agricultural activities like

1 PaturMata can be freely downloaded from the website:
http://people.irisa.fr/Christine.Largouet/paturmata.html

Searching for Cost-Optimized Strategies 11

grass cutting and soil fertilization. The model in PaturMata is composed by sev-
eral agents which are organized in a hierarchy according to their functions (cf.
Figure 5):

– Grassland layer: This is the biological model which simulates the grass growth
and consumption in each paddock.

– Execution layer: This is the activity model which represents all the agricultural
activities including herds’ movement, grass cutting and soil fertilization. Each
activity is defined by a PTGA. A grazing PTGA represents one herd and
simulate its movement from one paddock to another. A grass cutting PTGA
and a fertilization PTGA simulate the cutting and the fertilization activity on
one specific paddock.

– Controller layer: The different models of this layer simulate the strategies
management. One PTGA of the controller layer is associated to a PTGA of
the execution layer. To model human decisions, these automata are activated
once a day.

– Time layer: One PTGA is in charge of the scheduling.

Fig. 2. PaturMata architecture in 4 layers composed of PTGA

We carried out one experiment on 100 similar paddock configurations. 50
of them are used to generate fertilization strategy and the other 50 are used
to test the strategy. The knowledge descriptor associated to each configuration
are: surface of paddocks, distance between paddock and the milking building.
We present here some of the decision rules obtained from the MetaStratSearch
algorithm.

– Fertilize a paddock

12 Christine Largouet et al.

– if the date is between the 15th Mars and the 1st April, and
– the distance between the paddock and the milking building is between 400

and 800 meters, and
– the surface of the paddock is larger than 2.5 ha.

– Fertilize a paddock
– if the date is between the 15th Mars and the 1st April, and
– the surface of the paddock is between 2.0 and 2.2 ha.

– Fertilize a paddock
– if the date is between the 15th Mars and the 1st April, and
– the surface of the paddock is between 1.5 and 1.8 ha, and
– the distance between the paddock and the milking building is less than 400

meters.

To test the performance, we applied the obtained strategy on the 50 paddock
configurations of the test set and noted the cost at the end of simulation. We then
launch BestStratSearch algorithm on each configuration in order to calculate
the optimal cost. A simple comparison showed that the cost obtained by applying
the meta-strategy on the model doesn’t exceed 20% of the optimal cost on 39
configurations out of 50.

6 Concluding Remarks

In this paper we propose to express interacting agents in the convenient for-
malism of PTGA which gathers explicit timing constraints and cost on actions.
PTGA allows to model systems having non-determinism on controllable actions
and offers a manageable description to define the interactions between the agents.
If the main benefit of this formalization is its expressiveness, these models are not
easy to tackle for realistic planning problems. Our method proposes using recog-
nized and efficient model-checking tools to produce the optimal strategy. How-
ever, the strategy provided by the analysis of one particular multi-agent system
is sometimes too specific when regarding the agro-ecosystem management prob-
lem. Consequently, we propose a second algorithm to generate a meta-strategy
from a class of models. This meta-strategy is more easily interpretable. To our
knowledge, this is the first approach combining model-checking, controller syn-
thesis and machine learning. To complete the results presented in this paper,
we can report on an experimental evaluation on a realistic agro-ecosystem: a
grassland based dairy production system.

One limitation of this work is that the expression of the non-determinism
is only effective for controllable actions. This is a consequence of the derivation
of PTGA to PTA where all the transitions are considered as controllable. A
first perspective to consider for future work would be to study how to avoid
this limitation in order to exploit the full potential of the expressiveness of this
formalism. To improve the algorithm performance, an idea would be to consider
the reduction of the memory used by the search algorithm. This could be realized
by using, in the PTGA, clocks dealing with integer values instead of real values.

Searching for Cost-Optimized Strategies 13

This granularity of time is sufficient for the management of agro-ecosystems.
Finally, a further perspective would be to validate PaturMata through long-term
real-life agricultural practices.

References

1. Giunchiglia, F., Traverso, P.: Planning as model checking. In: ECP’99. (1999) 1–20
2. Cimatti, A., Pistore, M., Roveri, M., Traverso, P.: Weak, strong, and strong cyclic

planning via symbolic model checking. Artificial Intelligence 147(1-2) (2003) 35–84
3. Cesta, A., Finzi, A., Fratini, S., Orlandini, A., Tronci, E.: Analyzing Flexible

Timeline-Based Plans. In: ECAI-2010. (2010) 471–476
4. Orlandini, A., Finzi, A., Cesta, A., Fratini, S.: Tga-based controllers for flexible

plan execution. In: KI 2011. (2011) 233–245
5. Lomuscio, A., Raimondi, F.: Model checking knowledge, strategies, and games in

multi-agent systems. In: AAMAS-2006. (2006) 161–168
6. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A model checker for the verification

of multi-agent systems. In: CAV 2009. (2009) 682–688
7. Lomuscio, A., Michaliszyn, J.: Decidability of model checking multi-agent systems

against a class of EHS specifications. In: ECAI-2014. (2014) 543–548
8. Huang, X., Van der Meyden, R.: Symbolic model checking epistemic strategy logic.

In: AAAI-14, Qubec, Canada (2014)
9. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science

126 (1994) 183–235
10. Bouyer, P., Cassez, F., Fleury, E., Larsen, K.: Optimal strategies in priced timed

game automata. In: FSTTCS-2004, LNCS 3328 (2004) 148–160
11. Alur, R., La Torre, S., Pappas, G.: Optimal paths in weighted timed automata.

In: HSCC-2001, Springer (2001) 49–62
12. Asarin, E., Maler, O., Pnueli, A.: Symbolic controller synthesis for discrete and

timed systems. In: Hybrid Systems II, LNCS 999, Springer (1995) 1–20
13. Henzinger, T., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for

real-time systems. Information and Computation 111(2) (1994) 193–244
14. Clarke, E., Grumberg, O., Peled, D.: Model-Checking. MIT Press (2002)
15. Ramadge, P., Wonham, W.: The control of discrete event systems. IEEE 77 (1994)

81–98
16. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking in dense real-time. Infor-

mation and Computation 104(1) (1993) 2–34
17. Larsen, K., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. Journal on Software

Tools for Technology Transfer 1 (1997) 134–152
18. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K., Lime, D.: Uppaal-

tiga: Time for playing games! In: CAV-2007. (2007) 121–125
19. Behrmann, G., Larsen, K., Rasmussen, J.: Priced timed automata: Algorithms and

applications. In: FMCO-2004, Springer-Verlag (2004) 162–182
20. Milner, R.: Communication and Concurrency. Prentice Hall (1989)
21. Cohen, W.: Fast effective rule induction. In: In Proceedings of the Twelfth Inter-

national Conference on Machine Learning, Morgan Kaufmann (1995) 115–123

