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We consider the nonlinear Schrödinger equation with a logarithmic nonlinearity in a dispersive regime. We show that the presence of the nonlinearity affects the large time behavior of the solution: the dispersion is faster than usual by a logarithmic factor in time and the positive Sobolev norms of the solution grow logarithmically in time. Moreover, after rescaling in space by the dispersion rate, the modulus of the solution converges to a universal Gaussian profile. These properties are suggested by explicit computations in the case of Gaussian initial data, and remain when an extra power-like nonlinearity is present in the equation. One of the key steps of the proof consists in working in hydrodynamical variables to reduce the equation to a variant of the isothermal compressible Euler equation, whose large time behavior turns out to be governed by a parabolic equation involving a Fokker-Planck operator.

1. Introduction 1.1. Setting. We are interested in the following equation (1.1) i∂ t u + 1 2 ∆u = λ ln |u| 2 u , u |t=0 = u 0 ,

with x ∈ R d , d 1, λ ∈ R \ {0}.
It was introduced as a model of nonlinear wave mechanics and in nonlinear optics ( [START_REF] Bia Lynicki-Birula | Nonlinear wave mechanics[END_REF], see also [START_REF] Buljan | Incoherent white light solitons in logarithmically saturable non-instantaneous nonlinear media[END_REF][START_REF] Hefter | Application of the nonlinear Schrödinger equation with a logarithmic inhomogeneous term to nuclear physics[END_REF][START_REF] Hernandez | General properties of Gausson-conserving descriptions of quantal damped motion[END_REF][START_REF] Krolikowski | Unified model for partially coherent solitons in logaritmically nonlinear media[END_REF][START_REF] Martino | Logarithmic Schrödinger-like equation as a model for magma transport[END_REF]). The mathematical study of this equation goes back to [START_REF] Cazenave | Équations d'évolution avec non linéarité logarithmique[END_REF][START_REF] Cazenave | Stable solutions of the logarithmic Schrödinger equation[END_REF] (see also [START_REF]Semilinear Schrödinger equations[END_REF]). The sign λ < 0 seems to be the more interesting from a physical point of view, and this case has been studied formally and rigorously (see [START_REF] Avenia | On the logarithmic Schrödinger equation[END_REF][START_REF] Hernandez | General properties of Gausson-conserving descriptions of quantal damped motion[END_REF] for instance). On the other hand, the case λ > 0 seems to have been little studied mathematically, except as far as the Cauchy problem is concerned (see [START_REF] Cazenave | Équations d'évolution avec non linéarité logarithmique[END_REF][START_REF] Guerrero | Global H 1 solvability of the 3D logarithmic Schrödinger equation[END_REF]). In this article, we address the large time properties of the solution in the case λ > 0, revealing several new features in the context of Schrödinger equations, and more generally Hamiltonian dispersive equations.

We recall that the mass, angular momentum and energy are (formally) conserved, in the sense that defining M (u(t)) := u(t) The scaling factor thus corresponds to a purely time-dependent gauge transform: κu(t, x)e 2itλ ln κ solves (1.1) (with initial datum κu 0 ). In particular, the L 2 -norm of the initial datum does not influence the dynamics of the solution. This suggests that the presence of the nonlinearity has a rather weak influence on the dynamics, since it shares a feature with linear equations. We will see however that the effects of the nonlinear term are, from various perspectives, much stronger than the effects of a defocusing power-like nonlinearity. Nevertheless, if we denote by u κ the above solution, we readily compute

du κ dκ = (1 + 2itλ) u 1 e 2itλ ln κ , d 2 u κ dκ 2 = 2itλ κ (1 + 2itλ) u 1 e 2itλ ln κ .
This shows that for any t = 0, the flow map u 0 → u(t) fails to be C 2 at the origin, whichever the functional spaces considered to measure this regularity.

Note that whichever the sign of λ, the energy E has no definite sign. The distinction between focusing or defocusing nonlinearity is thus a priori ambiguous. We shall see however that in the case λ < 0, no solution is dispersive, while for λ > 0, solutions have a dispersive behavior (with a non-standard rate of dispersion). This is why we choose to call defocusing the case λ > 0.

1.2. The focusing case. In [START_REF] Cazenave | Équations d'évolution avec non linéarité logarithmique[END_REF] (see also [START_REF]Semilinear Schrödinger equations[END_REF]), the Cauchy problem is studied in the case λ < 0. Define

W := u ∈ H 1 (R d ) , x → |u(x)| 2 ln |u(x)| 2 ∈ L 1 (R d ) .
Theorem 1.2 (Théorème 2.1 from [START_REF] Cazenave | Équations d'évolution avec non linéarité logarithmique[END_REF], see also Theorem 9.3.4 from [START_REF]Semilinear Schrödinger equations[END_REF]). Let the initial data u 0 belong to W . In the case when λ < 0, there exists a unique, global solution u ∈ C(R; W ) to (1.1). In particular, for all t ∈ R, |u(t, •)| 2 ln |u(t, •)| 2 belongs to L 1 (R d ), and the mass M (u) and the energy E(u) are independent of time.

In the case when λ < 0, it can be proved that there is no dispersion for large times. Indeed the following result holds. Lemma 1.3 (Lemma 3.3 from [START_REF] Cazenave | Stable solutions of the logarithmic Schrödinger equation[END_REF]). Let λ < 0 and k < ∞ such that

L k := u ∈ W, u L 2 (R d ) = 1, E(u) k = ∅ . Then inf u∈L k 1 p ∞ u L p (R d ) > 0 .
This lemma, along with the conservation of the energy for (1.1), indicates that in the case λ < 0, the solution to (1.1) is not dispersive: typically, its L ∞ norm is bounded from below. Actually in the case of Gaussian initial data, some solutions are even known to be periodic in time, as proved in [START_REF] Avenia | On the logarithmic Schrödinger equation[END_REF] (and already noticed in [START_REF] Bia Lynicki-Birula | Nonlinear wave mechanics[END_REF]). Proposition 1.4 ([19]). In the case λ < 0, the Gausson exp -2iλωt + ω + d/2 + λ|x| 2 is a solution to (1.1) for any period ω ∈ R.

We emphasize that several results address the existence of stationary solutions to (1.1) in the case λ < 0, and the orbital stability of the Gausson; see e.g. [START_REF] Bia Lynicki-Birula | Nonlinear wave mechanics[END_REF][START_REF] Cazenave | Stable solutions of the logarithmic Schrödinger equation[END_REF][START_REF] Avenia | On the logarithmic Schrödinger equation[END_REF][START_REF] Ardila | Orbital stability of Gausson solutions to logarithmic Schrödinger equations[END_REF]. We also note that when λ > 0, the above formula yields a solution to (1.1) which is C ∞ , time periodic, but not even a tempered distribution.

1.3. Main results. Throughout the rest of this paper, we assume λ > 0.

1.3.1. The Cauchy problem. For 0 < α 1, we have

F (H α ) := u ∈ L 2 (R d ) , x → x α u(x) ∈ L 2 (R d ) ,
where x := 1 + |x| 2 and F denotes the Fourier transform (whose normalization is irrelevant here), with norm

u F (H α ) := x α u(x) L 2 (R d ) .
Note that for any α > 0, F (H α ) ∩ H 1 ⊂ W . The Cauchy problem for (1.1) is investigated in [START_REF] Guerrero | Global H 1 solvability of the 3D logarithmic Schrödinger equation[END_REF], where in three space dimensions, the existence of a unique solution in L ∞ (R; H 1 (R 3 )) ∩ C(R; L 2 (R 3 )) is proved as soon as the initial data belongs to F (H 1/2 ) ∩ H 1 (R 3 ). Actually it is possible to improve slightly that result into the following theorem.

Theorem 1.5. Let the initial data u 0 belong to F (H α ) ∩ H 1 (R d ) with 0 < α 1.
In the case when λ > 0, there exists a unique, global solution u ∈ L ∞ loc (R; F (H α ) ∩ H 1 ) to (1.1). Moreover the mass M (u), the angular momentum J(u), and the energy E(u) are independent of time. If in addition

u 0 ∈ H 2 (R d ), then u ∈ L ∞ loc (R; H 2 ).
The main focus of this paper concerns large time asymptotics of the solution. The situation is very different from the λ < 0 case described above (see Proposition 1.4). Indeed we can prove that (some) solutions tend to zero in L ∞ for large time, while the H s norm is always unbounded for s > 0.

As often in the context of nonlinear Schrödinger equations, we denote by . This acceleration is of course an effect of the nonlinearity.

Σ = H 1 ∩ F (H 1 )(R d ) = {f ∈ H 1 (R d ), x → |x|f (x) ∈ L 2 (R d )}.
• All the positive Sobolev norms of the solution grow logarithmically in time (explicit rate), due to some discrepancy between the dispersive rate and a universal quadratic oscillation in space. • Up to a rescaling, the modulus of the solution converges for large time to a universal Gaussian profile. Before stating the general result, let us introduce the universal dispersion rate τ through the following lemma. We define from now on the function

(1.2) ℓ(t) := ln ln t ln t • Lemma 1.6 (Universal dispersion).
Consider the ordinary differential equation

(1.3) τ = 2λ τ , τ (0) = 1 , τ (0) = 0 .
It has a unique solution τ ∈ C 2 (0, ∞), and it satisfies, as t → ∞,

τ (t) = 2t √ λ ln t 1 + O ℓ(t) , τ (t) = 2 √ λ ln t 1 + O ℓ(t) .
We now state the main result of this paper. Denote by γ(x) := e -|x| 2 /2 .

Theorem 1.7. Let u 0 ∈ Σ, and rescale the solution provided by Theorem 1.5 to v = v(t, y) by setting

(1.4) u(t, x) = 1 τ (t) d/2 v t, x τ (t) u 0 L 2 (R d ) γ L 2 (R d ) exp i τ (t) τ (t) |x| 2 2 .
There exists C such that for all t 0, (1.5)

R d 1 + |y| 2 + ln |v(t, y)| 2 |v(t, y)| 2 dy + 1 τ (t) 2 ∇ y v(t) 2 L 2 (R d ) C .
We have moreover

(1.6) R d   1 y |y| 2   |v(t, y)| 2 dy -→ t→∞ R d   1 y |y| 2   γ 2 (y)dy . Finally, (1.7) |v(t, •)| 2 ⇀ t→∞ γ 2 weakly in L 1 (R d ) .
Remark 1.8. The scaling factor in (1.4) is here to normalize the L 2 -norm of v to be the same as the L 2 -norm of γ, and is of no influence regarding the statement, in view of Remark 1.1. To the best of our knowledge, this is the first time that a universal profile is observed for the large time behavior of solutions to a dispersive, Hamiltonian equation. This profile is reached in a weak sense only in Theorem 1.7, as far as the convergence is concerned, but also because the modulus of the solution only is captured. This indicates that a lot of information remains encoded in the oscillations of the solution. See Section 1.4 for more on the large time asymptotics.

Remark 1.9. As a straightforward consequence, we infer the slightly weaker property that |v(t, •)| 2 converges to γ 2 in Wasserstein distance:

W 2 |v(t, •)| 2 π d/2 , γ 2 π d/2 -→ t→∞ 0,
where we recall that the Wasserstein distance is defined, for ν 1 and ν 2 probability measures, by

W p (ν 1 , ν 2 ) = inf R d ×R d |x -y| p dµ(x, y) 1/p ; (π j ) ♯ µ = ν j ,
where µ varies among all probability measures on R d × R d , and

π j : R d × R d → R d
denotes the canonical projection onto the j-th factor (see e.g. [START_REF] Villani | Topics in optimal transportation[END_REF]).

In the context of nonlinear Hamiltonian partial differential equations, a general question is the evolution of Sobolev norms, as emphasized in [START_REF] Bourgain | On the growth in time of higher Sobolev norms of smooth solutions of Hamiltonian PDE[END_REF]. In [START_REF] Hani | Modified scattering for the cubic Schrödinger equation on product spaces and applications[END_REF], the existence of unbounded, in H s with s > 1, solutions to the cubic defocusing Schrödinger equation was established for the first time, in the case where the equation is considered on the domain R × T d , d 2: for some solutions, the Sobolev norms grow logarithmically along a sequence of times. See also [START_REF] Colliander | Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation[END_REF][START_REF] Guardia | Growth of Sobolev norms in the cubic defocusing nonlinear Schrödinger equation[END_REF][START_REF] Guardia | Growth of Sobolev norms for the analytic NLS on T 2[END_REF], in the space periodic case. For other equations (cubic Szegő equation or half-wave equation), with specific initial data, a growth rate can be exhibited, possibly along a sequence of time; see [START_REF] Gérard | Effective integrable dynamics for a certain nonlinear wave equation[END_REF][START_REF]An explicit formula for the cubic Szegö equation[END_REF][START_REF] Pocovnicu | Explicit formula for the solution of the Szegö equation on the real line and applications[END_REF]. In particular, for the cubic Szegő equation, the generic (in the sense of Baire) growth of Sobolev norms with superpolynomial rates is established in [START_REF] Gérard | The cubic Szegő equation and Hankel operators[END_REF]. Combining the approaches of [START_REF] Hani | Modified scattering for the cubic Schrödinger equation on product spaces and applications[END_REF] and [START_REF] Gérard | The cubic Szegő equation and Hankel operators[END_REF], it was proved in [START_REF] Xu | Unbounded Sobolev trajectories and modified scattering theory for a wave guide nonlinear Schrödinger equation[END_REF] that a system of half-wave-Schrödinger on the cylinder R x × T y possesses unbounded solutions in L 2

x H s y for s > 1/2, where the growth rate is a superpolynomial function of ln t. We show that in the case of (1.1), the Sobolev norms of all solutions grow, regardless of the data, and we give a sharp rate.

Corollary 1.10. Let u 0 ∈ Σ \ {0}, and 0 < s 1. The solution to (1.1) satisfies, as t → ∞, ∇u(t

) 2 L 2 (R d ) ∼ t→∞ 2λd u 0 2 L 2 (R d ) ln t, and 
(ln t) s/2 u(t) Ḣs (R d ) (ln t) s/2 ,
where Ḣs (R d ) denotes the standard homogeneous Sobolev space.

The weak convergence in the last point of Theorem 1.7 may seem puzzling. In the case of Gaussian initial data, we can prove that the convergence is strong.

Corollary 1.11 (Strong convergence in the Gaussian case). Suppose that the initial data u 0 is a Gaussian,

u 0 (x) = b 0 exp - 1 2 d j=1 a 0j (x j -x 0j ) 2
with b 0 , a 0j ∈ C, Re a 0j > 0, and x 0j ∈ R. Then, with v given by (1.4), the relative entropy of |v| 2 goes to zero for large time:

R d |v(t, y)| 2 ln v(t, y) γ(y) 2 dy -→ t→∞ 0 ,
and the convergence of |v| 2 to γ 2 is strong in L 1 :

|v(t, •)| 2 -γ 2 L 1 (R d ) -→ t→∞ 0 .
1.4. Comments and further result. In the linear case (1.8) i∂ t u free + 1 2 ∆u free = 0 , u free|t=0 = u 0 , the integral representation

u free (t, x) = 1 (2iπt) d/2 R d e i |x-y| 2 2t
u 0 (y)dy readily yields the well-known dispersive estimate

u free (t) L ∞ (R d ) 1 |t| d/2 u 0 L 1 (R d ) .
Moreover, defining the Fourier transform as

F f (ξ) := f (ξ) := 1 (2π) d/2 R d f (x)e -ix•ξ dx ,
we have the standard asymptotics (see e.g. [START_REF] Rauch | Partial Differential Equations[END_REF]), (1.9)

u free (t) -A(t)u 0 L 2 (R d ) -→ t→±∞ 0, A(t)u 0 (x) := 1 (it) d/2 û0 x t e i |x| 2 2t ,
a formula which has proven very useful in the nonlinear (long range) scattering theory (see e.g. [START_REF] Ginibre | An introduction to nonlinear Schrödinger equations[END_REF][START_REF] Hayashi | Domain and range of the modified wave operator for Schrödinger equations with a critical nonlinearity[END_REF]).

In the case of the defocusing nonlinear Schrödinger equation with power-like nonlinearity, (1.10)

i∂ t u + 1 2 ∆u = |u| 2σ u , u |t=0 = u 0 , if σ is sufficiently large (say σ > 2/d if u 0 ∈ H 1 (R d )
, even though this bound can be lowered if in addition û0 ∈ H 1 (R d )), then there exists

u + ∈ H 1 (R d ) such that in L 2 (R d ), u(t, x) ∼ t→∞ e i t 2 ∆ u + (x) ∼ t→∞ 1 (it) d/2 û+ x t e i |x| 2 2t ,
where the last relation stems from (1.9). Therefore, Theorem 1.7 shows that unlike in the free case (1.8) or in the above nonlinear case (1.10), the dispersion is modified (it is even enhanced the larger the λ), and the asymptotic profile û+ (with u + = u 0 in the free case), which depends on the initial profile, is replaced by a universal one (up to a normalizing factor),

u 0 L 2 π d/4 e -|x| 2 /2
. As already pointed out, the nonlinearity is responsible for the new dispersive rate, as it introduces a logarithmic factor. In particular, no scattering result relating the dynamics of (1.1) to the free dynamics e i t 2 ∆ must be expected. This situation can be compared with the more familiar one with low power nonlinearity, where a long range scattering theory is (sometimes) available. If σ 1/d in (1.10), then u cannot be be compared with a free evolution for large time, in the sense that if for some [START_REF] Barab | Nonexistence of asymptotically free solutions for nonlinear Schrödinger equation[END_REF]). In the case σ = 1/d, d = 1, 2, 3, a nonlinear phase modification of e i t 2 ∆ must be incorporated in order to describe the asymptotic behavior of u ( [START_REF] Ozawa | Long range scattering for nonlinear Schrödinger equations in one space dimension[END_REF][START_REF] Hayashi | Domain and range of the modified wave operator for Schrödinger equations with a critical nonlinearity[END_REF]). The same is true when (1.10) is replaced with the Hartree equation [START_REF] Ginibre | Long range scattering and modified wave operators for some Hartree type equations. III. Gevrey spaces and low dimensions[END_REF][START_REF] Nakanishi | Modified wave operators for the Hartree equation with data, image and convergence in the same space[END_REF][START_REF]Modified wave operators for the Hartree equation with data, image and convergence in the same space. II[END_REF]. In all these cases, as well as for some quadratic nonlinearities in dimension 3 ( [START_REF] Hayashi | Time decay of small solutions to quadratic nonlinear Schrödinger equations in 3D[END_REF]), the dispersive rate of the solution remains the same as in the free case, of order t -d/2 . Note however that a similar logarithmic perturbation of the dispersive rate was observed in [START_REF]Logarithmic time decay for the cubic nonlinear Schrödinger equations[END_REF], for the equation . In view of Lemma 1.6, we have

u + ∈ L 2 (R d ), u(t) -e i t 2 ∆ u + L 2 (R d ) -→ t→∞ 0 , then u = u + = 0 ([
(1.11) i∂ t u + 1 2 ∂ 2 x u = iλu 3 + |u| 2 u , x ∈ R , with λ ∈ R, 0 < |λ| < √ 3.
τ (t) τ (t) - 1 t = O (ℓ(t)) t (1 + O (ℓ(t))) , hence exp i τ (t) τ (t) |x| 2 2 ∼ t→∞ e i |x| 2 2t ,
the same universal oscillation as for the linear Schrödinger equation (1.8), see (1.9). Finally let us remark that the convergence to a universal profile is reminiscent of what happens for the linear heat equation on R d . Indeed, let u solve (1.12)

∂ t u = 1 2 ∆u, (t, x) ∈ R + × R d , u |t=0 = u 0 .
This equation can be solved thanks to Fourier analysis, û(t, ξ) = û0 (ξ)e -t 2 |ξ| 2 . This allows to show the following standard asymptotics (see e.g. [START_REF] Rauch | Partial Differential Equations[END_REF]):

u(t, x) ∼ t→∞ m (2πt) d/2 e -|x| 2 /(2t) in L 2 ∩ L ∞ (R d ), provided m := R d u 0 (x)dx = 0.
We note that at leading order, the only role played by the initial data is the presence of the total mass m. The asymptotic profile is universal, and corresponds to the Gaussian γ.

In a nonlinear setting, our result is reminiscent of the works [START_REF] Gallay | Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticity equations on R 2[END_REF][START_REF]Global stability of vortex solutions of the two-dimensional Navier-Stokes equation[END_REF][START_REF]Long-time asymptotics of the Navier-Stokes equation in R 2 and R 3[END_REF] on the Navier-Stokes equations: there it is proved that up to a rescaling which corresponds to the natural scaling of the equations, the vorticity converges strongly to a Gaussian which is known as the Oseen vortex. The main argument, as in the present case, is the reduction to a Fokker-Planck equation.

In view of the above discussion, one may ask if the phenomena stated in Theorem 1.7 and Corollary 1.10 are bound to the very special structure of the nonlinearity. Our final result shows that it is not the case, inasmuch as these results remain (possibly up to a uniqueness issue) when an energy-subcritical defocusing power-like nonlinearity is added,

(1.13) i∂ t u + 1 2 ∆u = λu ln(|u| 2 ) + µ|u| 2σ u, u |t=0 = u 0 .
The mass and angular momentum of u are the same as before, and they are formally conserved, as well as the energy

E(u(t)) = 1 2 ∇u(t) 2 L 2 (R d ) +λ R d |u(t, x)| 2 ln |u(t, x)| 2 dx+ µ σ + 1 R d |u(t, x)| 2σ+2 dx.
Theorem 1.12. Let λ, µ > 0 and

0 < σ < 2/(d -2) + . For u 0 ∈ Σ, (1.13) has a solution u ∈ L ∞ loc (R; Σ). It is unique (at least) if d = 1.
Its mass, angular momentum and energy are independent of time. Setting

u(t, x) = 1 τ (t) d/2 v t, x τ (t) u 0 L 2 (R d ) γ L 2 (R d ) exp i τ (t) τ (t) |x| 2 2 ,
we have

R d   1 y |y| 2   |v(t, y)| 2 dy -→ t→∞ R d   1 y |y| 2   γ 2 (y)dy , and |v(t, •)| 2 ⇀ t→∞ γ 2 weakly in L 1 (R d ) .
Finally, for 0 < s 1, u satisfies, as t → ∞,

∇u(t) 2 L 2 (R d ) ∼ t→∞ 2λd u 0 2 L 2 (R d ) ln t, and 
(ln t) s/2 u(t) Ḣs (R d ) (ln t) s/2 .
The above result shows that the logarithmic nonlinearity, far from being a weak nonlinearity, dictates the dynamics even in the presence of an energy-subcritical defocusing power-like nonlinearity, in sharp contrast with the scattering results of the case λ = 0 mentioned above. The dynamics due to the logarithmic nonlinearity is thus rather stable. 1.5. Outline of the paper. In Section 2, we give the proof of Theorem 1.5. Section 3 contains explicit computations in the Gaussian case, paving the way for the general case. The main step consists in a reduction to ordinary differential equations, and the computations concerning the main ODEs are gathered in this section, including the proof of Lemma 1.6. The first part of Theorem 1.7, that is everything except (1.7), is proved in Section 4 and relies on energy estimates with appropriate weights in space. The weak limit (1.7) is proved in Section 5. The main idea consists in using a Madelung transform, which leads to the study of a hyperbolic system which is a variant of the isothermal, compressible Euler equation. A rescaling in the time variable reduces the study to a non autonomous perturbation of the Fokker-Planck equation, and the a priori estimates obtained in Section 4 imply that a weak limit of the solution satisfies the Fokker-Planck equation for large times. Since it is known that the large time behavior of the solution to the Fokker-Planck equation is the centered Gaussian, a tightness argument on the rescaled solution concludes the proof. The proofs of the corollaries are given in Section 6, and the main arguments leading to Theorem 1.12 are given in Section 7.
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Cauchy problem: proof of Theorem 1.5

In this section we sketch the proof of the existence of a unique weak solution, which follows very standard ideas (see [START_REF]Semilinear Schrödinger equations[END_REF][START_REF] Cazenave | Équations d'évolution avec non linéarité logarithmique[END_REF]). We first prove, in Section 2.1, the existence of weak solutions by solving an approximate system and passing to the limit in the approximation parameter. This produces a weak solution, whose uniqueness is proved in Section 2.2. The proof of the propagation of higher regularity is given in Section 2.3.

2.1.

Existence. To prove the existence of a weak solution we proceed by approximating the equation as follows: consider for all ε ∈ (0, 1) the equation [START_REF]Semilinear Schrödinger equations[END_REF]). It remains therefore to prove uniform bounds for u ε (t) in F (H α ) ∩ H 1 (R d ), which will provide compactness in space for the sequence u ε . Since time compactness (in

(2.1) i∂ t u ε + 1 2 ∆u ε = λ ln ε + |u ε | 2 u ε , u ε|t=0 = u 0 . Equation (2.1) is easily solved in C(R; L 2 (R d )) since it is subcritical in L 2 (see
H -2 (R d ))
is a direct consequence of the equation, the Ascoli theorem will then give the result. Actually once a bound in

L ∞ loc (R; H 1 (R d )) is derived, then the L ∞ loc (R; F (H α ))
bound can be obtained directly thanks to the following computation: define

I ε,α (t) := R d x 2α |u ε | 2 (t, x) dx .
Then multiplying the equation by x 2α u ε and integrating in space provides

d dt I ε,α (t) = 2α Im x • ∇u ε x 2-2α u ε (t) dx 2α x 2α-1 u ε (t) L 2 (R d ) ∇u ε (t) L 2 (R d ) 2α x α u ε (t) L 2 (R d ) ∇u ε (t) L 2 (R d ) ,
where the last estimate stems from the property α 1. Therefore,

u ε (t) 2 F (H α ) u 0 2 F (H α ) + 2α t 0 u ε (t ′ ) F (H α ) ∇u ε (t ′ ) L 2 (R d ) dt ′ .
So it remains to compute the H 1 (R d ) norm of u ε (t). This is quite easy since the problem becomes linear in ∇u ε . Indeed for any 1 j d one has

(2.2) i∂ t ∂ j u ε + 1 2 ∆∂ j u ε = λ ln ε + |u ε | 2 ∂ j u ε + 2λ 1 ε + |u ε | 2 Re(ū ε ∂ j u ε )u ε ,
and we note that

1 ε + |u ε | 2 2 Re(ū ε ∂ j u ε )u ε 2|∂ j u ε |. We therefore conclude that u ε belongs to L ∞ loc (R; H 1 (R d ))
, uniformly in ε. Passing to the limit to obtain a solution conserving mass, angular momentum, and energy is established in the same way as in [START_REF] Cazenave | Équations d'évolution avec non linéarité logarithmique[END_REF] (see also [START_REF]Semilinear Schrödinger equations[END_REF]). The existence part of Theorem 1.5 follows.

For the proof of uniqueness below it is useful to prove that any solution in the class L ∞ loc (R; F (H α )∩H 1 ) belongs actually to C(R;

(L 2 ∩H 1 weak )(R d ))
, which allows to make sense of the initial data in H 1 (R d ). The method of proof follows the idea of [START_REF] Cazenave | Équations d'évolution avec non linéarité logarithmique[END_REF], and is in fact easier due to our functional setting. Let u be such a solution, then clearly ∆u belongs to L ∞ loc (R; H -1 (R d )) and we claim that u ln |u| 2 belongs to L ∞ loc (R; L 2 (R d )). Indeed there holds

|u| 2 (ln |u| 2 ) 2 |u| 2-ǫ + |u| 2+ǫ
for all ǫ > 0, and moreover we have the estimate

(2.3) R d |u| 2-ǫ u 2-ǫ-dǫ 2α L 2 x α u dǫ 2α L 2 ,
for 0 < ǫ < 4α d+2α , which can be readily proved by an interpolation method (cutting the integral into |y| < R and |y| > R, using Hölder inequality and optimizing over R; see e.g. [START_REF] Carles | Semiclassical nonlinear Schrödinger equations with potential and focusing initial data[END_REF]). This, along with Sobolev embeddings, implies that

|u| 2 (ln |u| 2 ) 2 u 2-ǫ-dǫ 2α L 2 x α u dǫ 2α L 2 + u 2+ǫ H 1 so finally ∂ t u belongs to L ∞ loc (R; H -1 (R d ))
and the result follows.

2.2. Uniqueness. The uniqueness of the solution constructed above is a consequence of the following lemma.

Lemma 2.1 (Lemma 9.3.5 from [START_REF]Semilinear Schrödinger equations[END_REF]). We have

Im z 2 ln |z 2 | 2 -z 1 ln |z 1 | 2 (z 2 -z1 ) 4|z 2 -z 1 | 2 , ∀z 1 , z 2 ∈ C .
Consider indeed u 1 and u 2 two solutions of (1.1) as constructed in the previous section. Then the function u := u 1u 2 satisfies

i∂ t u + 1 2 ∆u = λ ln |u 1 | 2 u 1 -ln |u 2 | 2 u 2
and the regularity of u 1 and u 2 enables one to write an energy estimate in L 2 on this equation. We get directly (2.4)

1 2 d dt u(t) 2 L 2 (R d ) = λ Im R d ln |u 1 | 2 u 1 -ln |u 2 | 2 u 2 (ū 1 -ū2 )(t) dx 4λ u(t) 2 L 2 (R d )
thanks to Lemma 2.1. Uniqueness (and in fact stability in L 2 ) follows directly, by integration in time.

Higher regularity.

As in [START_REF] Cazenave | Équations d'évolution avec non linéarité logarithmique[END_REF], the idea is to consider time derivatives. This fairly general idea in the context of nonlinear Schrödinger equations (see [START_REF]Semilinear Schrödinger equations[END_REF]) is all the more precious in the present framework that the logarithmic nonlinearity is very little regular. In particular, we emphasize that if u 0 ∈ H k (R d ), k 3, we cannot guarantee in general that this higher regularity is propagated.

To complete the proof of Theorem 1.5, assume that u 0 ∈ F (H α ) ∩ H 2 , for some α > 0. We already know that a unique, global, weak solution u ∈ L ∞ loc (R; F (H α )∩ H 1 ) is obtained by the procedure described in the previous subsection, that is, as the limit of u ε solution to (2.1). The idea is that for all T > 0, there exists C = C(T ) independent of ε ∈ (0, 1) such that sup

-T t T ∂ t u ε (t) L 2 (R d ) C .
Indeed, we know directly from (2.1) that

∂ t u ε|t=0 = i 2 ∆u 0 -iλ ln ε + |u 0 | 2 u 0 ∈ L 2 (R d ) ,
uniformly in ε, in view of the pointwise estimate

ln ε + |u 0 | 2 u 0 C |u 0 | 1+η + |u 0 | 1-η ,
where η > 0 can be chosen arbitrarily small, and C is independent of ε ∈ (0, 1).

Then we can replace the spatial derivative ∂ j in (2.2) with the time derivative ∂ t , and infer that

∂ t u ε ∈ L ∞ loc (R; L 2 (R d ))
, uniformly in ε: by passing to the limit (up to a subsequence),

∂ t u ∈ L ∞ loc (R; L 2 (R d )). Using the equation (1.1), we infer that ∆u ∈ L ∞ loc (R; L 2 (R d ))
. This concludes the proof of Theorem 1.5.

Propagation of Gaussian data

As noticed already in [START_REF] Bia Lynicki-Birula | Nonlinear wave mechanics[END_REF], an important feature of (1.1) is that the evolution of initial Gaussian data remains Gaussian. Since (1.1) is invariant by translation in space, we may consider centered Gaussian initial data. The following result is a crucial guide for the general case. 

u(t, x) = b 0 d j=1 1 r j (t) exp iφ j (t) -α 0j x 2 j 2r 2 j (t) + i ṙj (t) r j (t) x 2 j 2
for some real-valued functions φ j , r j depending on time only, such that, as t → ∞,

(3.2) r j (t) = 2t λα 0j ln t 1 + O ℓ(t) , ṙj (t) = 2 λα 0j ln t 1 + O ℓ(t) ,
where ℓ is defined in (1.2). In particular, as t → ∞,

u(t) L ∞ (R d ) ∼ 1 t √ ln t d/2 u 0 L 2 2λ √ 2π d/2 • On the other hand u belongs to L ∞ loc (R; H 1 (R d )) and as t → ∞ ∇u(t) 2 L 2 (R d ) ∼ t→∞ 2λd u 0 2 L 2 (R d ) ln t.
3.1. From (1.1) to ordinary differential equations.

3.1.1. The Gaussian structure. As noticed in [START_REF] Bia Lynicki-Birula | Nonlinear wave mechanics[END_REF], the flow of (1.1) preserves any initial Gaussian structure. We consider the data given by (3.1), and we seek the solution u to (1.1) under the form

(3.3) u(t, x) = b(t) exp - 1 2 d j=1 a j (t)x 2 j ,
with Re a j (t) > 0. With u of this form, (1.1) becomes equivalent to

i∂ t u + 1 2 ∆u = λ ln |b(t)| 2 - d j=1 Re a j (t)x 2 j u , u |t=0 = u 0 .
This is a linear Schrödinger equation with a time-dependent harmonic potential, and an initial Gaussian. It is well-known in the context of the propagation of coherent states (see [START_REF] Hagedorn | Semiclassical quantum mechanics. I. The → 0 limit for coherent states[END_REF][START_REF] Combescure | Coherent states and applications in mathematical physics[END_REF]) that the evolution of a Gaussian wave packet under a time-dependent harmonic oscillator is a Gaussian wave packet. Therefore, it is consistent to look for a solution to (1.1) of this form. Notice in particular that

(3.4) u(t) L p (R d ) = 2π p d/(2p) |b(t)| d j=1 Re a j (t) 1/(2p) , 1 p ∞ .
To prove Theorem 3.1 we therefore need to find the asymptotic behavior in time of b(t) and a j (t).

3.1.2. The ODEs. Plugging (3.3) into (1.1), we obtain

i ḃ -i d j=1 ȧj x 2 j 2 b - d j=1 a j b 2 + d j=1 a 2 j x 2 j 2 b = λ ln |b| 2 - d j=1 (Re a j ) x 2 j b .
Equating the constant in x and the factors of x 2 j , we get i ȧja 2 j = 2λ Re a j , a j|t=0 = a 0j , ( We can express the solution to (3.6) directly as a function of the a j 's: indeed

b(t) = b 0 exp -iλt ln |b 0 | 2 - i 2 d j=1 A j (t) -iλ d j=1 Im t 0 A j (s)ds ,
where we have set

A j (t) := t 0 a j (s)ds .
We also infer from (3.5) that y := Re a j solves ẏ = 2y Im a j , hence Re a j (t) = Re a 0j exp 2 t 0 Im a j (s)ds .

Since the equations (3.5) are decoupled as j varies, we simply consider from now on

(3.7) i ȧ -a 2 = 2λ Re a , a |t=0 = a 0 = α 0 + iβ 0 ,
which amounts to assuming d = 1 in (1.1). Following [START_REF] Li | Blowup phenomena of solutions to the Euler equations for compressible fluid flow[END_REF], we seek a of the form

a = -i ω ω • Then (3.7) becomes ω = 2λω Im ω ω •
Introducing the polar decomposition ω = re iθ , we get r -( θ) 2 r = 2λr θ, θr + 2 θ ṙ = 0 .

Notice that θ|t=0 = α 0 , ṙ r |t=0 = -β 0 .

We therefore have a degree of freedom to set r(0), and we decide r(0) = 1 so

θ(0) = Re a 0 = α 0 , ṙ(0) = -Im a 0 = -β 0 .
The second equation yields d dt r 2 θ = r 2 ṙ θ + r θ = 0 , so r 2 θ is constant and we can express the problem in terms of r only: we write

(3.8) a(t) = α 0 r(t) 2 -i ṙ(t) r(t) , with (3.9) r = α 2 0 r 3 + 2λ α 0 r , r(0) = 1 , ṙ(0) = -β 0 .
Multiplying by ṙ and integrating, we infer

(3.10) ( ṙ) 2 = β 2 0 + α 2 0 1 - 1 r 2 + 4λα 0 ln r .
Back to the solution u, in the case when d = 1 then writing in view of (3.4) and (3.8)

u(t) L ∞ (R d ) = |b(t)| = |b 0 | exp 1 2 t 0 Im a(s)ds = |b 0 | r(t)
we find that the study of r(t) is enough to find the dispersion rate of u(t). Once the rate in one space dimension is known, the result in d space dimensions follows directly. Moreover, we compute directly

∇u(t) 2 L 2 (R d ) = 1 2 π d/2 |b(t)| 2 d j=1 Re a j (t) 1/2 d j=1 |a j (t)| 2 (Re a j (t)) = π d/2 |b 0 | 2 2 d j=1 r j (t) d j=1 Re a j (t) 1/2 d j=1 |a j (t)| 2 (Re a j (t)) = π d/2 |b 0 | 2 2 d j=1 α 0j d j=1 ( ṙj ) 2 + α 2 0 r 2 j 1 α 0j = c + λ π d/2 |b 0 | 2 d j=1 α 0j d j=1 ln r j (t) .
As soon as r j (t) → ∞ when |t| → ∞, the H 1 norm therefore becomes unbounded. This is proved to be the case below (with an explicit rate): actually it can be seen from the rate provided in Lemma 3.9 below that the energy remains bounded because the unbounded contributions of both parts of the energy cancel exactly.

Study of r(t).

The aim of this paragraph is to prove the following result.

Recall notation (1.2).

Lemma 3.2. Let r solve (3.9). Then as t → ∞, there holds

r(t) = 2t λα 0 ln t 1 + O ℓ(t) .
The proof of the lemma is achieved in three steps: first we prove, in Paragraph 3.2.1, that r(t) → ∞ as t → ∞. In view of that result it is natural to approximate the solution to (3.9) by (3.11) reff = 2λ α 0 r eff , r eff (T ) = r(T ) , ṙeff (T ) = ṙ(T ) ,

for T ≫ 1. This is proved in Paragraph 3.2.2, along with a first estimate on the large time behavior of r eff . The conclusion of the proof is achieved in Paragraph 3.2.3, by proving Lemma 1.6.

3.2.1.

First step: r(t) → ∞. We readily see from (3.10) that r is bounded from below:

r(t) exp - β 2 0 + α 2 0 4λα 0 > 0 , ∀t ∈ R .
Now let us prove that r(t) → +∞ as t → +∞. Assume first that ṙ(0) > 0. Then (3.9) yields r 0, hence ṙ(t) ṙ(0) for all t 0, and

(3.12) r(t) ṙ(0)t + 1 -→ t→+∞ +∞ .
On the other hand, for ṙ(0) 0, assume that r is bounded, r(t) M . Then (3.9) yields r(t)

α 2 0 M 3 + 2λ α 0 M ,
hence a contradiction for t large enough. We infer that for T sufficiently large, there holds r(T ) 1 and ṙ(T ) > 0. The first case then implies r(t) → +∞.

Note that we have proved in particular that (3.13) ∃T 1 , ṙ(T ) > 0 and ∀t T , r(t) ṙ(T )(t -T ) + 1 . 
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( ṙeff (t)) 2 = ( ṙ(T )) 2 + 4λα 0 ln r eff (t) -4λα 0 ln r(T ) = 4λα 0 ln r eff (t) + β 2 0 + α 2 0 1 - 1 r(T ) 2 ,
where we have used (3.10) at time t = T . Denote by

C 0 := β 2 0 + α 2 0 1 - 1 r(T ) 2 ≈ β 2 0 + α 2 0 = |a 0 | 2 ,
since T ≫ 1. By similar arguments as in the proof of (3.13) in Paragraph 3.2.1, we have ṙeff (t) > 0 for all t T , and

r eff (t) ṙ(T )(t -T ) + 1 hence ṙeff (t) = 4λα 0 ln r eff (t) + C 0 .
Separating the variables,

dr eff √ 4λα 0 ln r eff + C 0 = dt ,
so we naturally consider the anti-derivative

I := dr √ 4λα 0 ln r + C 0 •
The change of variable y := 4λα 0 ln r + C 0 yields I = 1 2λα 0 e (y 2 -C0)/(4λα0) dy .

Since for x large (Dawson function, see e.g. [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF]),

e x 2 dx ∼ 1 2x e x 2 ,
we infer

I ∼ r √ 4λα 0 ln r + C 0 • In particular, r eff (t) 4λα 0 ln r eff (t) + C 0 ∼ t→+∞ t , hence r eff (t) ln r eff (t) ∼ t→+∞ 2t λα 0 .
We conclude that r eff (t) ∼ t→+∞ 2t λα 0 ln t . Now let us prove that r can be well approximated by r eff . We define h := rr eff and we want to prove that if T is chosen large enough, then h(t) t when t → ∞.

We have

ḣ(t) = 4λα 0 ln r(t) + β 2 0 + α 2 0 1 - 1 r(t) 2 -4λα 0 ln r eff (t) + β 2 0 + α 2 0 1 - 1 r(T ) 2 4λα 0 ln r(t) r eff (t) + α 2 0 1 r(T ) 2 - 1 r(t) 2 .
Given ε ∈ (0, 1/2), let T 1 be large enough so that for all t T (3.14) r eff (t) t λα 0 ln t and (3.15)

α 2 0 1 r(T ) 2 - 1 r(t) 2 ε 2 .
We shall also need that , with h(T ) = 0 .

(
Our goal is to prove that the function t → h(t)/t is bounded for large t, so let T * > T be the maximal time such that

∀t ∈ [T, T * ) , |h(t)| t . Then for t ∈ [T, T * ), ḣ(t) ε + 2(λα 0 ) 1/4 1 √ ln T so thanks to (3.16) h(t) ε + 2(λα 0 ) 1/4 1 √ ln T (t -T ) t 2 ,
which contradicts the maximality of T * . The result follows, and Lemma 3.3 is proved.

3.2.3. Third step: r(t) ∼ r eff (t) with improved bound. Let us end the proof of Lemma 3.2. By (3.10) and as in the previous paragraph, we have for T sufficiently large so that ṙ(t) ṙ(T ) > 0 for t T :

ṙ = C 0 + α 2 0 1 r(T ) 2 - 1 r 2 + 4λα 0 ln r ,
with the same constant C 0 as above: recall that ṙeff = C 0 + 4λα 0 ln r eff .

To lighten notation let us recall that h := rr eff and let us define

R eff := C 0 + 4λα 0 ln r eff .
Then using a Taylor expansion for ṙ, we have:

ṙ = R eff + α 2 0 1 r(T ) 2 - 1 r 2 + 4λα 0 ln 1 + h r eff = R eff 1 + 1 R eff α 2 0 1 r(T ) 2 - 1 r 2 + 4 λα 0 R eff ln 1 + h r eff .
On the one hand we know that R eff → ∞ and by Lemma 3.3 we have h t and r eff ∼ t→∞ t √ ln t so we infer that ṙ

∼ t→∞ R eff 1 + 1 2R eff α 2 0 1 r(T ) 2 - 1 r 2 + 4λα 0 ln 1 + h r eff . As a consequence ṙ -ṙeff ∼ t→∞ 1 2 √ R eff α 2 0 1 r(T ) 2 - 1 r 2 + 4λα 0 ln 1 + h r eff and since h/r eff = O(1/ √ ln t) we infer that ṙ -ṙeff ∼ t→∞ C(T ) √ λ ln t •
By integration, and comparison of diverging integrals, we find

h(t) ∼ t→∞ C 1 t √ ln t , hence r(t) = 2t λα 0 ln t 1 + O ℓ(t) ,
as soon as we know that this holds for r eff . Lemma 3.2 is therefore proved, up to the study of the universal dispersion τ . Back to the previous section, we simply note that ṙeff -√ α 0 τ = C 0 + 4λα 0 ln r eff -4λα 0 ln τ , with C 0 = 0 in general, so the same computation as above yields

ṙeff - √ α 0 τ = O 1 √ ln r eff = O 1 √ ln t , hence r eff - √ α 0 τ = O t √ ln t ,
by integration. This completes the proof of Lemma 3.2.

4. General case: preparation for the proof of Theorem 1.7

In this section we prove (1.5) and (1.6) of Theorem 1.7.

4.1.

First a priori estimates. Recall that by definition, v is related to u through the relation

(4.1) u(t, x) = 1 τ (t) d/2 v t, x τ (t) u 0 L 2 (R d ) γ L 2 (R d ) exp i τ (t) τ (t) |x| 2 2 ,
where τ is the solution to

τ = 2λ τ , τ (0) = 1 , τ (0) = 0 .
Then v solves

i∂ t v + 1 2τ (t) 2 ∆ y v = λv ln v γ 2 -λdv ln τ + 2λv ln u 0 L 2 (R d ) γ L 2 (R d ) ,
where we recall that γ(y) = e -|y| 2 /2 , and the initial datum for v is

v |t=0 = v 0 := γ L 2 (R d ) u 0 L 2 (R d ) u 0 .
Using the gauge transform consisting in replacing v with ve -iθ(t) for

θ(t) = λd t 0 ln τ (s)ds -2λt ln( u 0 L 2 / γ L 2 ),
we may assume that the last two terms are absent, and we focus our attention on (4.2)

i∂ t v + 1 2τ (t) 2 ∆ y v = λv ln v γ 2 , v |t=0 = v 0 .
We compute

E(t) := Im R d v(t, y)∂ t v(t, y)dy = E kin (t) + λE ent (t) , where E kin (t) := 1 2τ (t) 2 ∇ y v(t) 2 L 2
is the (modified) kinetic energy and

E ent (t) := R d |v(t, y)| 2 ln v(t, y) γ(y) 2 dy
is a relative entropy. The transform (4.1) is unitary on L 2 (R d ) so the conservation of mass for u trivially corresponds to the conservation of mass for v:

(4.3) v(t) L 2 = v 0 L 2 = γ L 2 .
The Csiszár-Kullback inequality reads (see e.g. [START_REF] Ané | Panoramas et Synthèses [Panoramas and Syntheses[END_REF]Th. 8.2.7]), for f, g

0 with f = g, f -g 2 L 1 (R d ) 2 f L 1 (R d ) f (x) ln f (x) g(x) dx.
Thanks to (4.3), this inequality yields

(4.4) E ent (t) 1 2 γ 2 L 1 |v(t)| 2 -γ 2 2 L 1 (R d ) ,
hence in particular E ent 0. We easily compute

(4.5) Ė = -2 τ τ E kin .
Ideally, we would like to prove directly E(t) -→ t→∞ 0. The property E(t) → 0 can be understood as follows:

• E kin → 0 means that v oscillates in space more slowly than τ , hence that the main spatial oscillations of u have been taken into account in (4.1) (as a matter of fact, the boundedness of E kin suffices to reach this conclusion).

• E ent → 0 implies |v(t)| 2 → γ 2 strongly in L 1 (R d ).
It turns out than in the case of Gaussian initial data, we can infer from Section 3 that indeed E(t) → 0, each term going to zero logarithmically in time (see Section 6 for the case of E ent ). In the general case, we cannot reach this conclusion. Note however that if we had E kin 1, then integrating (4.5) we would get E(t) → -∞ as t → ∞, hence a contradiction. Therefore,

∃t k → ∞ , E kin (t k ) → 0 .
We now prove the first part of Theorem 1.7, that is, (1.5) which is recast and complemented in the next lemma. Lemma 4.1. Under the assumptions of Theorem 1.7, there holds

sup t 0 R d 1 + |y| 2 + ln |v(t, y)| 2 |v(t, y)| 2 dy + 1 τ (t) 2 ∇ y v(t) 2 L 2 (R d ) < ∞ and (4.6) ∞ 0 τ (t) τ 3 (t) ∇ y v(t) 2 L 2 (R d ) dt < ∞. Proof. Write E ent = R d |v| 2 ln |v| 2 + R d |y| 2 |v| 2 ,
and

R d |v| 2 ln |v| 2 = |v|>1 |v| 2 ln |v| 2 + |v|<1 |v| 2 ln |v| 2 .
We have

E + := E kin + λ |v|>1 |v| 2 ln |v| 2 + λ R d |y| 2 |v| 2 E(0) + λ |v|<1 |v| 2 ln 1 |v| 2 •
The last term is controlled by

|v|<1 |v| 2 ln 1 |v| 2 R d |v| 2-ǫ ,
for all ǫ > 0. We conclude thanks to the estimate (2.3) with α = 1:

R d |v| 2-ǫ v 2-(1+d/2)ǫ L 2 yv dǫ/2 L 2 ,
for 0 < ǫ < 4/(d + 2). This implies

E + 1 + E dǫ/4 + ,
and thus

E + ∈ L ∞ (R).
Finally, (4.6) follows from (4.5), since E(t) 0 for all t 0.

4.2.

Convergence of some quadratic quantities. Let us prove (1.6), as stated in the next lemma.

Lemma 4.2. Under the assumptions of Theorem 1.7, there holds

R d   1 y |y| 2   |v(t, y)| 2 dy -→ t→∞ R d   1 y |y| 2   γ 2 (y)dy . Proof. Introduce I 1 (t) := Im R d v(t, y)∇ y v(t, y)dy , I 2 (t) := R d y|v(t, y)| 2 dy .
We compute:

(4.7) İ1 = -2λI 2 , İ2 = 1 τ 2 (t) I 1 .
Set Ĩ2 := τ I 2 : we have Ï2 = 0, hence (unless the data are well prepared in the sense that I 1 (0) = 0)

I 2 (t) = 1 τ (t) İ2 (0)t + Ĩ2 (0) = 1 τ (t) (-I 1 (0)t + I 2 (0)) ∼ t→∞ c √ ln t ,
and

I 1 (t) ∼ t→∞ c t √ ln t • In particular, R d y|v(t, y)| 2 dy -→ t→∞ 0 = R d yγ(y) 2 dy .
In order to obtain estimates for higher order quadratic observables, we observe that Cauchy-Schwarz inequality and Lemma 4.1 yield Im v(t, y)y • ∇ y v(t, y)dy τ (t).

We now go back to the conservation of energy for u, d dt

1 2 ∇u(t) 2 L 2 + λ R d |u(t, x)| 2 ln |u(t, x)| 2 dx = 0 .
and translate this property into estimates on v, recalling the mass conservation for v stated in (4.3).

d dt E kin + ( τ ) 2 2 |y| 2 |v| 2 - τ τ Im v(t, y)y • ∇ y v(t, y)dy + λ |v| 2 ln |v| 2 -λd ln τ |v| 2 + 2λ γ 2 L 2 ln u 0 L 2 γ L 2 = 0 .
In the above expression, all the terms are bounded functions of time, but possibly three: from the above estimate, the third term is O( τ ) = O( √ ln t), while the terms

( τ ) 2 2 |y| 2 |v| 2 and -λd ln τ |v| 2
are of the same order, O(ln t). We infer

( τ ) 2 2 |y| 2 |v| 2 -λd ln τ |v| 2 = O √ ln t . Integrating (1.3), we find ( τ ) 2 2 = 2λ ln τ , hence |y| 2 |v| 2 - d 2 v 2 L 2 = O 1 √ ln t ,
and the lemma is proved.

At this stage, we therefore have proved Theorem 1.7, up to the final point regarding the asymptotic profile for |v| 2 .

End of the proof of Theorem 1.7

In this section we conclude the proof of Theorem 1.7 by obtaining the weak convergence to a universal profile as stated in (1.7). 5.1. Hydrodynamical approach. We recall that the Madelung transform is a classical tool (see e.g. [START_REF] Madelung | Quanten theorie in Hydrodynamischer Form[END_REF][START_REF] Landau | Tome III: Mécanique quantique. Théorie non relativiste[END_REF][START_REF] Gasser | Quantum hydrodynamics, Wigner transforms and the classical limit[END_REF], or the survey [12]) to relate the (nonlinear) Schrödinger equation to fluid dynamics equations, via the change of unknown (5.1) v(t, y) = a(t, y)e iφ(t,y) , a, φ ∈ R .

Formally one obtains in our case the system of equations (5.2)

       ∂ t φ + 1 2τ 2 |∇ y φ| 2 + λ ln a γ 2 = 1 2τ 2 ∆ y a a ∂ t a + 1 τ 2 ∇ y φ • ∇ y a + 1 2τ 2 a∆ y φ = 0 ,
which is easily related to the compressible Euler equations by using the change of unknown (5.3) ρ := a 2 , Λ := a∇φ , J := aΛ .

Note that in the explicit case of Gaussian initial data studied in Section 3, ρ is bounded in Sobolev spaces uniformly in time, whereas Λ and J are unbounded as t → ∞. In terms of these hydrodynamical variables, the above system becomes (5.4)

           ∂ t ρ + 1 τ 2 ∇ • J = 0 ∂ t J + 1 τ 2 ∇ • (Λ ⊗ Λ) + λ∇ρ + 2λyρ = 1 4τ 2 ∆∇ρ - 1 τ 2 ∇ • (∇ √ ρ ⊗ ∇ √ ρ) ∂ j J k -∂ k J j = 2Λ k ∂ j √ ρ -2Λ j ∂ k √ ρ , j, k ∈ {1, . . . , d} .
Note that in the case where the initial data for (5.4) are well prepared, in the sense that they stem from the polar decomposition of an initial wave function as in (5.1)-(5.3), then the approach from [START_REF] Antonelli | On the finite energy weak solutions to a system in quantum fluid dynamics[END_REF][START_REF]The quantum hydrodynamics system in two space dimensions[END_REF] (see also [12,Section 5]) can readily be adapted to show that (5.4) holds true in the distributional sense, thanks to a suitable polar factorization technique. However, we will see below that the Madelung transform can be by-passed thanks to a more direct approach, where (5.1) is not invoked. We shall prove that

ρ(t) ⇀ t→∞ γ 2 weakly in L 1 (R d ) .
This will stem from the fact that the weak limit of ρ evolves according to a Fokker-Planck operator. We note that a formal link between the hydrodynamical formulation of (1.1) and the Fokker-Planck equation can be found in [START_REF] López | A hydrodynamic approach to multidimensional dissipation-based Schrödinger models from quantum Fokker-Planck dynamics[END_REF][START_REF] Guerrero | A wavefunction description of quantum Fokker-Planck dissipation: derivation and numerical approximation of transient dynamics[END_REF].

5.2. Heuristics. Let us explain the heuristics of the proof, which will be made rigorous in the next section. Formally only retaining the higher order terms (in terms of growth in time) in (5.4) we are led to studying the following simple model (5.5)

   ∂ t ρ + 1 τ 2 ∇ • J = 0 ∂ t J + λ∇ρ + 2λyρ = 0 .
Note that in the explicit case of the evolution of a Gaussian (recall the computations of Section 3), we can check that in the above simplification, we have indeed eliminated negligible terms. By elimination of J, (5.5) implies that

∂ t τ 2 ∂ t ρ = λ∇ • (∇ + 2y) ρ = λLρ , where L := ∆ y + ∇ y • (2y •)
is a Fokker-Planck operator. On the other hand, Then again discarding formally lower order terms we find

∂ t τ 2 ∂ t ρ = τ 2 ∂ 2 t ρ + 2 τ τ ∂ t ρ , so since τ 2 ≪ ( τ τ ) 2 ,
∂ s ρ = Lρ ,
for which it is well-known (see for instance [START_REF]Global stability of vortex solutions of the two-dimensional Navier-Stokes equation[END_REF]) that in large times the solution converges strongly to an element of the kernel of L, hence a Gaussian. Notice that the convergence is exponentially fast in s variables, so returning to t variables produces a logarithmic decay due to (5.7): we recover the logarithmic convergence rate observed in the Gaussian case (Section 3).

The difficulty to make this argument rigorous is the justification that the lower order terms may indeed be discarded, since we have very little control on higher norms on v to guarantee compactness in space of the solution: we have more precisely a sharp control of the momenta of v, but rather poor estimates in H 1 . More precisely, we do expect v to oscillate rapidly in time (in view of the Gaussian case), but √ ρ should be bounded in H 1 , a property that does not seem easy to prove (because of the prefactor 1/τ 2 in the equation). This is the main obstacle to proving strong convergence to a Gaussian in the general case, and explains why in the end we only obtain a weak convergence result in L 1 . This is made precise in the next section. When (5.1) is available, this definition is equivalent to (5.3), but it has the advantage of being completely rigorous for free. We then have (5.9)

     ∂ t ρ + 1 τ 2 ∇ • J = 0 ∂ t J + λ∇ρ + 2λyρ = 1 4τ 2 ∆∇ρ - 1 τ 2 ∇ • Re (∇v ⊗ ∇v) . By elimination of J, ∂ t τ 2 ∂ t ρ = -∂ t ∇ • J = λLρ - 1 4τ 2 ∆ 2 ρ - 1 τ 2 ∇ • (∇ • Re (∇v ⊗ ∇v)) , with again L := ∆ + ∇ • (2y •).
With the change of variable (5.6) we introduce the notation ρ(s(t), y) := ρ(t, y), and we find for ρ the following equation:

(5.10) ∂ s ρ - 2λ ( τ ) 2 ∂ s ρ + λ ( τ ) 2 ∂ 2 s ρ = L ρ - 1 4λτ 2 ∆ 2 ρ - 1 λτ 2 ∇ • (∇ • Re (∇ṽ ⊗ ∇ v)) ,
where one should keep in mind that the functions τ and τ also have undergone the change of time variable. In terms of s, Lemma 1.6 yields

τ (s) ∼ s→∞ 2 √ λe 2s , τ (s) ∼ s→∞ 2 √ λe 2s+e 4s .
To make the discussion at the end of the previous subsection more precise, and explain why we prove a weak convergence only, we comment on the various terms in (5.10):

• The term 2λ ( τ ) 2 ∂ s ρ is essentially harmless in the large time limit, for it could be handled by a slight modification of the time variable, for instance.

• The term λ ( τ ) 2 ∂ 2 s ρ is expected to be negligible in the large time limit. However, it makes (5.10) second order in time: one would like to take advantage of the smoothing properties of e sL , by using Duhamel's formula typically, but this approach is delicate in this context. Note that it has been established before that in similar situations, the parabolic behavior gives the leading order large time dynamics, even if the coefficient of ∂ 2 s ρ is not asymptotically vanishing ( [START_REF] Gallay | Scaling variables and asymptotic expansions in damped wave equations[END_REF]): the proof of this fact relies on energy estimates whose analogue in the case of (5.10) we could not establish.

• By using the Fourier transform in space, it is easy to compute the fundamental solution of

∂ s ρ = L ρ - 1 4λτ 2 ∆ 2 ρ ,
in the same way as [START_REF] Gallay | Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticity equations on R 2[END_REF] (without the last term).

• A possible idea to prove that the solution to (5.10) converges (strongly) to the Gaussian γ 2 as s → ∞ would be to use the spectral decomposition of L, as given for instance in [START_REF] Gallay | Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticity equations on R 2[END_REF]. The main issue is then that we can control the last term in (5.10) in L 1 -based spaces, as opposed to L 2 where the spectral decomposition is available. Note that this term is the only one that prevents (5.10) from being a linear, homogeneous, equation.

In terms of s, the time integrability property of E kin provided in (4.6) becomes

(5.11) ∞ 0 τ (s) τ (s) 2 ∇ṽ(s) 2 L 2 ds < ∞ .
On the other hand, Lemma 4.1 yields (5.12) sup

s 0 R d ρ(s, y) 1 + |y| 2 + | ln ρ(s, y)| dy < ∞ .
Mimicking the general approach of e.g. [START_REF] Desvillettes | Convergence to equilibrium in large time for Boltzmann and B.G.K. equations[END_REF][START_REF] Feireisl | Large-time behaviour of solutions to the Navier-Stokes equations of compressible flow[END_REF], for s ∈ [-1, 2] and s n → ∞, set ρn (s, y) := ρ(s + s n , y) .

From (5.12) along with the de la Vallée-Poussin and Dunford-Pettis Theorems, we get up to extracting a subsequence ρn ⇀ ρ∞ in L p s (-1, 2; L 1 y ) , for all p ∈ [1, ∞). Up to another subsequence, ρn (0) ⇀ ρ0,∞ in L 1 y . Moreover thanks to (5.12) the family (ρ(s n , •)) n is tight and hence ρ0,∞ (y) dy = γ(y) 2 dy , and there holds also

R d ρ0,∞ (y) 1 + |y| 2 + | ln ρ0,∞ (y)| dy < ∞ . Property (5.11) implies that 1 λτ 2 n ∇ • (∇ • Re (∇ṽ n ⊗ ∇ vn )) ⇀ 0 in L 1 s W -2,1
, where τ n (s) = τ (s + s n ).

In addition, in (5.10), all the other terms but two obviously go weakly to zero, which yields (5.13)

∂ s ρ∞ = L ρ∞ in D ′ (-1, 2) × R d , ρ∞|s=0 = ρ0,∞ ∈ L 1 .
Thanks to the above bounds on ρ0,∞ it is known (see for instance [7, Corollary 2.17]) that the solution ρ∞ to (5.13) is actually defined for all s 0 and satisfies

(5.14) lim s→∞ ρ∞ (s) -γ 2 L 1 (R d ) = 0 .
We now go back to (5.9) and show that ρ∞ is independent of s. In the s variable, we have 

(5.15)      ∂ s ρ + τ λτ ∇ • J = 0 ∂ s J + τ τ (∇ + 2y) ρ - τ 4λτ ∇∆ρ = - τ λτ ∇ • Re (∇ṽ ⊗ ∇ v) . Since J = Im v∇ y v, (5.11) implies τ τ J ∈ L 2 s L 1 y . With Jn := J(s + s n ), we have τ τ ∇ • Jn -→ n→∞ 0 in L 2 (-1, 2; W -1,1
(R d ) .
Theorem 1.7 is proved.

6. Proof of the corollaries 6.1. Proof of Corollary 1.10. In the energy for u, write the potential energy in terms of v.

R d |u(t, x)| 2 ln |u(t, x)| 2 dx = -d ln τ (t) u 0 2 L 2 γ 2 L 2 R d |v(t, y)| 2 dy + u 0 2 L 2 γ 2 L 2 R d |v(t, y)| 2 ln u 0 2 L 2 γ 2 L 2 |v(t, y)| 2 dy = -d u 0 2 L 2 ln τ (t) + O( 1 
), from (1.5). Therefore, the conservation of the energy for u yields ∇u(t) The idea is then to apply a fractional derivative to (1.4), that is

u(t, x) = 1 τ (t) d/2 v t, x τ (t) u 0 L 2 γ L 2 exp i τ (t) τ (t) |x| 2 2 .
In order to shortcut this step, we recall a lemma employed in a somehow similar situation, even though in the context of semi-classical limit. We therefore simplify the initial statement and leave out the dependence on the semi-classical parameter: Lemma 6.1 (Lemma 5.1 from [START_REF] Alazard | Loss of regularity for super-critical nonlinear Schrödinger equations[END_REF]). There exists

C such that if u ∈ H 1 (R d ) and w is such that ∇w ∈ L ∞ (R d ), |w| s u L 2 u Ḣs + (∇ -iw)u s L 2 u 1-s L 2 + C (1 + ∇w L ∞ ) u L 2 .
In [START_REF] Alazard | Loss of regularity for super-critical nonlinear Schrödinger equations[END_REF], w corresponds to the gradient of rapid oscillations carried by an exponential, so we naturally introduce

w(t, x) = τ (t) τ (t)
x.

In the present framework, Lemma 6.1 yields:

( τ ) s |y| s v(t) L 2 u 0 L 2 γ L 2 u(t) Ḣs + 1 τ ∇v(t) s L 2 u 0 L 2 γ s L 2 + C 1 + τ τ u 0 L 2 .
The result follows readily: the behavior of the left hand side is given by Lemma 1.6 and (6.1), and all the terms of the right hand side are bounded, but the first one. 

u 0 (x) = b 0 exp -a 0 (x -x 0 ) 2 /2 ,
with b 0 , a 0 ∈ C, Re a 0 = α 0 > 0. We start with an initial center x 0 to show that in terms of v, the center is eventually zero (like in [START_REF]Global stability of vortex solutions of the two-dimensional Navier-Stokes equation[END_REF]). Recall that we have

u(t, x) = b 0 1 r(t) e iφ(t) exp -α 0 (x -x 0 ) 2 2r 2 (t) + i ṙ(t) r(t) (x -x 0 ) 2 2 ,
with r solution to (3.9), r(0) = 1, ṙ(0) = -Im a 0 . We thus have, since where we have used the properties of the solutions to (3.9) and (1.3), established in Section 3. The end of the corollary simply stems from the Csiszár-Kullback inequality (4.4).

u 0 L 2 = |b 0 | π α 0 1/

Stability of the dynamics under a power-like perturbation

In this section, we give the main arguments to adapt the previous proofs in the case of (1.13), ), thanks to Strichartz estimates (see e.g. [START_REF]Semilinear Schrödinger equations[END_REF][START_REF] Ginibre | An introduction to nonlinear Schrödinger equations[END_REF]). To see that the solution is global in time for fixed ε > 0 and satisfies estimates which are uniform in ε, we notice that the momentum I ε,1 = x 2 |u ε (t, x)| 2 dx is controlled exactly like in Subsection 2.1. On the other hand, we compute d dt

1 2 ∇u ε 2 L 2 + λ |u ε | 2 ln ε + |u ε | 2 + µ σ + 1 |u ε | 2σ+2 = λ |u ε | 2 ε + |u ε | 2 ∂ t |u ε | 2 ,
and since ∂ t |u ε | 2 = -Im(ū∆u), Gronwall's lemma yields estimates which are uniform in ε > 0, as desired, and we conclude like in Subsection 2.1.

We note that the uniqueness argument used in the case µ = 0 can be repeated provided that u(t, •) ∈ L ∞ (R d ), which is granted if d = 1 by Sobolev embedding. We cannot conclude "as usual" thanks to Strichartz estimates (case λ = 0), since the logarithmic nonlinearity is not Lipschitz, and so uniqueness is not clear for d 2.

7.2. Estimates for v. We note that in the presence of a power-like nonlinearity, we can no longer rely on explicit computations in the case of Gaussian initial data. This is not a problem, since the main role of the explicit computations was to suggest the change of unknown function u(t, x) = 1 τ (t) µ .

We simply note that μ > 0, and the numerical value of µ is unimportant. Like before, the previous two terms can be absorbed by a gauge transform, and we consider

i∂ t v + 1 2τ (t) 2 ∆ y v = λv ln v γ 2 + μ τ dσ |v| 2σ v , v |t=0 = v 0 .
Noticing that the pseudo-energy The convergence of the momenta (Lemma 4.2) is adapted in a straightforward manner as well: the system (4.7) which yields the convergence of the first momentum remains the same, and the convergence of the momentum of order two follows from the same argument.

E(t) = 1 2τ (t) 2 ∇ y v(t)
7.3. Hydrodynamics. To prove the weak convergence of |v| 2 to γ 2 , we mimic the proof presented in Section 5. Essentially, one new term appears in (5.9),

     ∂ t ρ + 1 τ 2 ∇ • J = 0 ∂ t J + λ∇ρ + 2λyρ = 1 4τ 2 ∆∇ρ - 1 τ 2 = ∇ • Re(∇v ⊗ ∇v) = - μ τ dσ σ σ + 1 ∇ ρ σ+1 .
Working with the time variable s defined in (5.6), the last two terms vanish in the large time weak limit: the term in |∇v| 2 thanks to (4.6) (like before), and the last term thanks to (7.1) (in the same fashion).

7.4. Growth of Sobolev norms. To prove the final part of Theorem 1.12, we can resume exactly the same arguments as in the proof of Corollary 1.10.

Theorem 3 . 1 .a 0j x 2 j

 312 Let λ > 0, and consider the initial data (3.1) u 0 (x) = b 0 expwith b 0 , a 0j ∈ C, α 0j = Re a 0j > 0. Then the solution u to (1.1) is given by

2 =

 2 λb ln |b| 2 , b |t=0 = b 0 . (3.6)

5. 3 .

 3 End of the proof. Let us follow the steps of the previous paragraph, this time neglecting no term. First, we rewrite (5.4) by using a more direct, and rigorous, derivation of a hydrodynamical system. Instead of the definition (5.3), relying on (5.1) (which in turn demands a rigorous justification of the polar decomposition), we set(5.8) ρ := |v| 2 , J := Im (v∇v) .

6. 2 .

 2 Proof of Corollary 1.11. In view of the tensorization in Theorem 3.1, we prove Corollary 1.11 in the case d = 1 to lighten the notations, and we assume

i∂ t u + 1 2 7 . 1 .

 271 ∆u = λu ln(|u| 2 ) + µ|u| 2σ u , u |t=0 = u 0 . Construction of the solution. To show that (1.13) has a solution u ∈ L ∞ loc (R; Σ) whose mass, angular momentum and energy as conserved, we can follow exactly the same strategy as in Subsection 2.1, and consider the family of functions u ε solution toi∂ t u ε + 1 2 ∆u ε = λu ε ln(ε + |u ε | 2 ) + µ|u ε | 2σ u ε , u ε|t=0 = u 0 .For fixed ε > 0, the above equation has a unique, local, solution u ∈ C([-T, T ]; Σ)∩ L 4σ+4 dσ ([-T, T ]; L 2σ+2

  1.3.2. Long time behavior. We show that three new features characterize the dynamics associated to (1.1):• The standard dispersion of the Schrödinger equation, in t -d/2 , is altered

	by a logarithmic factor, in t	√ ln t	-d/2

  it is natural to change scales in time and define s such that

				τ τ λ	∂ t = ∂ s ,		
	or in other words define the following change of variables:
	(5.6)	s =	λ τ τ	=	τ 2 τ =	1 2	ln τ (t) .
	Notice that						
	(5.7)	s ∼	1 4	ln ln t , t → ∞ .

  [START_REF] Antonelli | On the finite energy weak solutions to a system in quantum fluid dynamics[END_REF] and γL 2 = π 1/4 ,

	Therefore, the relative entropy is	
	E ent (t) =	R	|v(t, y)| 2 ln	|v(t, y)| 2 γ 2 (y)	dy
			= ln	√ α 0	τ (t) r(t)	v 0	2 L 2 -α 0	τ (t) 2 r(t) 2 -1	R	y 2 |v(t, y)| 2 dy
			+ 2α 0 x 0		τ (t) r 2 (t) R	y|v(t, y)| 2 dy -α 0	x 2 0 r 2 (t)	v 0	2 L 2 -→
	v(t, y) =	b 0 |b 0 |	α 1/4 0		τ (t) r(t)	e iφ(t) exp -α 0 × exp i τ 2 r 2 y 2 2	+ α 0 ṙ r -τ r 2 yx 0 -α 0 τ τ τ 2 y 2 2 -i	x 2 0 2r 2 ṙ r τ yx 0 + i	ṙ r	x 2 0 2	.
	In particular,								
		|v(t, y)| 2 =	τ (t) r(t)	√ α 0 exp -α 0	τ 2 r 2 y 2 + 2α 0	τ r 2 yx 0 -α 0	x 2 0 r 2 .

t→∞ 0 ,

  2 L 2 +λ |v| 2 ln

							v(t, y) γ(y)	2	dy+	μ (σ + 1)τ (t) dσ	|v(t, y)| 2σ+2 dy
	satisfies						
	Ė = -2	τ τ	×	1 2τ (t) 2 ∇ y v(t) 2 L 2 -dσ	τ τ	×	μ (σ + 1)τ (t) dσ v(t) 2σ+2 L 2σ+2 ,
	Lemma 4.1 is readily generalized to this case, with in addition
					sup t 0	1 τ (t) dσ v(t) 2σ+2 L 2σ+2 < ∞ ,
	and property (4.6) is enriched with the extra estimate
	(7.1)			0	∞	τ (t) τ (t) dσ+1 v(t) 2σ+2 L 2σ+2 dt < ∞ .
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