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Controllers for the locomotion of legged robots often face challenges regard-
ing their optimization towards different objectives and different terrains. We
propose an architecture that uses the information gathered in an exploration
phase to adapt to a terrain with unknown characteristics. In the exploration
phase virtual simulations are used to optimize the parameters of the controller
in different terrains. The results of this optimization are used to identify the
unknown terrain characteristics, and these values are used to select the best
parameters for this particular terrain. The approach was tested in simulation,
on terrains with variable friction, on an iCub robot, against a naive approach,
and another where the friction was identified at random, and it clearly outper-
formed in both cases.
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1. Introduction

Locomotion is an essential skill for humanoids, and it has nonlinear and

discontinuous dynamics. The task of walking also does not uniquely specify

how the limbs must be coordinated in order to achieve the desired dis-

placement of the robot, making it a problem with many solutions. This two

factors mean that designing and tuning a controller that is “good”, even if

it is not optimal, may be difficult. On top of this, the user may want the

locomotion optimized towards objectives like speed or energy consumption,

and the terrain in which the robot walks can present certain characteristics

(e.g. roughness, slopes) that make it harder to walk on.1 In this context,
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the controller’s parameters that result in the desired solutions are some-

times hard or impossible to find analytically, and tuning them manually,

through experimentation, results in a lengthy and cumbersome trial and

error process, and sometimes in sub-optimal controllers.

We propose a method that uses information from several simulations to

adapt the locomotion task of a robot on a terrain with unknown character-

istics, as well as to different goals prioritized by the user (e.g. speed). The

method is separated in two distinct phases: an exploration phase, which is

longer and done in preparation to the adaptation phase, which should be

quick, taking no more than a couple of minutes. In the exploration phase

thousands of simulations are performed, resulting in a large amount of in-

formation that can be used in the next phase. The simulations are guided

by an optimization algorithm that does not rely on an analytical analysis

of the locomotion. In the adaptation phase the robot walks in an unknown

terrain it has to adapt to. The behavior observed in that terrain is com-

pared to the results from the exploration phase, and a set of parameters

that results in an optimal or near-optimal behavior is selected. In the conti-

nuity of this paper this method is presented, along with some experiments

that were conducted to test it.

2. Related Work

Naive, manual hand-tuning of locomotion controllers tends to lead to non-

robust or sub-optimal controllers. An alternative approach is doing an an-

alytical study of the dynamics of the robot’s locomotion.2,3 These studies

can be very complex and computationally expensive to conduct, and there

is no general framework that is applicable to every case. When an analytic

approach is impractical, the information needed for the optimization of the

controllers’ parameters may be gathered by experimentation that provides

information for stochastic and derivative-free methods, usually requiring

thousands of evaluations. Some examples of these methods employed in

robotics control optimization are Genetic Algorithms (GAs),4,5 Covariance

Matrix Adaptation (CMA),6 and Particle Swarm Optimization (PSO).7

Like the optimization towards different objectives, solutions for the

adaptation required by terrain changes vary in their complexity and ap-

proach. Some examples are: a linear interpolation between control tables;2

designing the control system from the start to comply with expected neces-

sary conditions for stable dynamic walking on uneven terrain;8 and using a

reflex mechanism as feedback that will change the step length while walking

in a slope.9 More recently, Cully et al.10 introduced an intelligent trial and
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error algorithm that uses the information from a map of high-performance

locomotion behaviors to discover a compensatory behavior that works in

spite of damage to the robot.

Because it optimizes the control parameters without sensory feedback,

or internal feedback from the controller, this last approach is more general

than the previous ones, allowing it to be implemented in different controllers

and robots, without having to be fundamentally changed. Our proposed

method is similar in these general aspects.

3. Methods

We propose a method that uses information from several simulations to

adapt the locomotion task of a robot to a specific terrain. The simulations

are done in virtual terrains with different values of modeled variable(s), in

what is called the exploration phase.

Different sets of parameters for a given controller are a tentative solution

x for the task of walking. The solutions are evaluated terrains with variable

parameters (e.g. friction, slope) θ, resulting in observed behavioral features

of the locomotion (e.g. speed, applied torque) f(x, θ). In the exploration

phase the control of the robot is simulated with different solutions and in dif-

ferent terrains, saving the results in a training data set Dt = {x, θ, f(x, θ)}.

The solutions are selected by a multi-objective, evolutionary, optimization

algorithm that takes into account the resulting features from previous tests,

and selects new solutions in order to optimize some of them.

The adaptation phase (see Figure 1) involves identifying the variable of

a terrain with unknown characteristics. From the exploration phase, various

data sets are obtained Dt1 ,Dt2 ...Dtn , one for each n values of terrain pa-

rameters tested (Dθ = {θ1, θ2...θn}). From each data set a list of solutions

optimal towards different locomotion optimization objectives is selected,

and are then all combined into one single list Dx. The next step is to test all

the solutions from Dx in the different terrain parameters from Dθ, in order

to obtain a data set that contains the optimal solutions across all terrains

tested. This is defined as Dtopt = {Dx,Dθ, f(x, θ) | ∀x ∈ Dx, ∀θ ∈ Dθ}.

The most important step of the adaptation phase is the identification of

the unknown variable of the terrain the locomotion is adapted to. To this

end, a solution is picked from Dtopt , one that maximizes the variation in

resulting locomotion features across the n values of θ tested for previously,

making it more likely to correctly identify the terrain in the next step,
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Fig. 1. Architecture of the identification phase.

xs = argmax
x

{Var({f(x, θ)∀θ ∈ Dθ})}. (1)

This solution, defined as xs, is then tested in the terrain with unknown

parameter θnew. The resulting features f(xs, θnew) are compared with the

ones resulting from the tests of xs with each of the values from Dθ, by

calculating the Euclidean norm of these vectors

θid = argmin
θ

{ �f(xs, θ)− f(xs, θnew)� ∀θ ∈ Dθ }. (2)

The value of the terrain parameter associated with the most similar

features is selected as the estimated value for the new terrain, θid. With

the value of the parameter that defines the terrain estimated, from the data

set of optimal solutions Dtopt a solution xf is chosen, so that it is optimal

in regards to the performance indicators with higher priority,

xf = argmax
x

{ f(x,θid), ∀x ∈ Dx }. (3)
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4. Experiments and Results

The method was tested in simulations on an iCub robot,11 in a simulation

framework called XDE, developed by CEA-LIST.12 The controller used for

the locomotion control is one that organizes tasks in a hierarchy, with the

main task for walking based on a Zero Moment Point (ZMP) predictive

control.13 For the exploration a multi-objective Genetic Algorithm called

NSGA-II was used, implemented in the EA framework SFERESv2.14 The

locomotion controller was optimized towards higher speeds and a lower total

of torque applied by the joints, as well as two stability measures.

The controller was optimized to walk forward for 20 seconds, by chang-

ing the values of seven parameters: length, width, and height of the steps,

time taken for each step, the ratio between the swing and support phases of

the steps, the time horizon of the ZMP controller, and the friction coefficient

estimated for the controller. The locomotion features optimized for were

the speed of the robot (maximized), the total torque applied by the joints,

squared (minimized) a, the maximum friction coefficient observed between

the feet and the ground (minimized) and the average error of the ZMP

trajectory tracking. The optimization was conducted for different values of

floor friction (0.05, 0.10, 0.25, 0.50, 0.75, 1.00, 1.25 and 1.50), simulated

using the Coulomb model. NSGA-II ran, for each friction value tested, 100

generations, for a population size of 100. Runs which ended with a con-

troller failure, resulting in a robot fall, were considered has having fitness

penalties for the distance and torque objectives. The objective of this phase

was to have a set of controllers that were optimal, or near-optimal, for the

four different objectives. This set is built by selecting the pareto optimal

solutions, i.e. the set of the best trade-off solutions.

For the adaptation phase, our methods was tested for different friction

values, comparing the results with a naive approach and a random one. In

the naive approach, the solution that is best suited for our objectives was

selected ignoring the terrain parameter. In the random approach, a value

of friction coefficient was randomly selected, instead of being identified.

The three approaches were tested for different hierarchies of priorities

of locomotion objectives, that define how xf is chosen in the last step of

the adaptation. The solutions from Dx are filtered at four stages, according

to their performance in the terrain defined by θid. At each stage a number

a

tf�

0

τ⊤τdt. τ is the vector of the joints’s torques and tf the final time stamp of the

simulation.
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of solutions are kept according to their performance regarding one of the

objectives. The hierarchy is defined as an order of the four objectives that

defines which performances are looked at in each stage, and a percentile

assigned to each objective that defines the percentage of solutions kept in

each stage. Two hierarchies were tested for: one referred to as balanced,

which prioritizes first the torque with the 70th percentile, then the speed

with the 70th, and then the controller’s friction estimation with the 50th;

the second one prioritizes speed to the 100th percentile, which results in

ignoring the other indicators.

Each approach was tested by having them adapt to the robot walking in

a terrain with a given value of friction. The values of friction tested for were

from 0.05 to 2.00, with intervals of 0.05 (extremes included). The results for

each approach were compared with a Wilcoxon test, which can take results

from two different approaches and assesses if their performances differs. It

uses ranks to compare the difference between each matched pair (in our

case pairs of results for the test of the same friction value in different ap-

proaches). The lowest differences having a rank of 1, and higher differences

result in higher ranks and lower p-values.

Table 1 shows the Wilcoxon test applied to the speed and torque fea-

tures of the locomotion. The pairs compared were the performances that

two approaches presented for a given friction value. Better performance

is expressed as higher sums of rank for the speed feature, and lower for

the torque feature. ”Winning“ statistically significant values are in bold. A

p-value lower than 0.05 means that the null hypothesis that the two ap-

proaches performed on a comparative level can be rejected. Table 2 shows

information regarding the success rate (a failure is defined as when the robot

falls) of each approach for each priority hierarchy, as well as the average

speed and torque squared per second. The best values for each hierarchy

group are in bold font.

From Table 1, and regarding speed, our approach showed higher perfor-

mance for both priority hierarchies, against both the naive and the random

approach. Its torque values are generally worse (higher) but the only sta-

tistically significant instances are one in which they are better and other in

which they are worse. Looking at Table 2, our identification approach had

a higher success rate in both priority hierarchies, as well as higher average

speeds and lower average total torque squared per second.
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Table 1. Wilcoxon test results for our approach (ID) against random and naive
approaches, speed and torque features.

Objectives Feature Approach Ranks sum ID Ranks sum other p-value

Balanced Speed Random 589 221 0.0143

Balanced Speed Naive 820 0 0.0000

Speed Speed Random 595 224 0.0123

Speed Speed Naive 571 243 0.0261

Balanced Torque Random 558 252 0.0573
Balanced Torque Naive 667 153 0.0006

Speed Torque Random 430 389 0.8125
Speed Torque Naive 146 668 0.0006

Table 2. Success rates and average values of performance indicators for the
adaptation phase tests.

Approach Objectives Success % Average speed Average torque
squared per second

(m/s) (N2.m2/s)

ID Balanced 95.0 0.1020 422.44

Random Balanced 92.5 0.0936 567.28
Naive Balanced 85.0 0.0672 453.46

ID Speed 80.0 0.2676 691.36

Random Speed 72.5 0.2563 716.65
Naive Speed 55.0 0.2531 1102.63

5. Conclusions

Given these results, we conclude that the exploration, terrain parameter

modeling, and identification we proposed shows success in adaptation to ter-

rains with unknown characteristics, when compared with usual approaches

akin to manual optimization. The terrain parameter has to be modeled in

a specific way, and we only tested the approach for friction. In the future

we plan to use other variables. The approach also lacks the capability to

adapt to failed identifications, which is correlated with the fact that it does

not include feedback loops, and ignores a lot of the information gathered in

the exploration phase. We also plan to expand the method regarding this

areas, as well as testing it in a physical robot.
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Programa de Acções Universitárias Integradas Luso-francesas (PAUILF

2013/14/15). José Pontes is supported by FCT with a grant with refer-

ence UMINHO/BI/78/2012.

References

1. E. Westervelt, J. Grizzle, C. Chevallereau, J. H. Choi and B. Morris, Feedback
Control of Dynamic Bipedal Robot Locomotion., first edn. (CRC Press, 2007).

2. M. van de Panne, E. Fiume and Z. Vranesic, A controller for the dynamic
walk of a biped across variable terrain, in Proc. of IEEE CDC 1992 , (IEEE,
1992).

3. Y. Zheng and K. Yamane, Optimization and control of cyclic biped locomo-
tion on a rolling ball, in Proc. of IEEE-RAS Humanoids 2011 , (IEEE-RAS,
oct 2011).

4. L. Rodrigues, M. Prado, P. Tavares, K. Da Silva and A. Rosa, Simulation and
control of biped locomotion-GA optimization, in Proc. of IEEE CEC 1996 ,
(IEEE, 1996).

5. C. Paul and J. Bongard, The road less travelled: morphology in the optimiza-
tion of biped robot locomotion, in IROS 2001 - IEEE/RSJ , (IEEE, 2001).
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