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Abstract

For an odd prime p, we determine a minimal set of topological generators of the pro-p

Iwahori subgroup of a split reductive group G over Zp. In the simple adjoint case and for any

sufficiently large regular prime p, we also construct Galois extensions of Q with Galois group

between the pro-p and the standard Iwahori subgroups of G.

1 Introduction

Let p be an odd prime, let G be a split reductive group over Zp, fix a Borel subgroup B = U⋊T

of G with unipotent radical U ⊳ B and maximal split torus T ⊂ B. The Iwahori subgroup I and
pro-p-Iwahori subgroup I(1) ⊂ I of G(Zp) are defined [13, 3.7] by

I = {g ∈ G(Zp) : red(g) ∈ B(Fp)},

I(1) = {g ∈ G(Zp) : red(g) ∈ U(Fp)}.

where ‘red’ is the reduction map red: G(Zp) → G(Fp). The subgroups I and I(1) are both open
subgroups of G(Zp). Thus I = I(1) ⋊ Ttors and T(Zp) = T (1) × Ttors where T (1) and Ttors are
respectively the pro−p and torsion subgroups of T(Zp). Following [3] (who works with G = GLn),
we construct in section 2 a minimal set of topological generators for I(1).

More precisely, let M = X∗(T) be the group of characters of T, R ⊂ M the set of roots of T
in g = Lie(G), ∆ ⊂ R the set of simple roots with respect to B, R =

∐

c∈C Rc the decomposition
of R into irreducible components, ∆c = ∆ ∩ Rc the simple roots in Rc, αc,max the highest positive
root in Rc. We let D ⊂ C be the set of irreducible components of type G2 and for d ∈ D, we
denote by δd ∈ Rd,+ the sum of the two simple roots in ∆d. We denote by M∨ = X∗(T) the group
of cocharacters of T, by ZR∨ the subgroup spanned by the coroots R∨ ⊂ M∨ and we fix a set of
representatives S ⊂ M∨ for an Fp-basis of

(M∨/ZR∨)⊗ Fp = ⊕s∈SFp · s⊗ 1.
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We show (see theorem 2.4.1):
Theorem. The following elements form a minimal set of topological generators of the pro-p-

Iwahori subgroup I(1) of G = G(Qp):

1. The semi-simple elements {s(1 + p) : s ∈ S} of T (1),

2. For each c ∈ C, the unipotent elements {xα(1) : α ∈ ∆c},

3. For each c ∈ C, the unipotent element x−αc,max
(p),

4. (If p = 3) For each d ∈ D, the unipotent element xδd(1).

This result generalizes Greenberg [3] proposition 5.3, see also Schneider and Ollivier ([9], proposition
3.64, part i) for G = SL2.

Let Tad be the image of T in the adjoint group G
ad of G. The action of Gad on G induces an ac-

tion of Tad(Zp) on I and I(1) and the latter equips the Frattini quotient Ĩ(1) of I(1) with a structure
of Fp[T

ad
tors]-module, where T ad

tors is the torsion subgroup of Tad(Zp) (cf. section 2.12). Any element
β in ZR = Mad = X∗(Tad) induces a character β : T tors

ad → F×
p and we denote by Fp(β) the cor-

responding simple (1-dimensional) Fp[T
ad
tors]-module. With these notations, the theorem implies that

Corollary. The Fp[T
ad
tors]-module Ĩ(1) is isomorphic to

F♯S
p ⊕

(

⊕α∈∆ Fp(α)
)

⊕
(

⊕c∈C Fp(−αc,max)
)(

⊕
(

⊕d∈D Fp(δc)
)

if p = 3
)

.

Here ♯S is the cardinality of S. Suppose from now on in this introduction that G is simple and
of adjoint type. Then:

Corollary The Fp[Ttors]-module Ĩ(1) is multiplicity free unless p = 3 and G is of type A1, Bℓ

or Cℓ (ℓ ≥ 2), F4 or G2.

Let now K be a Galois extension of Q, Σp the set of primes of K lying above p. Let M be the
compositum of all finite p-extensions of K which are unramified outside Σp, a Galois extension over
Q. Set Γ = Gal(M/K), Ω = Gal(K/Q) and Π = Gal(M/Q). We say that K is p-rational if Γ is a
free pro−p group, see [6]. The simplest example is K = Q, where Γ = Π is also abelian and M is
the cyclotomic Zp-extension of Q. Other examples of p-rational fields are Q(µp) where p is a regular
prime.

Assume K is a p-rational, totally complex, abelian extension of Q and (p − 1) · Ω = 0. Then
Greenberg in [3] constructs a continuous homomorphism

ρ0 : Gal(M/Q) → GLn(Zp)

such that ρ0(Γ) is the pro-p Iwahori subgroup of SLn(Zp), assuming that there exists n distinct
characters of Ω, trivial or odd, whose product is the trivial character.

In section 3, we are proving results which show the existence of p-adic Lie extensions of Q where
the Galois group corresponds to a certain specific p-adic Lie algebra. More precisely, for p-rational
fields, we construct continuous morphisms with open image ρ : Π → I such that ρ(Γ) = I(1). We
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show in corollary 3.3.1 that

Corollary Suppose that K is a p-rational totally complex, abelian extension of Q and (p−1)·Ω =
0. Assume also that if p = 3, our split simple adjoint group G is not of type A1, Bℓ or Cℓ (ℓ ≥ 2),
F4 or G2. Then there is a morphism ρ : Π → I such that ρ(Γ) = I(1) if and only if there is
morphism ρ : Ω → Ttors such that the characters α ◦ ρ : Ω → F×

p for α ∈ {∆ ∪ −αmax} are all

distinct and belong to Ω̂S
odd.

Here Ω̂S
odd is a subset of the characters of Ω with values in F×

p (it is defined after proposition
3.2.1). Furthermore assuming K = Q(µp) we show the existence of such a morphism ρ : Ω → Ttors

provided that p is a sufficiently large regular prime (cf. section 3.2):

Corollary There is a constant c depending only upon the type of G such that if p > c is a reg-
ular prime, then for K = Q(µp), M , Π and Γ as above, there is a continuous morphism ρ : Π → I
with ρ(Γ) = I(1).

The constant c can be determined from lemmas 3.4.1, 3.4.2 and remark 3.4.3.
In section 2, we find a minimal set of topological generators of I(1) and study the structure

of Ĩ(1) as an Fp[T
ad
tors]-module. In section 3, assuming our group G to be simple and adjoint, we

discuss the notion of p-rational fields and construct continuous morphisms ρ : Π → I with open
image.

We would like to thank Marie-France Vignéras for useful discussions and for giving us the
reference [9]. We are also deeply grateful to Ralph Greenberg for numerous conversations on this
topic.

2 Topological Generators of the pro-p Iwahori

This section is organized as follows. In sections (2.1− 2.3) we introduce the notations, then section
2.4 states our main result concerning the minimal set of topological generators of I(1) (see theorem
2.4.1) with a discussion of the Iwahori factorisation in section 2.5. Its proof for G simple and simply
connected is given in sections (2.6− 2.10), where section 2.10 deals with the case of a group of type
G2. The proof for an arbitrary split reductive group over Zp is discussed in sections (2.11− 2.14).
In particular, section 2.14 establishes the minimality of our set of topological generators. Finally,
in section 2.15 we study the structure of the Frattini quotient Ĩ(1) of I(1) as an Fp[T

ad
tors]-module

and determine the cases when it is multiplicity free.

2.1 Let p be an odd prime, G be a split reductive group over Zp. Fix a pinning of G [11, XXIII
1]

(T,M,R,∆, (Xα)α∈∆) .

Thus T is a split maximal torus in G, M = X∗(T) is its group of characters,

g = g0 ⊕⊕α∈Rgα

is the weight decomposition for the adjoint action of T on g = Lie(G), ∆ ⊂ R is a basis of the root
system R ⊂ M and for each α ∈ ∆, Xα is a Zp-basis of gα.
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2.2 We denote by M∨ = X∗(T) the group of cocharacters of T, by α∨ the coroot associated to
α ∈ R and by R∨ ∈ M∨ the set of all such coroots. We expand (Xα)α∈∆ to a Chevalley system
(Xα)α∈R of G [11, XXIII 6.2]. For α ∈ R, we denote by Uα ⊂ G the corresponding unipotent
group, by xα : Ga,Zp

→ Uα the isomorphism given by xα(t) = exp(tXα). The height h(α) ∈ Z of
α ∈ R is the sum of the coefficients of α in the basis ∆ of R. Thus R+ = h−1(Z>0) is the set of
positive roots in R, corresponding to a Borel subgroup B = U⋊T of G with unipotent radical U.
We let C be the set of irreducible components of R, so that

R =
∐

c∈C

Rc, ∆ =
∐

c∈C

∆c, R+ =
∐

c∈C

Rc,+

with Rc irreducible, ∆c = ∆ ∩ Rc is a basis of Rc and Rc,+ = R+ ∩ Rc is the corresponding set of
positive roots in Rc. We denote by αc,max ∈ Rc,+ the highest root of Rc. We let D ⊂ C be the set
of irreducible components of type G2 and for d ∈ D, we denote by δd ∈ Rd,+ the sum of the two
simple roots in ∆d.

2.3 Since G is smooth over Zp, the reduction map

red : G(Zp) → G(Fp)

is surjective and its kernel G(1) is a normal pro-p-subgroup of G(Zp). The Iwahori subgroup I and
pro-p-Iwahori subgroup I(1) ⊂ I of G(Zp) are defined [13, 3.7] by

I = {g ∈ G(Zp) : red(g) ∈ B(Fp)} ,

I(1) = {g ∈ G(Zp) : red(g) ∈ U(Fp)} .

Thus I(1) is a normal pro-p-sylow subgroup of I which contains U(Zp) and

I/I(1) ≃ B(Fp)/U(Fp) ≃ T(Fp).

Since T(Zp) ։ T(Fp) is split by the torsion subgroup Ttors ≃ T(Fp) of T(Zp),

T(Zp) = T (1)× Ttors and I = I(1)⋊ Ttors

where
T (1) = T(Zp) ∩ I(1) = ker (T(Zp) → T(Fp))

is the pro-p-sylow subgroup of T(Zp). Note that

T (1) = Hom (M, 1 + pZp) = M∨ ⊗ (1 + pZp),

Ttors = Hom (M,µp−1) = M∨ ⊗ F×
p .

2.4 Let S ⊂ M∨ be a set of representatives for an Fp-basis of

(M∨/ZR∨)⊗ Fp = ⊕s∈SFp · s⊗ 1.

Theorem 2.4.1. The following elements form a minimal set of topological generators of the pro-
p-Iwahori subgroup I(1) of G = G(Qp):

1. The semi-simple elements {s(1 + p) : s ∈ S} of T (1).

2. For each c ∈ C, the unipotent elements {xα(1) : α ∈ ∆c}.

3. For each c ∈ C, the unipotent element x−αc,max
(p).

4. (If p = 3) For each d ∈ D, the unipotent element xδd(1).
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2.5 By [11, XXII 5.9.5] and its proof, there is a canonical filtration

U = U1 ⊃ U2 ⊃ · · · ⊃ Uh ⊃ Uh+1 = 1

of U by normal subgroups such that for 1 ≤ i ≤ h, the product map (in any order)

∏

h(α)=i

Uα → U

factors through Ui and yields an isomorphism of group schemes

∏

h(α)=i

Uα
≃

−→ Ui, Ui = Ui/Ui+1.

By [11, XXII 5.9.6] and its proof,

Ui(R) = Ui(R)/Ui+1(R)

for every Zp-algebra R. It follows that the product map

∏

h(α)=i

Uα ×Ui+1 → Ui

is an isomorphism of Zp-schemes and by induction, the product map

∏

h(α)=1

Uα ×
∏

h(α)=2

Uα × · · · ×
∏

h(α)=h

Uα → U

is an isomorphism of Zp-schemes. Similarly, the product map

∏

h(α)=−h

Uα ×
∏

h(α)=−h+1

Uα × · · · ×
∏

h(α)=−1

Uα → U
−

is an isomorphism of Zp-schemes, where U
− is the unipotent radical of the Borel subgroup B

− =
U

− ⋊T opposed to B with respect to T. Then by [11, XXII 4.1.2], there is an open subscheme Ω
of G (the “big cell”) such that the product map

U
− ×T×U → G

is an open immersion with image Ω. Plainly, B = U ⋊ T is a closed subscheme of Ω. Thus by
definition of I, I ⊂ Ω(Zp) and therefore any element of I (resp. I(1)) can be written uniquely as a
product

∏

h(α)=−h

xα(aα)× · · · ×
∏

h(α)=−1

xα(aα)× t×
∏

h(α)=1

xα(aα)× · · · ×
∏

h(α)=h

xα(aα)

where aα ∈ Zp for α ∈ R+, aα ∈ pZp for α ∈ R− = −R+ and t ∈ T(Zp) (resp. T (1)). This is
the Iwahori decomposition of I (resp. I(1)). If I+ is the group spanned by {xα(Zp) : α ∈ R+} and
I− is the group spanned by {xα(pZp) : α ∈ R−}, then I+ = U(Zp), I

− ⊂ U
−(Zp) and every x ∈ I

(resp. I(1)) has a unique decomposition x = u−tu+ with u± ∈ I± and t ∈ T(Zp) (resp. t ∈ T (1)).
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2.6 Suppose first that G is semi-simple and simply connected. Then M∨ = ZR∨, thus S = ∅.
Moreover, everything splits according to the decomposition R =

∐

Rc:

G =
∏

Gc, T =
∏

Tc, B =
∏

Bc, I =
∏

Ic and I(1) =
∏

Ic(1).

To establish the theorem in this case, we may thus furthermore assume that G is simple. From now
on until section 2.11, we therefore assume that

G is (split) simple and simply connected.

2.7 As a first step, we show that

Lemma 2.7.1. The group generated by I+ and I−contains T (1).

Proof. Since G is simply connected,

∏

α∈∆

α∨ :
∏

α∈∆

Gm,Zp
→ T

is an isomorphism, thus

Tc(1) =
∏

α∈∆

α∨(1 + pZp).

Now for any α ∈ ∆, there is a unique morphism [11, XX 5.8]

fα : SL(2)Zp
→ G

such that for every u, v ∈ Zp and x ∈ Z×
p ,

fα

(

1 u
0 1

)

= xα(u), fα

(

1 0
v 1

)

= x−α(v) and fα

(

x 0
0 x−1

)

= α∨(x).

Since for every x ∈ 1 + pZp [11, XX 2.7],

(

1 0
x−1 − 1 1

)(

1 1
0 1

)(

1 0
x− 1 1

)(

1 −x−1

0 1

)

=

(

x 0
0 x−1

)

in SL(2)(Zp), it follows that α∨(1 + pZp) is already contained in the subgroup of G(Zp) generated
by xα(Z

×
p ) and x−α(pZp). This proves the lemma.

2.8 Recall from [11, XXI 2.3.5] that for any pair of non-proportional roots α 6= ±β in R, the
set of integers k ∈ Z such that β + kα ∈ R is an interval of length at most 3, i.e. there are integers
r ≥ 1 and s ≥ 0 with r + s ≤ 4 such that

R ∩ {β + Zα} = {β − (r − 1)α, · · · , β + sα}.

The above set is called the α-chain through β and any such set is called a root chain in R. Let
‖−‖ : R → R+ be the length function on R.
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Proposition 2.8.1. Suppose ‖α‖ ≤ ‖β‖. Then for any u, v ∈ Ga the commutator

[xβ(v) : xα(u)] = xβ(v)xα(u)xβ(−v)xα(−u)

is given by the following table, with (r, s) as above:

(r, s) [xβ(v) : xα(u)]
(−, 0) 1
(1, 1) xα+β(±uv)
(1, 2) xα+β(±uv) · x2α+β(±u2v)
(1, 3) xα+β(±uv) · x2α+β(±u2v) · x3α+β(±u3v) · x3α+2β(±u3v2)
(2, 1) xα+β(±2uv)
(2, 2) xα+β(±2uv) · x2α+β(±3u2v) · xα+2β(±3uv2)
(3, 1) xα+β(±3uv)

The signs are unspecified, but only depend upon α and β.

Proof. This is [11, XXIII 6.4].

Corollary 2.8.2. If r + s ≤ 3 and α + β ∈ R (i.e. s ≥ 1), then for any a, b ∈ Z, the subgroup of
G generated by xα(p

aZp) and xβ(p
bZp) contains xα+β(p

a+bZp).

Proof. This is obvious if (r, s) = (1, 1) or (2, 1) (using p 6= 2 in the latter case). For the only
remaining case where (r, s) = (1, 3), note that

[xβ(v) : xα(u)][xβ(w
2v) : xα(uw

−1)]−1 = xα+β(±uv(1− w)).

Since p 6= 2, we may find w ∈ Z×
p with (1− w) ∈ Z×

p . Our claim easily follows.

Lemma 2.8.3. If R contains any root chain of length 3, then G is of type G2.

Proof. Suppose that the α-chain through β has length 3. By [11, XXI 3.5.4], there is a basis ∆′

of R such that α ∈ ∆′ and β = aα + bα′ with α′ ∈ ∆′, a, b ∈ N. The root system R′ spanned by
∆′ = {α, α′} [11, XXI 3.4.6] then also contains an α-chain of length 3. By inspection of the root
systems of rank 2, for instance in [11, XXIII 3], we find that R′ is of type G2. In particular, the
Dynkin diagram of R contains a triple edge (linking the vertices corresponding to α and α′), which
implies that actually R = R′ is of type G2.

2.9 We now establish our theorem 2.4.1 for a group G which is simple and simply connected,
but not of type G2.

Lemma 2.9.1. The group I+ is generated by {xα(Zp) : α ∈ ∆}.

Proof. Let H ⊂ I+ be the group spanned by {xα(Zp) : α ∈ ∆}. We show by induction on h(γ) ≥ 1
that xγ(Zp) ⊂ H for every γ ∈ R+. If h(γ) = 1, γ already belongs to ∆ and there is nothing to
prove. If h(γ) > 1, then by [1, VI.1.6 Proposition 19], there is a simple root α ∈ ∆ such that
β = γ − α ∈ R+. Then h(β) = h(γ) − 1, thus by induction xβ(Zp) ⊂ H . Since also xα(Zp) ⊂ H ,
xγ(Zp) ⊂ H by Corollary 2.8.2.

Lemma 2.9.2. The group generated by I+ and x−αmax
(pZp) contains I−.
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Proof. Let H ⊂ I be the group spanned by I+ and x−αmax
(pZp). We show by descending induction

on h(γ) ≥ 1 that x−γ(pZp) ⊂ H for every γ ∈ R+. If h(γ) = h(αmax), then γ = αmax and there is
nothing to prove. If h(γ) < h(αmax), then by [1, VI.1.6 Proposition 19], there is a pair of positive
roots α, β such that β = γ+α. Then h(β) = h(γ)+h(α) > h(γ), thus by induction x−β(pZp) ⊂ H .
Since also xα(Zp) ⊂ H , x−γ(pZp) ⊂ H by Corollary 2.8.2.

Remark 2.9.3. From the Hasse diagrams in [10], it seems that in the previous proof, we may
always require α to be a simple root.

Proof. (Of theorem 2.4.1 for G simple, simply connected, not of type G2) By lemma 2.7.1, 2.9.1,
2.9.2 and the Iwahori decomposition of section 2.5, I(1) is generated by

{xα(Zp) : α ∈ ∆} ∪ {x−αmax
(pZp)}

thus topologically generated by

{xα(1) : α ∈ ∆} ∪ {x−αmax
(p)} .

None of these topological generators can be removed: the first ones are contained in I+ ( I(1), and
all of them are needed to span the image of

I(1) ։ U(Fp) ։ U1(Fp) ≃
∏

α∈∆

Uα(Fp),

a surjective morphism that kills x−αmax
(p).

2.10 Let now G be simple of type G2, thus ∆ = {α, β} with ‖α‖ < ‖β‖ and

R+ = {α, β, β + α, β + 2α, β + 3α, 2β + 3α}.

The whole root system looks like this:

α

3α+ β

−α

β

−3α− β −β

2α+ βα+ β

−2α− β −α− β

−3α− 2β

3α+ 2β

Lemma 2.10.1. The group generated by I+ and x−2β−3α(pZp) contains I−.

Proof. Let H ⊂ I(1) be the group generated by I+ and x−2β−3α(pZp). Then, for every u, v ∈ Zp,
H contains

[x
−2β−3α(pv) : xβ(u)] = x

−β−3α(±puv)

[x
−2β−3α(pv) : xβ+3α(u)] = x

−β(±puv)

[x
−2β−3α(pv) : xβ+2α(u)] = x

−β−α(±puv) · xα(±pu2v) · xβ+3α(±pu3v) · x
−β(±p2u3v2)
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It thus contains x−β−3α(pZp), x−β(pZp) and x−β−α(pZp), along with

[x
−β−3α(pv) : xα(u)] = x

−β−2α(±puv) · x
−β−α(±pu2v) · x

−β(±pu3v) · x
−2β−3α(±p2u3v2)

[x
−β−3α(pv) : xβ+2α(u)] = x

−α(±puv) · xβ+α(±pu2v) · x2β+3α(±pu3v) · xβ(±p2u3v2)

It therefore also contains x−β−2α(pZp) and x−α(pZp).

The filtration (Ui)i≥1 of U in section 2.5 induces a filtration

I+ = I+1 ⊃ · · · ⊃ I+5 ⊃ I+6 = 1

of I+ = U(Zp) by normal subgroups I+i = Ui(Zp) whose graded pieces

I
+

i = Ui(Zp) = I+i /I
+
i+1

are free Zp-modules, namely

I
+

1 = Zp · xα ⊕ Zp · xβ, I
+

2 = Zp · xα+β

I
+

3 = Zp · x2α+β , I
+

4 = Zp · x3α+β , I
+

5 = Zp · x3α+2β

where xγ is the image of xγ(1). The commutator defines Zp-linear pairings

[−,−]i,j : I
+

i × I
+

j → I
+

i+j

with [y, x]j,i = −[x, y]i,j, [x, x]i,i = 0 and, by Proposition 2.8.1,

[xβ , xα] = ±xα+β , [xα+β, xα] = ±2x2α+β, [x2α+β , xα] = ±3x3α+β ,
[xα+β, x2α+β ] = ±x3α+2β and [xβ, x3α+β ] = ±x2α+2β

Let H be the subgroup of I+ generated by xα(Zp) and xβ(Zp) and denote by Hi its image in
I+/I+i+1 = Gi. Then H1 = G1, H2 contains [xβ, xα] = ±xα+β thus H2 = G2, H3 contains [xα+β , xα] =
±2x2α+β thus H3 = G3 since p 6= 2, H4 contains [x2α+β , xα] = ±3x3α+β thus H4 = G4 if p 6= 3, in
which case actually H = H5 = G5 = I+ since H always contains [xα+β, x2α+β ] = ±x3α+2β .

If p = 3, let us also consider the exact sequence

0 → J4 → G4 → I
+

1 → 0

The group J4 = I+2 /I
+
5 is commutative, and in fact again a free Z3-module:

J4 = (U2/U5)(Zp) = Z3x̃α+β ⊕ Z3x̃2α+β ⊕ Z3x3α+β

where x̃γ is the image of xγ(1). The action by conjugation of I
+

1 on J4 is given by

xα 7→





1
±2 1
±3 ±3 1



 xβ 7→





1
1

1





in the indicated basis of J4. The Z3-submodule H ′
4 = H4 ∩ J4 of J4 satisfies

H ′
4 + Z3x3α+β = J4 and 3x3α+β ∈ H ′

4.
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Naming signs ǫi ∈ {±1} in formula (1, 3) of proposition 2.8.1, we find that H ′
4 contains

ǫ1uv · x̃α+β + ǫ2u
2v · x̃2α+β + ǫ3u

3v · x3α+β

for every u, v ∈ Z3. Adding these for v = 1 and u = ±1, we obtain

x̃2α+β ∈ H ′
4.

It follows that H ′
4 actually contains the following Z3-submodule of J4:

J ′
4 = {a · x̃α+β + b · x̃2α+β + c · x3α+β : a, b, c ∈ Z3, ǫ1a ≡ ǫ3c mod 3} .

Now observe that J ′
4 is a normal subgroup of G4, and the induced exact sequence

0 → J4/J
′
4 → G4/J

′
4 → I

+

1 → 0

is an abelian extension of I
+

1 ≃ Z2
3 by J4/J

′
4 ≃ F3. Since H4/J

′
4 is topologically generated by two

elements and surjects onto I
+

1 , it actually defines a splitting:

G4/J
′
4 = H4/J

′
4 ⊕ J4/J

′
4.

Thus H ′
4 = J ′

4, H4 is a normal subgroup of G4, H is a normal subgroup of I+ and

I+/H ≃ G4/H4 ≃ J4/J
′
4 ≃ F3

is generated by the class of xα+β(1) or x3α+β(1). We have shown:

Lemma 2.10.2. The group I+ is spanned by xα(Zp) and xβ(Zp) plus xα+β(1) if p = 3.

Proof. (Of theorem 2.4.1 for G simple of type G2) By lemma 2.7.1, 2.10.1, 2.10.2 and the Iwahori
decomposition of section 2.5, the pro-p-Iwahori I(1) is generated by xα(Zp), xβ(Zp), x−2β−3α(pZp),
along with xα+β(1) if p = 3. It is therefore topologically generated by xα(1), xβ(1), x−2β−3α(p),
along with xα+β(1) if p = 3. The surjective reduction morphism I(1) ։ U(Fp) ։ U1(Fp) shows
that the first two generators can not be removed. The third one also can not, since all the others
belong to the closed subgroup I+ ( I(1). Finally, suppose that p = 3 and consider the extension

1 → U2/U5 → U/U5 → U/U1 → 1

With notations as above, the reduction of

J ′
4 ⊂ J4 = U2(Z3)/U5(Z3) = (U2/U5)(Z3)

is a normal subgroup Y of X = (U/U5)(F3) with quotient X/Y ≃ F3
3. The surjective reduction

morphism
I(1) ։ U(F3) ։ U(F3)/U5(F3) = X ։ X/Y

then kills x−2β−3α(p). The fourth topological generator xα+β(1) of I(1) thus also can not be removed,
since the first two certainly do not span X/Y ≃ F3

3.



11

2.11 We now return to an arbitrary split reductive group G over Zp. Let

G
sc
։ G

der →֒ G ։ G
ad

be the simply connected cover G
sc of the derived group G

der of G, and the adjoint group π : G ։

G
ad of G. Then

(

T
ad,Mad, Rad,∆ad,

(

Xad
α

)

α∈∆ad

)

=
(

π(T),ZR,R,∆, (π(Xα))α∈∆
)

is a pinning of Gad and this construction yields a bijection between pinnings of G and pinnings of
G

ad. Applying this to G
sc or G

der, we obtain pinnings
(

T
sc,Msc, Rsc,∆sc, (Xsc

α )α∈∆sc

)

and
(

T
der,Mder, Rder,∆der,

(

Xder
α

)

α∈∆sc

)

for Gsc and G
der: all of the above constructions then apply to G

ad, Gsc or Gder, and we will denote
with a subscript ad, sc or der for the corresponding objects. For instance, we have a sequence of
Iwahori (resp. pro-p-Iwahori) subgroups

Isc → Ider →֒ I → Iad and Isc(1) → Ider(1) →֒ I(1) → Iad(1).

2.12 The action of G on itself by conjugation factors through a morphism

Ad : Gad → Aut(G).

For b ∈ B
ad(Fp), Ad(b)(BFp

) = BFp
and Ad(b)(UFp

) = UFp
. We thus obtain an action of the

Iwahori subgroup Iad of Gad = G
ad(Qp) on I or I(1). Similar consideration of course apply to G

sc

and G
der, and the sequence

Isc(1) → Ider(1) →֒ I(1) → Iad(1)

is equivariant for these actions of Iad = Iad(1)⋊ T ad
tors.

2.13 Let J be the image of Isc(1) → I(1), so that J is a normal subgroup of I. From the
compatible Iwahori decompositions for I(1) and Isc(1) in section 2.5, we see that T (1) →֒ I(1)
induces a T ad-equivariant isomorphism

T (1)/T (1) ∩ J → I(1)/J.

Since the inverse image of T(Zp) in G
sc(Zp) equals T

sc(Zp) and since also

T sc(1) = T
sc(Zp) ∩ Isc(1),

we see that T (1) ∩ J is the image of T sc(1) → T (1). Also, the kernel of Isc(1) → I(1) equals
Z ∩ Isc(1) where

Z = ker(Gsc → G)(Zp) = ker(Tsc → T)(Zp).

Therefore Z ∩ Isc(1) is the kernel of T sc(1) → T (1), which is trivial since Z is finite and T sc(1) ≃
Hom(Msc, 1 + pZp) has no torsion. We thus obtain exact sequences

1 → T sc(1) → T (1) → Q → 0
∩ ∩ ‖

1 → Isc(1) → I(1) → Q → 0

where the cokernel Q is the finitely generated Zp-module

Q = (M∨/ZR∨)⊗ (1 + pZp) .
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Remark 2.13.1. If G is simple, then M∨/ZR∨ is a finite group of order c, with c | ℓ+1 if G is of
type Aℓ, c | 3 if G is of type E6 and c | 4 in all other cases. Thus Q = 0 and Isc(1) = I(1) unless
G is of type Aℓ with p | c | ℓ + 1 or p = 3 and G is adjoint of type E6. In these exceptional cases,
M∨/ZR∨ is cyclic, thus Q ≃ Fp.

2.14 It follows that I(1) is generated by Isc(1) and s(1 + pZp) for s ∈ S, thus topologically
generated by Isc(1) and s(1 + p) for s ∈ S. In view of the results already established in the simply
connected case, this shows that the elements listed in (1− 4) of Theorem 2.4.1 indeed form a set of
topological generators for I(1).

None of the semi-simple elements in (1) can be removed: they are all needed to generate the
above abelian quotient Q of I(1) which indeed kills the unipotent generators in (2 − 4). Likewise,
none of the unipotent elements in (2) can be removed: they are all needed to generate the abelian
quotient

I(1) ։ U(Fp) ։ U1(Fp) ≃
∏

α∈∆

Uα(Fp)

which kills the other generators in (1), (3) and (4). One checks easily using the Iwahori decomposi-
tion of I(1) and the product decomposition U

− =
∏

c∈C U
−
c that none of the unipotent elements in

(3) can be removed. Finally if p = 3 and d ∈ D, the central isogeny G
sc → G

ad induces an isomor-
phism G

sc
d → G

ad
d between the simple (simply connected and adjoint) components corresponding

to d, thus also an isomorphism between the corresponding pro-p-Iwahori’s Iscd (1) → Iadd (1). In
particular, the projection I(1) → Iad(1) ։ Iadd (1) is surjective. Composing it with the projection
Iadd (1) ։ F3

3 constructed in section 2.10, we obtain an abelian quotient I(1) ։ F3
3 that kills all of

our generators except xα(1), xβ(1) and xα+β(1) where ∆d = {α, β}. In particular, the generator
xα+β(1) from (4) is also necessary. This finishes the proof of Theorem 2.4.1.

2.15 The action of Iad = Iad(1)⋊ T ad
tors on I(1) induces an Fp-linear action of

T ad
tors = Hom

(

Mad, µp−1

)

= Hom
(

ZR,F×
p

)

on the Frattini quotient Ĩ(1) of I(1). Our minimal set of topological generators of I(1) reduces to
an eigenbasis of Ĩ(1), i.e. an Fp-basis of Ĩ(1) made of eigenvectors for the action of T ad

tors. We denote
by Fp(α) the 1-dimensional representation of T ad

tors on Fp defined by α ∈ ZR. We thus obtain:

Corollary 2.15.1. The Fp[T
ad
tors]-module Ĩ(1) is isomorphic to

F♯S
p ⊕

(

⊕α∈∆ Fp(α)
)

⊕
(

⊕c∈C Fp(−αc,max)
)(

⊕
(

⊕d∈D Fp(δc)
)

if p = 3
)

.

Here ♯S denotes the cardinality of the set S. The map α 7→ Fp(α) yields a bijection between
ZR/(p − 1)ZR and the isomorphism classes of simple Fp[T

ad
tors]-modules. In particular some of the

simple modules in the previous corollary may happen to be isomorphic. For instance if G is simple
of type Bℓ and p = 3, then −αmax ≡ α mod 2 where α ∈ ∆ is a long simple root. An inspection of
the tables in [1] yields the following:

Corollary 2.15.2. If G is simple, the Fp[T
ad
tors]-module Ĩ(1) is multiplicity free unless p = 3 and G

is of type A1, Bℓ or Cℓ (ℓ ≥ 2), F4 or G2.

In the next section we use this result to construct Galois representations landing in Iad with
image containing Iad(1).
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3 The Construction of Galois Representations

Let G be a split simple adjoint group over Zp and let I(1) and I = I(1)⋊Ttors be the corresponding
Iwahori groups, as defined in the previous section. We want here to construct Galois representations
of a certain type with values in I with image containing I(1). After a short review of p-rational
fields in section 3.1, we establish a criterion for the existence of our representations in sections 3.2
and 3.3 and finally give some examples in section 3.4.

3.1 Let K be a number field, r2(K) the number of complex primes of K, Σp the set of primes of K
lying above p, M the compositum of all finite p-extensions of K which are unramified outside Σp, M

ab

the maximal abelian extension of K contained in M , and L the compositum of all cyclic extensions
of K of degree p which are contained in M or Mab. If we let Γ denote Gal(M/K), then Γ is a pro-p
group, Γab ∼= Gal(Mab/K) is the maximal abelian quotient of Γ, and Γ̃ ∼= Γab/pΓab ∼= Gal(L/K) is
the Frattini quotient of Γ.

Definition A number field K is p-rational if the following equivalent conditions are satisfied:

(1) rankZp
(Γab) = r2(K) + 1 and Γab is torsion-free as a Zp-module,

(2) Γ is a free pro-p group with r2(K) + 1 generators,
(3) Γ is a free pro-p group.

The equivalence of (1), (2) and (3) follows from [6], see also proposition 3.1 and the discussion be-
fore remark 3.2 of [3]. There is a considerable literature concerning p-rational fields, including [8], [4].

Examples:

(1) Suppose that K is a quadratic field and that either p ≥ 5 or p = 3 and is unramified in
K/Q. If K is real, then K is p-rational if and only if p does not divide the class number of K and
the fundamental unit of K is not a p-th power in the completions Kv of K at the places v above
p. On the other hand, if K is complex and p does not divide the class number of K, then K is a
p-rational field (cf. proposition 4.1 of [3]). However, there are p-rational complex K’s for which p
divides the class number (cf. chapter 2, section 1, p. 25 of [7]). For similar results, see also [2] and
[5] if K is complex.

(2) Let K = Q(µp). If p is a regular prime, then K is a p-rational field (cf. [12], see also [3],
proposition 4.9 for a shorter proof).

3.2 Suppose that K is Galois over Q and p-rational with p ∤ [K : Q].
Since K is Galois over Q, so is M and we have an exact sequence

1 → Γ → Π → Ω → 1 (3.2.1)

where Ω = Gal(K/Q) and Π = Gal(M/Q). Conjugation in Π then induces an action of Ω on
the Frattini quotient Γ̃ = Gal(L/K) of Γ. Any continuous morphism ρ : Π → I maps Γ to I(1)
and induces a morphism ρ : Ω → I/I(1) = Ttors and a ρ-equivariant morphism ρ̃ : Γ̃ → Ĩ(1). If
ρ(Γ) = I(1), then ρ̃ is also surjective. Suppose conversely that we are given the finite data

ρ : Ω → Ttors and ρ̃ : Γ̃ ։ Ĩ(1).
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Then as Ω has order prime to p, the Schur-Zassenhaus theorem ([14], proposition 2.3.3) implies that
the exact sequence 3.2.1 splits. The choice of a splitting Π ≃ Γ⋊Ω yields a non-canonical action of
Ω on Γ which lifts the canonical action of Ω on the Frattini quotient Γ̃. By [3], proposition 2.3, ρ̃ lifts
to a continuous Ω-equivariant surjective morphism ρ′ : Γ ։ I(1), which plainly gives a continuous
morphism

ρ = (ρ′, ρ) : Π ≃ Γ⋊ Ω → I = I(1)⋊ Ttors

inducing ρ : Ω → Ttors and ρ̃ : Γ̃ ։ Ĩ(1). Thus:

Proposition 3.2.1. Under the above assumptions on K, there is a continuous morphism ρ : Π → I
such that ρ(Γ) = I(1) if and only if there is a morphism ρ : Ω → Ttors such that the induced Fp[Ω]-
module ρ∗Ĩ(1) is a quotient of Γ̃.

The Frattini quotient Ĩ(1) is an Fp[Ttors]-module and by the map ρ, we can consider Ĩ(1) as an
Fp[Ω]-module which we denote by ρ∗Ĩ(1).

3.3 Suppose now that

A(K): K is a totally complex abelian (thus CM) Galois extension of Q which is p-rational of
degree [K : Q] | p− 1.

Let Ω̂ be the group of characters of Ω with values in F×
p , Ω̂odd ⊂ Ω̂ the subset of odd characters

(those taking the value −1 on complex conjugation), and χ0 ∈ Ω̂ the trivial character. Then by [3]
proposition 3.3,

Γ̃ = ⊕χ∈Ω̂odd∪{χ0}
Fp(χ)

as an Fp[Ω]-module. In particular, Γ̃ is multiplicity free. Suppose therefore also that the Fp[Ttors]-
module Ĩ(1) is multiplicity free, i.e. by corollary 2.15.2,

B(G): If p = 3, then G is not of type A1, Bℓ or Cℓ (ℓ ≥ 2), F4 or G2.

For S as in section 2.4, we define

Ω̂S
odd =

{

Ω̂odd ∪ χ0, if S = ∅

Ω̂odd, if S 6= ∅.

Note that S = ∅ unless G if of type Aℓ with p | ℓ + 1 or G is of type E6 with p = 3, in which
both cases S is a singleton. We thus obtain:

Corollary 3.3.1. Under the assumptions A(K) on K and B(G) on G, there is a morphism
ρ : Π → I such that ρ(Γ) = I(1) if and only if there is morphism ρ : Ω → Ttors such that the
characters α ◦ ρ : Ω → F×

p for α ∈ ∆ ∪ {−αmax} are all distinct and belong to Ω̂S
odd.
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3.4 Some examples. Write ∆ = {α1, ..., αℓ} and αmax = n1α1+ · · ·+nℓαℓ using the conventions
of the tables in [1]. In this part we suppose that p is a regular (odd) prime and take K = Q(µp), so
that K is p-rational and Ω = Z/(p− 1)Z.

Lemma 3.4.1. Suppose G is of type Aℓ, Bℓ, Cℓ or Dℓ and p ≥ 2l + 3 (resp. p ≥ 2l + 5) if p ≡ 1
mod 4 (resp. p ≡ 3 mod 4). Then we can find distinct characters φ1, ..., φℓ+1 ∈ Ω̂odd ∪χ0 such that
φn1

1 φn2

2 · · ·φnℓ

ℓ φℓ+1 = χ0. Furthermore, if G is of type Aℓ and ℓ is odd, then one can even choose the
characters φ1, ..., φℓ+1 to be inside Ω̂odd.

Proof. Since Ω is (canonically) isomorphic to Z/(p − 1)Z, ♯Ω̂odd = p−1
2

and there are exactly [p−1
4
]

pairs of characters {χ, χ−1} with χ 6= χ−1 in Ω̂odd. The condition on p is equivalent to ℓ ≤ 2[p−1
4
]−1.

If G is of type Aℓ, then αmax = α1 + · · · + αℓ. If ℓ is even and ℓ
2
≤ [p−1

4
], then we can pick ℓ

2

distinct pairs of odd characters {χ, χ−1} as above for {φ1, · · · , φℓ} and set φℓ+1 = χ0. If ℓ is odd
and ℓ+1

2
≤ [p−1

4
], then we can choose ℓ+1

2
distinct such pairs for the whole set {φ1, · · · , φℓ+1}.

If G is of type Dℓ (with ℓ ≥ 4), then αmax = α1 + 2α2 + ...+ 2αℓ−2 + αℓ−1 + αℓ. Now if ℓ is odd
we can pick ℓ+1

2
such pairs {χ, χ−1}, one for {φℓ−1, φℓ}, another pair for {φ1, φℓ+1} and ℓ−3

2
such

pairs for {φ2, ..., φℓ−2}. If ℓ is even, we let φ2 be the trivial character, and we can choose ℓ
2

such
pairs of characters {χ, χ−1}, one pair for {φ1, φℓ−1}, another pair for {φℓ, φℓ+1} and ℓ−4

2
such pairs

for {φ3, ..., φℓ−2}. So the inequality that we will need is 4 ≤ ℓ ≤ 2[p−1
4
]− 1.

If G is of type Bℓ (with ℓ ≥ 2), then αmax = α1 + 2α2 + ... + 2αℓ. If ℓ is odd then we pick ℓ+1
2

pairs of characters {χ, χ−1}; one pair for {φ1, φℓ+1} and ℓ−1
2

such pairs for {φ2, ..., φℓ}. If ℓ is even
then we need ℓ

2
pairs of {χ, χ−1}; one pair for {φ1, φℓ+1} and ℓ−2

2
such pairs for {φ3, ..., φℓ} and we

let φ2 be the trivial character. So in this case we need 3 ≤ ℓ ≤ 2[p−1
4
]− 1.

The remaining Cℓ case is analogous.

Lemma 3.4.2. Suppose G is of type E6, E7, E8, F4 or G2 and p ≥
∑ℓ

i=1(2i− 1)ni + 2ℓ. Then we
can find distinct characters φ1, ..., φℓ+1 ∈ Ω̂odd such that φn1

1 φn2

2 · · ·φnℓ

ℓ φℓ+1 = χ0.

Proof. The choice of a generator ξ of F×
p yields an isomorphism Z/(p− 1)Z ≃ Ω̂, mapping i to χi

and 1 + 2Z/(p − 1)Z to Ω̂odd. Set φi = χ2i−1 ∈ Ω̂odd for i = 1, · · · , ℓ and φℓ+1 = χ−r where r =
∑ℓ

i=1 ni · (2i− 1). The tables in [1] show that h =
∑ℓ

i=1 ni is odd, thus also φℓ+1 ∈ Ω̂odd and plainly

φn1

1 · · ·φnℓ

ℓ φℓ+1 = 1. If p ≥
∑ℓ

i=1(2i− 1)ni + 2ℓ, the elements {2i− 1,−
∑ℓ

i=1 ni · (2i− 1); i ∈ [1, ℓ]}
are all distinct modulo p− 1, which proves the lemma.

Remark 3.4.3. For G of type E6, E7, E8, F4 or G2, the tables in [1] show that the constant
∑ℓ

i=1(2i−
1)ni + 2ℓ of lemma 3.4.2 is 79, 127, 247, 53, 13 respectively.

Corollary 3.4.4. There is a constant c depending only upon the type of G such that if p > c
is a regular prime, then for K = Q(µp), M , Π and Γ as above, there is a continuous morphism
ρ : Π → I with ρ(Γ) = I(1).

In conclusion, we have determined a minimal set of topological generators of the pro-p Iwahori
subgroup of a split reductive groups over Zp (theorem 2.4.1) and used it to study the structure of
the Frattini quotient Ĩ(1) as an Fp[T

ad
tors]-module (corollary 2.15.1). Then we have used corollary

2.15.1 to determine when Ĩ(1) is multiplicity free (see corollary 2.15.2). Furthermore in proposition
3.2.1 and corollary 3.3.1, assuming p-rationality, we have shown that we can construct Galois
representations if and only if we can find a suitable list of distinct characters in Ω, the existence of
which is discussed in section 3.4 under the assumption K = Q(µp), for any sufficiently large regular
prime p (see corollary 3.4.4).
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