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TIAN’S INVARIANT OF THE GRASSMANN MANIFOLD

JULIEN GRIVAUX

Abstract. — We prove that Tian’s invariant on the complex Grassmann manifold
Gp,q(C ) is equal to 1/(p + q). The method introduced here uses a Lie group of
holomorphic isometries which operates transitively on the considered manifolds and
a natural imbedding of

(
P1(C )

)p
in Gp,q(C ).

Résumé. — On prouve que l’invariant de Tian sur la grassmannienne Gp,q(C ) est
1/(p+ q). La méthode présentée dans cet article utilise un groupe de Lie d’isométries
holomorphes qui opère transitivement sur les variétés considérées ainsi qu’un plonge-
ment naturel de

(
P1(C )

)p
dans Gp,q(C ).

1. Introduction

On a complex manifold, an hermitian metric h is characterized by the 1-1 symplectic form

ω defined by ω = i gλµ dz
λ ∧ dzµ, where gλµ = hλµ/2.

The metric is a Kähler metric if ω is closed, i. e. dω = 0; then M is a Kähler manifold.

On a Kähler manifold, we can define the Ricci form by R = i Rλµ dz
λ ∧ dzµ, where

Rλµ = −∂λµ log |g|.
A Kähler manifold is Einstein with factor k if R = kω. For instance, choosing a local

coordinate system Z = (z1, . . . , zm), the projective space Pm(C ) with the Fubini-Study

metric ω = i∂∂ log
(
1 + ||Z||2

)
is Einstein with factor m+ 1.

On a Kähler manifold M , the first Chern class C1(M) is the cohomology class of the

Ricci tensor, that is the set of the forms R + i∂∂ϕ, where ϕ is C∞ on M . If there is

a form in C1(M) which is positive (resp. negative, zero), then C1(M) is positive (resp.

negative, zero). If a Kähler manifold is Einstein, then C1(M) and k are both positive

(resp. negative, zero). In the negative case, it was proved by Aubin ([Au1], see also

[Au4]), that there exists a unique Einstein-Kähler metric (E.K. metric) on M . It is so

for the zero case too ([Au1], [Ya]). The question for the positive case is still open: some

manifolds, such as the complex projective space blown up at one point, do not admit an

E.K. metric (for obstructions, see [Li] and [Fu]). Aubin [Au2] and Tian [Ti] have shown

that for suitable values of holomorphic invariants of the metric, there exists an E.K. metric

on M .
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For ω/2π in C1(M), Tian’s invariant α(M) is the supremum of the set of the real numbers

α satisfying the following: there exists a constant C such that the inequality

∫
M

e−αϕ ≤ C

holds for all the C∞ functions ϕ with ω+i∂∂ϕ > 0 and supϕ ≥ 0, where ω = i gλµ dz
λ∧dz µ

is the metric form. Such functions ϕ are said ω-admissible.

In [Ti], Tian established that if α(M) > m/(m+ 1), m being the dimension of M , there

exists an E.K. metric on M . This condition is not necessary: it does not hold on the

projective space, where Tian’s invariant is 1/(m+ 1).

In the same paper, Tian introduces a more restrictive invariant αG(M), considering only

the admissible functions ϕ invariant by the action of a compact group G of holomorphic

isometries. The sufficient condition for the existence of an E.K. metric on M remains

αG(M) > m/(m+ 1); it is more easily satisfied if the group G is rich enough.

In many cases, the group G is a non-discrete Lie group. The invariant αG(M) can be

computed using subharmonic functions methods and the maximum principle (for effective

examples, see [Be1], [Be2], [Be-Ch1], [Be-Ch2], [Re]).

In this paper, we prove the following theorem:

Theorem 1.1. Tian’s invariant on Gp,q(C ) is given by α (Gp,q(C )) = 1/(p+ q).

This generalizes the known result on Pm(C ) ([Ti], see also [Au3]). Let us also mention

that Tian’s invariant has been computed on Pm(C ) blown up at one point and on certain

Fermat hypersurfaces using Hörmander L2 estimates for the ∂-equation ([Ti]).

We first compute the volume element of the metricGp,q; then we will establish some

general preliminary results concerning Tian’s invariant as well as imbeddings of
{
P1(C )

}p
in Gp,q(C ) which allow us to deduce α (Gp,q(C )) from α (P1(C )).

2. Basic properties of the Grassmann manifold

We propose here a short survey of the properties of Grassmann manifold (for more details,

see [Ko-No]). We denote by Gp,q(C ) the set of the subspaces of dimension p in C p+q; in

particular, G1,m(C ) is the complex projective space of dimension m. It is known (see

[Au3]) that on Pm(C ), the Fubini-Study metric is Einstein with factor m + 1 and that

Tian’s invariant is 1/(m + 1). Now, let M∗(p + q, p) be the set of the matrices of rank

p in Mp+q,p(C ). The group Glp(C ) acts by multiplication on the right on M∗(p + q, p).

More precisely
(
M∗(p+ q, p), π, Gp,q(C )

)
is a principal fiber bundle with group Glp(C ).

The group Glp+q(C ) acts by multiplication on the left on M∗(p + q, p) and induces an

action on Gp,q(C ); so does the unitary group U(p + q). These groups act transitively on

Gp,q(C ), which shows that Gp,q(C ) is compact.
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We denote by I the set of all increasing-ordered subsets of p elements in {1, . . . , p + q}.
Let P be an element of M∗(p + q, p), P =

(
pij
)

1≤i≤p+q
1≤j≤p

. By Cauchy-Binet formula we

get: det
(
tPP

)
=
∑

I∈I | detm
I
(P )|2, where mI(P ) is the matrix

(
pij
)

i∈I
1≤j≤p

. The form

ω, where ω = i ∂∂ log det
(
tPP

)
, is invariant by the action of Glp(C ) on M∗(p + q, p),

and so it projects onto a formGp,q. The metricGp,q is a Kähler metric form on Gp,q(C ).

For p = 1, this metric on G1,m(C ) is the Fubini-Study metric on the complex projective

space. The action of the unitary group U(p+ q) on Gp,q(C ) preserves the metricGp,q so

that U(p+q) is a group of holomorphic isometries which operates transitively on Gp,q(C ).

For I in I, let UI be the set of the matrices P in M∗(p + q, p) such that det(mI(P )) is

non-zero. Then π(UI) is a coordinate open set on Gp,q(C ), the matrix ZI in Mq,p(C ) is

the coordinate, the inverse of the chart ϕI sends M∗(p + q, p) onto π(UI) and we have

mI

(
ϕ−1
I (ZI)

)
= I(p) where I(p) is the p× p identity matrix, and mIc

(
ϕ−1
I (ZI)

)
= ZI .

Lemma 2.1. For I in I, let λI be the map from π(UI) to R+ defined by

λI(ZI) =
∣∣ det(Id +tZIZI)

∣∣−(p+q)
.

Then
(
λI
)
I∈I are the components of a maximal differential form η on Gp,q(C ), namely:

η = λI
(
i/2
)pq (

dZ∧ dZ
)
I
.

Proof. It suffices to show that the following transformation rule holds:

for every I, Ĩ in I, λI is equal to λĨ ×
∣∣∣∣ det

∂ ZĨ
∂ ZI

∣∣∣∣2 on π(UI) ∩ π(UĨ).

Let PI be the matrix ϕ−1
I (ZI). Then PI

{
mĨ(PI)

}−1
= PĨ , so ZĨ = m Ĩc(PI)

{
mĨ(PI)

}−1
.

The differential of the map which sends ZI on PI is the map which sends H on H̆, where

m Ic(H̆) = H and mI(H̆) = 0. The change of charts sending ZI on ZĨ , we obtain

DZĨ(H) = m Ĩc(H̆)
{
mĨ(PI)

}−1 −m Ĩc(PI)
{
mĨ(PI)

}−1
mĨ(H̆)

{
mĨ(PI)

}−1

=
(
m Ĩc(H̆)− γ mĨ(H̆)

)
α−1,

where α = mĨ(PI), β = m Ĩc(PI) and γ = β α−1.

Let us define a map u from Mq,p(C ) to Mq,p(C ) by u(H) = m Ĩc(H̆) − γ mĨ(H̆). We

can choose I = {q + 1, . . . , q + p} and Ĩ = {1, . . . , r} ∪ {q + 1 + r, . . . , q + p}, where

0 ≤ r ≤ inf(p, q). We define the k × l matrix E
(k×l)
i,j by

(
E

(k×l)
i,j

)
λµ

= δiλ δjµ. We have

mĨ

(
Ĕ

(q×p)
i,j

)
= E

(p×p)
i,j if i ≤ r, and 0 if i > r,

and m Ĩc

(
Ĕ

(q×p)
i,j

)
= E

(q×p)
i−r,j if i > r, and 0 if i ≤ r. Hence(

γ mĨ(Ĕ
(q×p)
i,j )

)
αβ

= γαimĨ(Ĕ
(q×p)
i,j )ij δjβ = γαi δjβ if i ≤ r, and 0 elsewhere.
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Now the map which sends H to γ mĨ(H̆) can be restricted if 1 ≤ j ≤ p to the span

Bj of the
(
Ei,j
)

1≤i≤q. The r first columns of its matrix are those of γ, the others are

0. The map which sends H to γ m Ĩc(H̆) maps also Bj into itself. The right upper

block of its matrix is I(q−r), the other elements are 0. This allows us to compute the

matrix of the restriction of u to Bj, whose determinant is (−1)r×(q−r) det
(
γij
)

q−r+1≤i≤q
1≤j≤r

.

So detu = (−1)p×r×(q−r)
[
det
(
γi j
)

q−r+1≤i≤q
1≤j≤r

]p
. For 1 ≤ i ≤ q, let Ci be the span of the

(Ei,j)1≤j≤p. Each Ci is stable by the map from Mq,p(C ) to Mq,p(C ) which sends H to

H α−1. The matrix of the restriction is α−1, so the determinant of the map is (detα)−q.

Hence ∣∣ detDZĨ(H)
∣∣2 =

∣∣ det (γi,j) q−r+1≤i≤q
1≤j≤r

∣∣2p × ∣∣ detα
∣∣−2q

.

Let A be the right r × r upper block of α. The left (p − r) × (p − r) lower block of α

is I(p−r) and the right (p − r) × r lower block is 0, so detα = (−1)r(p−r) detA. The left

r × (p − r) lower block of β is 0, the right r × r block is I(r) so that the left r × r lower

block of γ is A−1.

From this we deduce
∣∣det DZĨ(H)

∣∣2 =
∣∣ detα

∣∣−2(p+q)
. Since PI α

−1 = PĨ , we have

λĨ =
∣∣∣ det

(
tPĨP Ĩ

) ∣∣∣−(p+q)

=
∣∣ detα

∣∣2(p+q)
λI =

∣∣∣∣ det
∂ZĨ
∂ZI

∣∣∣∣−2

λI .

�

Lemma 2.2. The unitary group U(p+ q) preserves η.

Proof. We call I the set {q+1, . . . , q+p}. We define PI in π(UI) by PI = ϕ−1
I (ZI). Let U

be an element in U(p + q) such that mI(UPI) is invertible. Let P̃I = UPI
{
mI(UPI)

}−1

and Z̃I = mIc(P̃I). We have Z̃I = mIc(U)PI
{
mI(U)PI

}−1
. So

DZ̃I(H) = mIc(U)
[
H̆
{
mI(U)PI

}−1 − PI
{
mI(U)PI

}−1
mI(U) H̆

{
mI(U)PI

}−1
]
.

Thus DZ̃I(H) = XH̆δ−1, where δ = mI(U)PI and X = mIc(U)
[
I(p+q) − PI δ−1mI(U)

]
.

Let X1 be the q × q matrix of the q first columns of X. Then, XH̆ = X1H and we get

DZ̃I(H) = X1Hδ
−1. The determinant of the map from Mq,p(C ) to Mq,p(C ) which sends

H to Hδ−1 is (det δ)−q. The determinant of the map from Mq,p(C ) to Mq,p(C ) which

sends H to X1H is (detX1)p, so detDZ̃I = (detX1)p (det δ)−q. We divide U into four

blocks:

U =

(
Uq Uq,p
Up,q Up

)
, Uq ∈Mq(C ), Up ∈Mp(C ), Up,q ∈Mp,q(C ), Uq,p ∈Mq,p(C ).
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Then δ = Up,q ZI + Up, so X1 = Uq −
(
Uq ZI + Uq,p

) (
Up,q ZI + Up

)−1
Uq,p. Let Z in

Mp+q,p+q(C ) be the matrix with blocks Zq = I(q), Zp,q = 0, Zq,p = ZI , Zp = I(p), the

notations being the same as above. Writing detU = det(UZ) and using the column

transformation C1 ← C1−C2

(
Up,q ZI +Up

)−1
Up,q where C1 is made of the first q columns

and C2 of the remaining ones, we get

detU = det
[
Uq −

(
Uq ZI + Uq,p

) (
Up,q ZI + Up

)−1
Up,q

]
× det

(
Up,qZI + Up

)
.

Hence
∣∣det DZ̃I

∣∣2 =
∣∣det δ

∣∣−2(p+q)
. We have P̃I = APIδ

−1, so

λĨ = det
(
tP̃IP̃ I

)−(p+q)
= det

(
tPIP I

)−(p+q) ×
∣∣det δ

∣∣ 2(p+q)
= λI

∣∣detDZ̃I
∣∣−2

,

which proves the result. �

Proposition 2.3. 1. dV
(
Gp,q

)
= η.

2. If I ∈ I,
∣∣∣Gp,q

∣∣∣
I

=
{

det
(
I(p) +tZIZI

)}−(p+q)

.

3. R
(
Gp,q

)
= (p+ q)Gp,q.

Proof. 1. Let I in I. It is easy to computeGp,q at the point ZI = 0: Gp,q(H,K) =

Tr(HK). Then dV (Gp,q)
∣∣ZI=0

=
(
i/2
)pq (

dZ ∧ dZ
)
I

= η∣∣ZI=0
. Since dV (Gp,q) and η are

invariant by the transitive action of U(p+ q), we have dV (Gp,q) = η.

2. Since dV (Gp,q) =
∣∣Gp,q

∣∣
I

(i/2)pq
(
dZ ∧ dZ

)
I
, property 1 gives the result.

3. Remark thatGp,q = i ∂∂ log
{

det(I(p) +tZIZI)
}

. Since R
(
Gp,q

)
= −i ∂∂ log

∣∣∣Gp,q

∣∣∣
I
,

we obtain R
(
Gp,q

)
= (p + q)Gp,q, which expresses thatGp,q is Einstein, with factor

p+ q. �

3. Some general results about Tian’s invariant

3.1. Tian’s invariant with a normalization on a finite set. If X is a manifold, we

will denote by µX a measure on X compatible with the manifold structure.

Theorem 3.1. Let M be a compact Kähler manifold. We suppose that there exists a

compact Lie group G of holomorphic isometries. Let ∆n = {P1, . . . , Pn} be a finite subset

of M . Let α(ω) (resp. α
∆n

(ω) ) be the supremum of the set of the nonnegative real

numbers α satisfying the condition: there exists a constant C such that the inequality∫
M

e−αϕ ≤ C holds for all the ω-admissible functions ϕ with supϕ ≥ 0 (resp. with

ϕ(Pi) ≥ 0 for 1 ≤ i ≤ n). Suppose in addition that the orbit of each Pi under the action

of G has positive measure. Then α(ω) = α
∆n

(ω).
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We first establish a few lemmas which will be useful for the proof.

Lemma 3.2. Let
(
ϕn
)
n≥0

be a sequence of admissible functions with nonnegative maxima.

Then there exists a subset Ω of M , with µ
M

(Ω) = µ
M

(M), and a subsequence ϕnk
of ϕn,

such that for every p in Ω, the sequence
(
ϕnk

(p)
)
k≥0

has a finite lower bound (depending

on p).

Proof. It is sufficient to assume that ϕn has null maxima. Let Qn be a point such that

ϕn(Qn) vanishes. Green’s formula runs as follows:

ϕn(Qn) =
1

V

∫
M

ϕn +

∫
M

G(Qn, R) ∆ϕn(R) dV (R),

with G(Q,R) ≥ 0 and

∫
M

G(Q,R) dV (R) = C, where C is a positive constant (see

[Au4]). Since ϕn is admissible, ∆ϕn is less than m, m being the dimension of M . Thus∫
M

|ϕn| ≤ C mV . Furthermore,

∫
M

∆ϕn = 0, so

∫
M

|∆ϕn| = 2

∫
{∆ϕn>0}

∆ϕn ≤ 2mV .

For every Q in M , we have ∇ϕn(Q) =

∫
M

∇QG(Q,R)∆ϕn(R)dv(R), so that∫
M

|∇ϕn| ≤
∫
M

[∫
M

|∇QG(Q,R)|dv(Q)
]
|∆ϕn(R)|dv(R) ≤ 2mC̃V,

since

∫
M

|∇QG(Q,R)|dv(Q) is a continuous, hence a bounded function on M . Thus

(ϕn)n≥0 is bounded in the Sobolev space H1,1(M). By Kondrakov’s theorem, we can ex-

tract from (ϕn)n≥0 a subsequence which converges in L1(M), and after an other extraction

we can suppose that this sequence converges almost everywhere to a function ϕ of L1(M).

Since ϕ is finite almost everywhere, we get the result. �

Lemma 3.3. Let
(
ϕn
)
n≥0

be a sequence of admissible functions with nonnegative maxima

and suppose that there exists a compact group G of holomorphic isometries of M such that

the orbit of each Pi has positive measure. Let Φ : G→ R ∪ {−∞} be the map defined by

Φ(g) = inf
∆n

inf
k≥0

(ϕk ◦ g). Then there exists g in G such that Φ(g) is finite.

Proof. Suppose that Φ ≡ −∞. For i = 1, . . . , n, let Ai be the set of the g in G such that

inf
k≥0

(ϕk ◦ g)(Pi) = −∞. The sets Ai are measurable and ∪ni=1Ai = G, so there exists i such

that Ai has positive measure. From Lemma (3.2), Ai.Pi is a subset of Ωc. Since Ω and

M have the same measure, the measure of Ai.Pi vanishes. Let ui be the map from G to

M which sends g to g(Pi). Then ui has constant rank on G. Indeed, ui ◦ L(g) = σg ◦ ui,
where L(g) is the left translation by g and σg the map from M to M which sends x to

g.x. Since G.Pi has positive measure, ui is a submersion on G, so that ui(Ai) has positive

measure. This is a contradiction since ui(Ai) = Ai.Pi. �
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We can now prove Theorem (3.1).

Proof. It is clear that α(ω) ≤ α
∆n

(ω). Conversely, let ε > 0. There exists a sequence(
ϕn
)
n≥0

of admissible functions with positive maxima such that

∫
M

e−(α(ω)+ε)ϕk goes to

infinity as k goes to infinity. Replacing ϕn by ϕn − supϕn, we can take supϕn = 0. First

we apply Lemma(3.2). For the sake of simplicity, we take ϕnk
= ϕk. From Lemma (3.3),

there exists an element g in G such that Φ(g) is finite; we define Ψk by Ψk = ϕk ◦g−Φ(g).

Since g is an isometry, Ψk is ω-admissible, and from the very definition of Φ, Ψk(Pi) is

nonnegative. Furthermore,

∫
M

e−(α(ω)+ε)Ψk = e(α(ω)+ε)Φ(g)

∫
M

e−(α(ω)+ε)ϕk . This proves

that

∫
M

e−(α(ω)+ε)Ψk goes to infinity as k goes to infinity. Then, α
∆n

(ω) ≤ α(ω) + ε. This

inequality holds for every positive ε, and so α
∆n

(ω) ≤ α(ω). �

3.2. Tian’s invariant on a product. For a Kähler form ω on a compact Kähler manifold

M , α(ω) is defined as in Theorem (3.1).

Proposition 3.4. Let
(
Mi

)
1≤i≤n be compact Kähler manifolds with metric forms

(
ωi
)

1≤i≤n.

We endow the product M1×· · ·×Mn with the metric ω1⊕· · ·⊕ωn. Then α(ω1⊕· · ·⊕ωn) =

inf
1≤i≤n

α(ωi).

Proof. It suffices to make the proof when n = 2, the general result will follow by induction.

(1) Suppose that α(ω1) ≤ α(ω2), and let ε > 0. There exists a sequence
(
ϕn
)
n≥0

of ω1-

admissible functions on M1 with positive maxima such that

∫
M1

e−
(
α(ω1)+ε

)
ϕn goes to in-

finity when n goes to infinity. We define ψn on M1×M2 by ψn(m1,m2) = ϕn(m1). Thus ψn

is (ω1⊕ω2)-admissible on M1×M2, with positive maximum, and

∫
M1×M2

e−
(
α(ω1)+ε

)
ψn =

V (M2)

∫
M1

e−
(
α(ω1)+ε

)
ϕn , so that

∫
M1×M2

e−
(
α(ω1)+ε

)
ψn goes to infinity when n goes to

infinity. We have therefore α(ω1 ⊕ ω2) ≤ α(ω1) + ε. This yields α(ω1 ⊕ ω2) ≤ α(ω1).

(2) Let us now prove the opposite inequality. Let α be a real number such that α <

inf
(
α(ω1), α(ω2)

)
and ϕ an (ω1 ⊕ ω2)-admissible function on M1 ×M2. If m2 is in M2,

the function which sends m1 to ϕ(m1,m2) is ω1-admissible. The same holds for M1. Let

(u, v) in M1 ×M2 be such that ϕ(u, v) ≥ 0. Then∫
M1×M2

e−αϕ(m1,m2)dV1 dV2 =

∫
M1

e−αϕ(m1,v)

(∫
M2

e−α
[
ϕ(m1,m2)−ϕ(m1,v)

]
dV2

)
dV1

≤ C2

∫
M1

e−αϕ(m1,v)dV1 ≤ C1C2.
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Thus, α ≤ α
(
ω1 ⊕ ω2

)
and we get inf

(
α(ω1), α(ω2)

)
≤ α

(
ω1 ⊕ ω2

)
. �

3.3. Tian’s invariant on Gp,q(C ). Since there is a natural duality isomorphism between

Gp,q(C ) and Gq,p(C ), we can assume that p ≤ q without loss of generality.

3.3.1. Imbedding of
{
P1(C)

}p
into Gp,q(C ) when p ≤ q. For w in C p(q−1), w =

(
wi,j
)

1≤i≤q
1≤j≤p
i 6=j

,

we define the map ρ̃w from
{
C2 \ (0, 0)

}p
to Mp+q,p(C ) by

ρ̃w

(
(λi, µi)1≤i≤p

)
=


λi δij if i ≤ p

wi−p,j λj if i > p and i 6= j + p

µi if i > p and i = j + p

We make, for p+1 ≤ i ≤ p+q, the following row transformations: Li ← Li−
∑

1≤j≤p
i 6=j+p

wi−p,j Lj.

We get a matrix
(
cij
)

1≤i≤p+q
1≤j≤p

with cij = δij λi if 1 ≤ i ≤ p and cij = δi−p,j µj if p+ 1 ≤ i ≤

p+ q, which has rank p. ρ̃w induces a map from
{
P1(C)

}p
into Gp,q(C ) as shown on the

following diagram, where γ is the projection of the principal fiber bundle
{
C2\(0, 0)

}p
onto{

P1(C)
}p

. Remark that ρ̃w sends [0, 1]×· · ·× [0, 1] onto π(A), where m{p+1,...,2p}(A) = I(p)

and m{p+1,...,2p}c(A) = 0(q×p).

{
C2 \ (0, 0)

}p ρ̃w //

γ

��

M∗(p+ q, p)

π

��{
P1(C)

}p
ρw

// Gp,q(C )

We have(
π ◦ ρ̃w

)∗(
Gp,q

)
= i ∂∂ log

(
det
(t
ρ̃wρ̃w

))
= i ∂∂ log

(
det
(t
ρ̃wρ̃w

)
p∏

k=1

(
|λk|2 + |µk|2

)
)

+

p∑
k=1

i ∂∂ log
(
|λk|2 + |µk|2

)

= i ∂∂ log Φ̃ + γ∗
(
FS1 ⊕ · · · ⊕ FS1

)
,

where FS1 is the Fubini-Study metric on P1(C). Φ̃ is invariant by the action of the

structural group C∗ × · · · × C∗, so it induces a map Φ from
{
P1(C)

}p
into C. Note that

Φ
(
[0, 1]× · · · × [0, 1]

)
= 1. Then

(
π ◦ ρ̃w

)∗(
Gp,q

)
= π∗

(
i ∂∂ log Φ + FS1 ⊕ · · · ⊕ FS1

)
, so

that ρ∗w
(
Gp,q

)
= i ∂∂ log Φ + FS1 ⊕ · · · ⊕ FS1.
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3.3.2. Lower bound of α(Gp,q). For I in I, we define PI by mI(PI) = I(p) and mIc(PI) =

0(q×p). If n =
(
p+q
p

)
, we set ∆n =

{
PI
}
I∈I . Since U(p+q) is a transitive group of holomor-

phic isometries of Gp,q(C ), we know from proposition (3.1), that α
(
Gp,q

)
= α

∆n

(
Gp,q

)
.

We set I = {p+ 1, . . . , 2p}. Let ϕ be an admissible function on Gp,q(C ), nonnegative on

∆n. The last equality of the precedent section shows that the function ϕ ◦ ρw + log Φ is(
FS1⊕ · · ·⊕FS1

)
-admissible for every w in C p(q−1). Furthermore,

(
ϕ ◦ ρw + log Φ

)
sends

[0, 1] × · · · × [0, 1] to the nonnegative number ϕ(P
I
). It is known that α(FS1) = 1 (see

[Au3]). Proposition (3.4) yields α
(
FS1 ⊕ · · · ⊕ FS1

)
= 1.

Let α be a real number such that α < 1. There exists a constant C, independent of

ϕ, such that

∫{
P1(C)

}p
e−αϕ◦ρw Φ−α ≤ C. We define the map FI from π(UI) to R+ by

FI(ZI) = det
(
Id+tZIZI

)
. On

{
P1(C)

}p
, we work with the coordinates µ1, . . . , µp in the

chart λ1 = · · · = λp = 1. Thus

Φ(µ) =
FI ◦ ρw(µ)
p∏

k=1

(
1 + |µk|2

) , so that

∫
µ∈C p

e−αϕ◦ρw(µ) dVµ
(
C p
)

p∏
k=1

(
1 + |µk|2

)2−α (
F

I
◦ ρw(µ)

)α ≤ C.

We have the inequality

q∑
i=1

p∑
j=1

∣∣Zij∣∣2 ≤ FI
(
PI
)
. In particular, for every k in {1, . . . , p},

1 + |µk|2 ≤ FI ◦ ρw(µ), and fI ◦ ρw(µ) ≥ 1 +
∑
1≤i≤q
1≤j≤p
i 6=j

∣∣wij∣∣2. Thus, for κ > 0 and w ∈ C p(q−1),

p∏
k=1

(
1 + |µk|2

)2−α

(
FI ◦ ρw(µ)

)κ+p+q−α ≤
1(

F
I
◦ ρw(µ)

)κ−p+q+α(p−1)
≤ 1(

1 +
∑
1≤i≤q
1≤j≤p
i6=j

∣∣wij∣∣2)κ =
1(

1 +
∥∥w∥∥2

)κ ·
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We have, according to Proposition (2.3),∫
π(UI)

e−αϕ

F κ
I

=

∫
w∈C p(q−1)

∫
µ∈C p

e−αϕ◦ρw(µ)(
FI ◦ ρw(µ)

)κ+p+q dVµ
(
C p
)
dVw

(
C p(q−1)

)

=

∫
w∈C p(q−1)

∫
µ∈C p

(
e−αϕ◦ρw(µ)

p∏
k=1

(
1 + |µk|2

)2−α (
FI ◦ ρw(µ)

)α
)

×

p∏
k=1

(
1 + |µk|2

)2−α

(
FI ◦ ρw(µ)

)κ+p+q−α dVµ
(
C p
)
dVw

(
C p(q−1)

)

=

∫
w∈C p(q−1)

(∫
µ∈C p

e−αϕ◦ρw(µ)

p∏
k=1

(
1 + |µk|2

)2−α (
F

I
◦ ρw(µ)

)α dVµ(C p
))
×
dVw

(
C p(q−1)

)(
1 +

∥∥w∥∥2)κ

≤ C

∫
w∈C p(q−1)

dVw
(
C p(q−1)

)(
1 +

∥∥w∥∥2)κ ≤ C ′ if κ > p(q − 1).

Thus, we obtain that for all I in I,

∫
π(UI)

e−αϕ

F κ
I

≤ C, where C is independent of ϕ.

Since Gp,q(C ) is compact, there exists a family
(
VI
)
I∈I of open sets of Gp,q(C ) such that

VI is relatively compact in π(UI) for every I ∈ I, and
⋃
I∈I VI = Gp,q(C ). There exists

M > 0 such that FI ≤M on VI for every I ∈ I. Thus∫
Gp,q(C )

e−αϕ ≤
∑
I∈I

∫
VI

e−αϕ ≤
∑
I∈I

Mκ

∫
VI

e−αϕ

F κ
I

≤Mκ
∑
I∈I

∫
π(UI)

e−αϕ

F κ
I

≤ CMκ

(
p+ q

p

)
.

We deduce that α
(
Gp,q

)
≥ 1.

3.3.3. Upper bound of α(Gp,q). We use here a method which can be found in [Re] for

the complex projective space. Let I in I. We define K̃ from M∗(p + q, p) to P1(R) by

the relation K̃(M) =
[
| det m

I
(H) |2, det tMM

]
. K̃ is invariant by the action of the

structural group Gp(C ), so it induces a C∞ map K from Gp,q(C ) to P1(R). Remark that

ψ = logK is a Kähler potential on UI for the metricGp,q.

Lemma 3.5. There exists a decreasing sequence
(
ϕn
)
n≥0

of admissible functions with

positive maxima which converges pointwise to −ψ on π
(
UI
)
.

Proof. We construct a decreasing sequence
(
fn
)
n≥0

of C∞ convex functions on R+ satis-

fying the conditions 1 + f ′n > 0, fn(x) = −
(
1− 1/n

)
x for x in [0, n] and fn(x) = −n for
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x ≥ 2n. Let y be an element of π(UI)
c and Ωn the set of the elements x in π(UI) such

that ψ(x) > 2n. Since FI(y) = [0, 1], there exists a neighborhood V of y such that the

inequality z > e2n holds for every point [1, z] in FI(V ). Thus V ∩π
(
UI
)

is included in Ωn.

We have proved that Wn = Ωn ∪ π
(
UI
)c

, so that Wn is an open neighborhood of π
(
UI
)c

.

We define ϕn by ϕn = fn ◦ ψ on π
(
UI
)

and ϕn = −n on Wn. Thus ϕn is well defined and

ϕn(0) = 0. It remains to show that ϕn is admissible on π
(
UI
)
. We have(

Gp,q + i ∂∂ ϕn

)
λµ

= ∂λµψ + ∂λ
(
f ′n ◦ ψ

)
∂µψ =

(
1 + f ′n ◦ ψ

)
∂λµψ + f ′′n ◦ ψ ∂λψ ∂µψ.

Hence the matrix of the metricGp,q + i ∂∂ ϕn is of the form A + T where A is positive

definite and T has rank one and positive trace. So A + T is positive definite and we get

the result. �

Lemma 3.6. Let n in N∗ and r a positive real number. Then∫
||X||≤r

dVX(Mn(C))∣∣detX
∣∣2 = +∞.

Proof. We can write∫
||X||≤r

dVX(Mn(C))∣∣detX
∣∣2 =

∞∑
k=0

∫
r/2k+1≤||X||≤r/2k

dVX(Mn(C))∣∣detX
∣∣2 ·

We put Y = 2kX, so∫
r/2k+1≤||X||≤r/2k

dVX(Mn(C))∣∣detX
∣∣2 =

∫
1/2≤||Y ||≤1

dVY (Mn(C))∣∣detY
∣∣2 ·

The terms in the series are strictly positive and independent of k. The sum is therefore

infinite. �

We can now prove that α
(
Gp,q

)
is upper bounded by 1. Suppose that α

(
Gp,q

)
> 1.

Then there exists a positive C such that for every integer n,

∫
π(UI)

e−ϕn ≤ C. Us-

ing Lemma (3.5) and monotonous convergence,

∫
π(UI)

FI ≤ C. Since π(UI)
c has zero

measure,

∫
Gp,q(C )

FI ≤ C. Let Ĩ in I be such that I ∩ Ĩ = ∅ (this is possible since

p ≤ q). We have PĨ
{
mI

(
PĨ
)}−1

= PI . Remark that mI

(
PĨ
)

= mI

(
ZĨ
)
. Thus

det
(
Id +tZIZI

)
= det

(t
PĨP Ĩ

) ∣∣detmI

(
ZĨ
)∣∣−2

. For
∥∥ZĨ∥∥ ≤ r, det

(t
PĨP Ĩ

)
≤ M , so that∫

||ZĨ ||≤r

dVZĨ
(Mq,p(C ))∣∣detmI

(
ZĨ
)∣∣2 < +∞. Integrating over the remaining variables

(
Zij
)
i∈Ĩc∩Ic yields
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∫
||Z||≤r

dVZ(Mp(C))∣∣detZ
∣∣2 < +∞, which is in contradiction with the result of Lemma (3.6).

Thus we obtain α
(
Gp,q

)
≤ 1.
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Math. 102 (1978), 63-95.
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