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INTRODUCTION

Liquid crystals were discovered by the botanical
physiologist Friedrich Reinitzer in 1888. In 1900 liq�
uid crystals were first studied by the physicist Otto
Lehman. Around the same time chemist Daniel Vor�
länder synthesized most of the liquid crystal types
known at the moment and the mineralogist and crys�
tallographer George Friedel gave a first classification
of the liquid crystals. The first physical theory of liquid
crystals was formulated during the 1930s by the physi�
cist Carl Wilhelm Oseen. Later the physicist
V.N. Tsvetkov used viscosity, dielectric, and diamag�
netic anisotropy of liquid crystals to create a general
theory of the mesomorphic state leading to the under�
standing of the dynamics of the mesophases.

In this report we study the existense and uniqueness
of the solutions to the Ericksen�Leslie system,
describing hydrodinamics of nematic liquid crystals.

The state of the liquid crystal is characterized by
velocity vector of the media as well as director vector
describing the orientation of molecules. In the case of
the nematic calamitic liquid crystals (elongated

molecular dipoles) the director vector is colinear to the
molecule’s axis and to the velocity vector. In the case
of nematic discotic liquid crystals the director is
orthogonal to the velocity (see Fig. 1).

Since the structure of the full Ericksen–Leslie sys�
tem is sufficiently complicated, the preceding papers
dealt with essentially simplified models (see, e.g., [1–5]).
On the contrary, we consider the system with minimal
natural simplification (see below) and suppose the
moment of inertia of the molecule to be non�zero.
This assumption makes the problem more complex
since the equation has second order time�derivative.

In our previous papers we studied periodic meso�
morphic medium [6] and dinamics of micro inho�
mogenious nematic liquid crystals using the homoge�
nization methods [7].

The subject of our research is the Ericksen–Leslie
system (see [8, 9])

(1)

where summation on repeated indices is understood

and  := n. Here, u is the spatial velocity vector

field, n is the director field, μ > 0 is the viscosity coef�
ficient, J > 0 is the moment of inertia of the molecule,
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F(x, t) and G(x, t) are given external forces, and 
.

 :=  +

u · ∇ is the material derivative. The crystal’s density is
supposed to be equal to one. The terms f and g corre�
spond to the dissipative part of the stress tensor and the
dissipative part of the intrinsic body force respectively,
and they depend on u, n, and their derivatives. The
function �(n, ∇n) is called the Oseen–Zöcher–Frank
free energy and is defined by the formula

The molecular field is defined by h :=  –

.

The pressure p and the Lagrange multiplier 2q are
determined, respectively, by the conditions divu = 0
and ||n|| = 1.

We are interested in the non�dissipative case, i.e.,
g = 0,  f = 0. Since the liquid crystal is nematic, we
necessarily have K1 = 0. For simplicity, we study the
case K11 = K22 = K33 = : K > 0.

With all these hypotheses, system (1) becomes

(2)

(3)

(4)

with unknowns u, ν, n, where ν is a new vector field
introduced in [10] (see also [11]) and the index xj
means partial derivative relative to the spatial coordi�
nate xj.

Conversely, if the initial conditions of the Erick�
sen–Leslie system (1) for t = 0 satisfy the identities

then for any t > 0 we have

and (2)–(4) turns into (1). Thus, under these hypoth�
eses on the initial conditions the systems (1) and (2)–
(4) are equivalent.

In the present paper we prove an existence and
uniqueness theorems for solutions to the system (2)–
(4) in the case of two�dimensional periodic media as
well as for the problem in bounded domain of the
plane. We also prove the finite propagation speed of
waves in such media.
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1. TWO�DIMENSIONAL SOLUTION IN A
PERIODIC DOMAIN

Consider a nematic flow in �3. The flow is called
two�dimensional if all unknowns in the Ericksen–
Leslie system are independent of the third coordinate x3;
so we can suppose that they are all defined on a plane
(x1, x2).

Let QT := (0, T) × �, where �2/�2 is the two�
dimensional flat torus.

We shall study the system (2)–(4) in QT with initial
conditions

(5)

Here u, ν, n are unknown vector fields, p is an unknown
scalar function, and J, K, μ are fixed strictly positive

numbers. The material derivative ft +  turns

into ft + .

It is natural to suppose that u : � → �2 × {u3 = 0}.
Note that the vector fields n, ν are still three�dimen�
sional, even if they are defined on a flat two�dimen�
sional domain; in particular the director field is not
necessarily tangential to the plane {x3 = 0}.

Throughout the paper we use the following nota�
tions:

L2(�) := {v: � → �3| dx < ∞}; Sol(�) := {v:

� → �3 | v ∈ C∞(�), divv = 0}; Sol(QT) := {v ∈ C∞(QT)|
v(t, ·) ∈ Sol(�), ∀t ∈ (0, T)}; Sol2(�) is the closure of
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Fig. 1. The structure of nematic calamitic (a), and nematic
discotic liquid crystals (b).



    

Sol(�) in the norm L2(�); (�) is the closure of

Sol(�) in the norm (�).

Definition 1. A quadruple (u, ν, n, p) is a strong
solution of problem (2)–(5) in the domain QT, if u ∈

L2((0, T); (�)), ut ∈ L2(QT); ν ∈ L∞((0, T);

(�)), νt ∈ L∞((0, T); L2(�)); n ∈ L∞((0, T);

(�)), nt ∈ L∞((0, T); (�)); ∇p ∈ L2(QT); u, n, ν
satisfy the initial conditions (5), i.e. (u, n, ν)  (u0, n0, ν0)
weakly in L2(�) as t → 0, Eqs. (2)–(4) hold almost
everywhere.

The following theorems holds.

Theorem 1. Suppose u0 ∈ (�), ν0 ∈ (�),

n0 ∈ (�) and F ∈ L2((0, T); (�)), G ∈ L1((0, T);

(�)); F3 = 0. Then there exists the solution to prob�
lem (2)–(4) on the interval (0, T) for some T > 0.

Theorem 2. Suppose (u1, ν1, n1, p1) and (u2, ν2,
n2, p2) to be the solutions to the problem (2)–(5) in the
domain QT. Then for som T0: 0 < T0 ≤ T one has the
equation

almost everywhere on .

2. LIQUID CRYSTAL FLOW
IN BOUNDED DOMAINS

Let Ω be a bounded domain in �2. Consider nem�
atic liquid crystal flow which does not depend on the
third coordinate in the cylinder Ω × �.

Since all functions in the Ericksen–Leslie system
depend only on the points (x1, x2) ∈ Ω, we are studying
Eqs. (2)–(4) in domain (0, T) × Ω with initial condi�
tions (5) and additional boundary conditions

(6)

where � is a given vector field on Ω × �.

Condition u|∂Ω = 0 means that the domain has
impenetrable boundary and that the fluid moves with�
out slipping; n – �|∂Ω = 0 describes the director posi�
tion at the boundary. The third condition comes from
the original Ericksen–Leslie system and means that

 = 0 at the boundary.

In this section we suppose QT := (0, T) × Ω, (Ω) :=

{v : Ω → �3 such that v ∈ (Ω), divv = 0}; (QT) :=

{v ∈ C∞(QT): ∀t v(t, ·) ∈ (Ω)}; (Ω) is the closure

Sol2
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2

u2 ν2 n2 ∇p2, , ,( ) u1 ν1 n1 ∇p1, , ,( )=

QT0

u ∂Ω 0, n= � ∂Ω– 0,=

ν ∂Ω 0 for any t 0,>=

n·

Sol°

C0
∞

Sol°

Sol° Sol2
m°

of (Ω) in the norm (Ω); (Ω) is the subspace

of (Ω) with zero trace (see, for instance [13, 14]).

The definition of a solution of the Ericksen–Leslie
equations is quite similar to the one in Definition 1,
with few changes because of the boundary.

Definition 2. The quadruple (u, v, n, p) is a strong
solution of problem (2)–(5), (6) in domain QT, if u ∈

L2((0, T); (Ω)) ∩ L2((0, T); (Ω)), ut ∈

L2(QT); ν ∈ L∞((0, T); (Ω)), νt ∈ L∞((0, T);
L2(Ω)), where (n – �) is a vector field in L∞((0, T);

(Ω)) ∩ L2((0, T); (Ω)), where �(x, t) is a

given constant vector field, nt ∈ L∞((0, T); (Ω));
∇p ∈ L2(QT); u, n, ν satisfy initial conditions (5), i.e.,
(u, n, ν)  (u0, n0, ν0) weakly in L2(Ω) and Eqs. (2)–(4)
hold almost everywhere.

In this section we suppose the third component of
the director to be equal to zero. Then we have

where θ is a new unknown function. The Ericksen–
Leslie system becomes

(7)

(8)

(9)

with boundary and initial conditions

(10)

(11)

We have
Theorem 3. Assume that Ω is a convex Lipschitz

domain and for almost all x ∈ ∂Ω the boundary is a
graph of a C2�function in some neighbourhood of x. Let

θ0 ∈ (Ω), ν0 ∈ (Ω), u0 ∈ (Ω) ∩ (Ω);
Δu0|∂Ω = 0 and assume that for some d > 0 we have

F ∈ L2((0, T); (Ω)), G = (G1, G2, 0) ∈ L1((0, T);

(Ω)), F3 = 0. Then the solution exists and is unique
for some T > 0.
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Remark 1. The analogues of the Theorems 3 hold
also in the case of the director field 

where ϕ0 is a constant angle and θ, ν3 are new
unknown functions.

3. FINITE PROPAGATION SPEED

In this section we consider the strong solutions of
the Ericksen–Leslie equation both in the periodic (see
Definition 1) and the bounded domain case (see Defi�
nition 2). For simplicity in this section we will use

,

depending on which domain we are working.

Denote wij :=  + .

Theorem 4. Consider the Eqs. (3), (4), suppose that
for some for some 1 < α ≤ ∞,

and that ||u|| is bounded by a constant m > 0. Assume also
that ∇n0 and ν0 vanish for ||x – x0|| < r. Then ∇n and ν are
equal to zero for

In the case of a bounded domain Ω, we impose the
additional assumption u|∂Ω = 0, ν(x, t) = 0, n(x, t)t = 0,

if (x, t) ∈ x ∈ ∂Ω, ||x – x0|| < r – t m +

max .

Proof. Let x0 = 0. Using integral identities for the
solutions of problem (3), (4) we get

(12)

Let test functions be ζ = νϕ and ψ = –KΔnϕ. Equa�
tion (12) turns into

n θ ϕ0sincos θ ϕ0sinsin ϕ0cos, ,( ),=

ν 0 0 ν3, ,( ),=

f x1d x2 instead of f x1d x2 or f x1d x2d

Ω

∫d

�

∫d∫

uxi

j uxj

i

ess wij x t,( )
x

sup
L
α

0 T,( )

M
2
����≤

x x0– r m max 1 K
J
���,

⎩ ⎭
⎨ ⎬
⎧ ⎫

+
⎝ ⎠
⎜ ⎟
⎛ ⎞

t, Mt
α 1–
α

����������

– 1
2
��.< <

⎩
⎨
⎧

��⎝
⎛

1 K
J
���,

⎩ ⎭
⎨ ⎬
⎧ ⎫

⎠
⎟
⎞

⎭
⎬
⎫

J
K
���ν· ζ⋅ Δn n×( ) ζ⋅+⎝ ⎠

⎛ ⎞ x1d x2d td∫ 0,=

n· ψ⋅ ν n×( )– ψ⋅( ) x1d x2d td∫ 0.=

J
2
�� ν

2ϕ x1d x2 0
td∫

=  J
2
�� ϕt ujϕxj

+( ) ν
2 K Δn n×( )– νϕ⋅⎝ ⎠

⎛ ⎞ x1d x2d t,d∫

Add the previous two identities.

Denote ϕ = φ(||x|| + m't), where φ(x) ∈ C1(�), φ = 0

for ||x|| > r, φ' ≤ 0. Let m' := m + max  and esti�

mate

Consequently,

which proves the statement.

Remark 2. The proof of Theorem 4 is independent
of the existence and uniqueness proof and result.
Moreover, in the proof we can suppose (u, ν, n) to sat�
isfy only (3), (4) but not (2).
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