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Existence and uniqueness theorems in two-dimensional nematodynamics. Finite speed of propagation

INTRODUCTION

Liquid crystals were discovered by the botanical physiologist Friedrich Reinitzer in 1888. In 1900 liq uid crystals were first studied by the physicist Otto Lehman. Around the same time chemist Daniel Vor länder synthesized most of the liquid crystal types known at the moment and the mineralogist and crys tallographer George Friedel gave a first classification of the liquid crystals. The first physical theory of liquid crystals was formulated during the 1930s by the physi cist Carl Wilhelm Oseen. Later the physicist V.N. Tsvetkov used viscosity, dielectric, and diamag netic anisotropy of liquid crystals to create a general theory of the mesomorphic state leading to the under standing of the dynamics of the mesophases.

In this report we study the existense and uniqueness of the solutions to the Ericksen Leslie system, describing hydrodinamics of nematic liquid crystals.

The state of the liquid crystal is characterized by velocity vector of the media as well as director vector describing the orientation of molecules. In the case of the nematic calamitic liquid crystals (elongated molecular dipoles) the director vector is colinear to the molecule's axis and to the velocity vector. In the case of nematic discotic liquid crystals the director is orthogonal to the velocity (see Fig. 1).

Since the structure of the full Ericksen-Leslie sys tem is sufficiently complicated, the preceding papers dealt with essentially simplified models (see, e.g., [1][2][3][4][5]). On the contrary, we consider the system with minimal natural simplification (see below) and suppose the moment of inertia of the molecule to be non zero. This assumption makes the problem more complex since the equation has second order time derivative.

In our previous papers we studied periodic meso morphic medium [6] and dinamics of micro inho mogenious nematic liquid crystals using the homoge nization methods [7].

The subject of our research is the Ericksen-Leslie system (see [8,9])

(1)
where summation on repeated indices is understood and := n. Here, u is the spatial velocity vector field, n is the director field, μ > 0 is the viscosity coef ficient, J > 0 is the moment of inertia of the molecule,

u • μΔu - ∇p - ∂ ∂x j ∂Ᏺ ∂n x j ∇n ⋅ ⎝ ⎠ ⎛ ⎞ - F f, + + = divu 0, = Jn •• 2qn - h + g G, n + 1, = = n x j ∂ ∂x j
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K 11 = K 22 = K 33 = : K > 0.
With all these hypotheses, system (1) becomes

with unknowns u, ν, n, where ν is a new vector field introduced in [10] (see also [11]) and the index x j means partial derivative relative to the spatial coordi nate x j . Conversely, if the initial conditions of the Erick sen-Leslie system (1) for t = 0 satisfy the identities then for any t > 0 we have and ( 2)-(4) turns into (1). Thus, under these hypoth eses on the initial conditions the systems (1) and ( 2)-(4) are equivalent.

In the present paper we prove an existence and uniqueness theorems for solutions to the system (2)-(4) in the case of two dimensional periodic media as well as for the problem in bounded domain of the plane. We also prove the finite propagation speed of waves in such media.
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Consider a nematic flow in ޒ 3 . The flow is called two dimensional if all unknowns in the Ericksen-Leslie system are independent of the third coordinate x 3 ; so we can suppose that they are all defined on a plane (x 1 , x 2 ).

Let Q T := (0, T) × ,ޔ where ޒ 2 ޚ/ 2 is the two dimensional flat torus. We shall study the system (2)-( 4) in Q T with initial conditions (5) Here u, ν, n are unknown vector fields, p is an unknown scalar function, and J, K, μ are fixed strictly positive numbers. The material derivative f t + turns into f t + .

It is natural to suppose that u : ޔ → ޒ 2 × {u 3 = 0}.

Note that the vector fields n, ν are still three dimen sional, even if they are defined on a flat two dimen sional domain; in particular the director field is not necessarily tangential to the plane {x 3 = 0}.

Throughout the paper we use the following nota tions:

L 2 )ޔ( := {v: ޔ → ޒ 3 | dx < ∞}; Sol()ޔ := {v: ޔ → ޒ 3 | v ∈ C ∞ ,)ޔ( divv = 0}; Sol(Q T ) := {v ∈ C ∞ (Q T )| v(t, •) ∈ Sol(,)ޔ ∀t ∈ (0, T)}; Sol 2 )ޔ( is the closure of u 0 x , ( ) u 0 , ν 0 x , ( ) ν 0 , n 0 x , (
) Sol()ޔ in the norm

n 0 . = = = u i f x i i 1 = 3 ∑ u i f x i i 1 = 2 ∑ v 2 ޔ ∫ (a) (b) 
L 2 ;)ޔ( )ޔ( is the closure of Sol()ޔ in the norm .)ޔ( Definition 1. A quadruple (u, ν, n, p) is a strong solution of problem (2)-(5) in the domain Q T , if u ∈ L 2 ((0, T); ,))ޔ( u t ∈ L 2 (Q T ); ν ∈ L ∞ ((0, T); ,))ޔ( ν t ∈ L ∞ ((0, T); L 2 ;))ޔ( n ∈ L ∞ ((0, T); ,))ޔ( n t ∈ L ∞ ((0, T); ;))ޔ( ∇p ∈ L 2 (Q T )
; u, n, ν satisfy the initial conditions (5), i.e. (u, n, ν) (u 0 , n 0 , ν 0 ) weakly in L 2 )ޔ( as t → 0, Eqs. ( 2)-( 4) hold almost everywhere.

The following theorems holds.

Theorem 1. Suppose u 0 ∈ ,)ޔ( ν 0 ∈ ,)ޔ( n 0 ∈ )ޔ( and F ∈ L 2 ((0, T); ,))ޔ( G ∈ L 1 ((0, T); ;))ޔ( F 3 = 0.
Then there exists the solution to prob lem (2)-( 4) on the interval (0, T) for some T > 0.

Theorem 2. Suppose (u 1 , ν 1 , n 1 , p 1 ) and (u 2 , ν 2 , n 2 , p 2 ) to be the solutions to the problem (2)-( 5) in the domain Q T . Then for som T 0 : 0 < T 0 ≤ T one has the equation almost everywhere on .

LIQUID CRYSTAL FLOW IN BOUNDED DOMAINS

Let Ω be a bounded domain in ޒ 2 . Consider nem atic liquid crystal flow which does not depend on the third coordinate in the cylinder Ω × .ޒ Since all functions in the Ericksen-Leslie system depend only on the points (x 1 , x 2 ) ∈ Ω, we are studying Eqs. ( 2)-(4) in domain (0, T) × Ω with initial condi tions (5) and additional boundary conditions (6) where ᑨ is a given vector field on Ω × .ޒ Condition u| ∂Ω = 0 means that the domain has impenetrable boundary and that the fluid moves with out slipping; n -ᑨ| ∂Ω = 0 describes the director posi tion at the boundary. The third condition comes from the original Ericksen-Leslie system and means that = 0 at the boundary.

In this section we suppose

Q T := (0, T) × Ω, (Ω) := {v : Ω → ޒ 3 such that v ∈ (Ω), div v = 0}; (Q T ) := {v ∈ C ∞ (Q T ): ∀t v(t, •) ∈ (Ω)}; (Ω) is the closure Sol 2 m W 2 m Sol 2 3 W 2 2 W 2 3 W 2 1 → Sol 2 2 W 2 2 W 2 3 W 2 1 W 2 2 u 2 ν 2 n 2 ∇p 2 , , , ( ) u 1 ν 1 n 1 ∇p 1 , , , ( ) = Q T 0 u ∂Ω 0, n = ᑨ ∂Ω - 0, = ν ∂Ω 0 for any t 0, > = n • Sol °C0 ∞ Sol °Sol °Sol 2 m °of (Ω) in the norm (Ω);
(Ω) is the subspace of (Ω) with zero trace (see, for instance [START_REF] Sobolev | Some Applications of Functional Analysis in Mathematical Physics[END_REF][START_REF] Mikhailov | Partial Differential Equations[END_REF]). The definition of a solution of the Ericksen-Leslie equations is quite similar to the one in Definition 1, with few changes because of the boundary.

Definition 2. The quadruple (u, v, n, p) is a strong solution of problem ( 2)-( 5), (6) 

in domain Q T , if u ∈ L 2 ((0, T); (Ω)) ∩ L 2 ((0, T); (Ω)), u t ∈ L 2 (Q T ); ν ∈ L ∞ ((0, T); (Ω)), ν t ∈ L ∞ ((0, T); L 2 (Ω))
, where (n -ᑨ) is a vector field in L ∞ ((0, T);

(Ω)) ∩ L 2 ((0, T);

(Ω)), where ᑨ(x, t) is a given constant vector field, n t ∈ L ∞ ((0, T); (Ω)); ∇p ∈ L 2 (Q T ); u, n, ν satisfy initial conditions (5), i.e., (u, n, ν) (u 0 , n 0 , ν 0 ) weakly in L 2 (Ω) and Eqs. ( 2)-( 4) hold almost everywhere.

In this section we suppose the third component of the director to be equal to zero. Then we have where θ is a new unknown function. The Ericksen-Leslie system becomes (

with boundary and initial conditions (10) (11) We have Theorem 3. Assume that Ω is a convex Lipschitz domain and for almost all x ∈ ∂Ω the boundary is a graph of a C 2 function in some neighbourhood of x. Let

θ 0 ∈ (Ω), ν 0 ∈ (Ω), u 0 ∈ (Ω) ∩ ( 
Ω); Δu 0 | ∂Ω = 0 and assume that for some d > 0 we have

F ∈ L 2 ((0, T); (Ω)), G = (G 1 , G 2 , 0) ∈ L 1 ((0, T);
(Ω)), F 3 = 0. Then the solution exists and is unique for some T > 0.

Sol °W2 m W 2 m °W2 m Sol 2 1 °W2 2 W 2 1 °W2 1 °W2 2 W 2 1 → n θ cos θ sin 0 , , ( ) , ν 0 0 ν , , ( ), = = u • μΔu - ∇ p K 2 ∇θ 2 + ⎝ ⎠ ⎛ ⎞ - KΔθ∇θ - F, + = divu 0, = Jν • KΔθ, - = θ • ν = u ∂Ω 0, θ θ 1 ∂Ω - 0, = = ν ∂Ω 0 for any t 0, > = u 0 x , ( ) u 0 x ( ), ν 0 x , ( ) ν 0 x ( ), = = θ 0 x , ( ) θ 0 x ( ). = W 2 3 W 2 2 Sol 2 1 °W2 2 θ 0 x ( ) θ 1 const, ν 0 x ( ) ≡ 0, = = if dist x ∂Ω , ( ) d, < W 2 1 W 2
Remark 1. The analogues of the Theorems 3 hold also in the case of the director field where ϕ 0 is a constant angle and θ, ν 3 are new unknown functions.

FINITE PROPAGATION SPEED

In this section we consider the strong solutions of the Ericksen-Leslie equation both in the periodic (see Definition 1) and the bounded domain case (see Defi nition 2). For simplicity in this section we will use , depending on which domain we are working. Denote w ij := + .

Theorem 4. Consider the Eqs. (3), ( 4), suppose that for some for some 1 < α ≤ ∞, and that ||u|| is bounded by a constant m > 0. Assume also that ∇n 0 and ν 0 vanish for ||x -x 0 || < r. Then ∇n and ν are equal to zero for In the case of a bounded domain Ω, we impose the additional assumption u| ∂Ω = 0, ν(x, t) = 0, n(x, t) t = 0,

if (x, t) ∈ x ∈ ∂Ω, ||x -x 0 || < r -t m + max .
Proof. Let x 0 = 0. Using integral identities for the solutions of problem (3), (4) we get ) 

, = ν 0 0 ν 3 , , ( ), = f x 1 d x 2 instead of f x 1 d x 2 or f x 1 d x 2 d Ω ∫ d ޔ ∫ d ∫ u x i j u x j i ess w ij x t , ( ) x sup L α 0 T , ( ) M 2 ≤ x x 0 - r m max 1 K J , ⎩ ⎭ ⎨ ⎬ ⎧ ⎫ + ⎝ ⎠ ⎜ ⎟ ⎛ ⎞ t, Mt α 1 - α - 1 2 . < < ⎩ ⎨ ⎧ ⎝ ⎛ 1 K J , ⎩ ⎭ ⎨ ⎬ ⎧ ⎫ ⎠ ⎟ ⎞ ⎭ ⎬ ⎫ J K ν • ζ ⋅ Δn n × ( ) ζ ⋅ + ⎝ ⎠ ⎛ ⎞ x 1 d x 2 d t d ∫ 0, = n • ψ ⋅ ν n × ( ) - ψ ⋅ ( )x 1 d x 2 d t d ∫ 0. = J 2 ν 2 ϕ x 1 d x 2 0 t d ∫ = J 2 ϕ t u j ϕ x j + ( )ν 2 K Δn n × ( ) - νϕ ⋅ ⎝ ⎠ ⎛ ⎞ x 1 d x 2 d t

F

  (x, t) and G(x, t) are given external forces, and . := + u • ∇ is the material derivative. The crystal's density is supposed to be equal to one. The terms f and g corre spond to the dissipative part of the stress tensor and the dissipative part of the intrinsic body force respectively, and they depend on u, n, and their derivatives. The function Ᏺ(n, ∇n) is called the Oseen-Zöcher-Frank free energy and is defined by the formula The molecular field is defined by h := -. The pressure p and the Lagrange multiplier 2q are determined, respectively, by the conditions divu = 0 and ||n|| = 1.

Fig. 1 .

 1 Fig. 1. The structure of nematic calamitic (a), and nematic discotic liquid crystals (b).
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			Add the previous two identities. mate Consequently, which proves the statement. 2 ∇n 2 ϕ x 1 d x 2 0 t d ∫ = K 2 ϕ t u j ϕ x j + ( )∇n 2 K ν n × ( -⎝ ⎛ ∫ -Ku x k j n x j n x k ϕ Kn • -⋅ n x j ϕ x j -⎠ ⎞ dx 1 dx 2 dt. and esti ) Δnϕ ⋅ J 2 ν 2 ϕ x 1 d x 2 0 t d ∫ K 2 ∇n 2 ϕ x 1 d x 2 0 t d ∫ + ≤ ϕ • J 2 ν 2 K 2 ∇n 2 + ⎝ ⎠ ⎛ ⎞ ∫ K w ij ∇n 2 ϕ i j x , , max + + 1 K J , ⎩ ⎭ ⎨ ⎬ ⎧ ⎫ ϕ • J 2K ν 2 1 2 ∇n 2 + ⎝ ⎠ ⎛ ⎞ ν ∇n ∇ϕ + ⎝ ⎠ ⎛ ⎞ dx 1 dx 2 dt ∫ ≤ φ' x m't + ( ) m' u i x i x + ⎝ ⎠ ⎛ ⎞ J 2K ν 2 1 2 ∇n 2 + ⎝ ⎠ ⎛ ⎞ ∫ + φ' x m't + ( ) 2 ν 2 ∇n 2 + ( ) dx 1 dx 2 dt 0. ≤ J 2K ν t ( )φ 1 2 2 2 1 2 φ 1 2 ∇n t ( ) 2 2 + ≤ w ij ∇n 2 ϕ i j x , , max x 1 d x 2 d t d ∫ α 1 -1 2 Remark 2. K ≤ Mt α ess φ 2 ∇n 2 ,
	∫	d	,

Denote ϕ = φ(||x|| + m't), where φ(x) ∈ C 1 ,)ޒ( φ = 0 for ||x|| > r, φ' ≤ 0. Let m' := m + max t sup